首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cell-cycle checkpoint proteins maintain genomic integrity by sensing damaged DNA and initiating DNA repair or apoptosis. RAD1 is a checkpoint protein involved in the sensing of damaged DNA and is a part of the 9-1-1 complex. In this project rainbow trout rad1 (rtrad1) was cloned, sequenced, expressed as a recombinant protein and anti-rtRAD1 antibodies were developed. RAD1 protein levels were characterized in various rainbow trout tissues. It was determined that an 840 bp open-reading frame encodes 279 aa with a predicted protein size of 31 kDa. The rtRAD1 amino-acid sequence is highly conserved and contains conserved exonuclease and leucine zipper domains. RT-PCR was used to identify three non-canonical splice variants of rtrad1, two of which are capable of forming functional proteins. The rad1 splice variant that encodes an 18 kDa protein appears to be abundant in rainbow trout spleen, heart and gill tissue and in the RTgill-W1 cell-line. Based on the genomic rtrad1 sequence the splice variants contain only partial exons which are consistent with the splicing of rad1 variants in mammals. This is the first time that rad1 has been fully characterized in a fish species.  相似文献   

2.
Pumilio is a sequence-specific RNA-binding protein that regulates translation from the relevant mRNA. The PUF-domain, the RNA-binding motif of Pumilio, is highly conserved across species. In the present study, we have identified two pumilio genes (pumilio-1 and pumilio-2) in rainbow trout and analyzed their expression patterns in its tissues. Pumilio-1 mRNA and pumilio-2A mRNA code for typical full length Pumilio proteins that contain a PUF-domain, whereas pumilio-2B mRNA is a splice variant of pumilio-2 and encodes a protein that lacks the PUF-domain. We have also identified a novel 72-bp exon that has not been reported in other animal species but is conserved in fish species. The insertion of this novel exon leads to the expression of an isoform of the Pumilio-2 protein with a slightly altered conformation of the PUF-domain. Pumilio-1 mRNA and pumilio-2A mRNA (irrespective of the presence of the 72-bp exon) are expressed in both the brain and ovaries at high levels, whereas pumilio-2B mRNA is expressed at low levels in all the rainbow trout tissues examined. Western blot analysis also indicates that the full length Pumilio proteins are expressed predominantly in the brain and ovaries. These data suggest that the Pumilio proteins have physiological roles and are involved in regulatory mechanisms in rainbow trout.This work was in part supported by a grant from the Akiyama Foundation to E.I. Nucleotide sequence data for rainbow trout pumilio-1 and pumilio-2 have been deposited in the DDBJ/EMBL/GenBank databases.  相似文献   

3.
4.
Nucleotide-binding oligomerization domain 2 (NOD2) is a cytoplasmic pattern recognition receptor (PRR), which is involved in innate antibacterial and antiviral responses. Here, two NOD2 splice variants, trNOD2a and trNOD2b, are reported in rainbow trout Oncorhynchus mykiss, that share 63% and 61% similarity with human NOD2, respectively. These two trout NOD2 splice variants were shown to be constitutively expressed in thymus, gills, skin, muscle, liver, spleen, head kidney, intestine, heart, and brain, with the expression of trout NOD2 (trNOD2) mainly contributed by trNOD2a in all the examined tissues. PolyI:C transfection up-regulated the expression of trNOD2a and trNOD2b in RTG-2 cells. The expression of trNOD2a/b was modulated by the inflammatory stimulant interferon-γ (IFN-γ) or interleukin-1β (IL-1β). Overexpression of trout NOD2 effector domains resulted in induced expression of proinflammatory cytokines including IL-1β, tumor necrosis factor-α (TNF-α), IL-6 and IL-8, the antibacterial peptide cathelicidin-2, a variety of caspases including caspase-2, -6, -7, -8, -9, and type I and type II IFN. These results suggest that fish NOD2 functions in inflammatory events, possibly via NF-κB activation, regulation of apoptosis, and triggering of antibacterial and antiviral defences.  相似文献   

5.
6.
7.
8.
Teleost fish store lipids among several tissues primarily as triacylglycerol (TG). Upon metabolic demand, stored TGs are hydrolyzed by hormone-sensitive lipase (HSL). In this study, two distinct cDNAs encoding HSL were isolated, cloned, and sequenced from adipose tissue of rainbow trout. The full-length cDNAs, designated HSL1 and HSL2, were 2562-bp and 2887-bp in length, respectively, and share 82% nucleotide identity. Phylogentic analysis suggests that the two HSLs derive from paralogous genes that may have arisen during a teleost-specific genome duplication event. Quantitative real-time PCR revealed that HSL1 and HSL2 were differentially expressed, both in terms of distribution among tissues as well as in terms of abundance within selected tissues of juvenile trout. HSL1 and HSL2 mRNAs were detected in the brain, spleen, pancreas, kidney, gill, intestine, heart, and white muscle, but were most abundant in the red muscle, liver, and adipose tissue. HSL1 mRNA was more abundant than HSL2 mRNA in the adipose tissue, whereas HSL2 mRNA was more abundant than HSL1 mRNA in the liver. Short term fasting (4 weeks) increased HSL1 and HSL2 mRNA expression in the adipose tissue, but only HSL1 mRNA levels increased in the liver and the red muscle. During a prolonged fast (6 weeks), there was continued elevation of HSL1 and HSL2 mRNA levels in the liver and muscle; HSL mRNA expression in mesenteric fat declined, coincident with depletion of mesenteric fat mass. Refeeding fish reduced HSL expression to levels seen in continuously fed fish. These findings indicate that the pattern of HSL expression is consistent with the diverse lipid storage pattern of fish and suggest that distinct mechanisms serve to regulate differential expression of the two HSLs in tissues and during a progressive fast.  相似文献   

9.
Green fluorescent protein (GFP) has been used as an indicator of transgene expression in living cells and organisms. For testing the utility of GFP in rainbow trout, we microinjected fertilized eggs with four types of supercoiled constructs containing two variants of GFP complementary DNA (S65T and EGFP), driven by two ubiquitous regulatory elements, human cytomegalovirus immediate early enhancer-promoter (CMV) and Xenopus laevis elongation factor 1α enhancer-promoter (EF1). Green fluorescence was first observed at 3 days postfertilization, when the embryo was in the mid-blastula stage. Fluorescence could be detected mosaically in various types of embryonic cells and tissues of swim-up fry. Both the percentage of fluorescent cells and the fluorescence intensity of GFP-expressing cells on blastoderms, measured with a microscopic photometry system, were highest in CMV-EGFP-microinjected embryos. We conclude that GFP is capable of producing detectable fluorescence in rainbow trout, and can be a powerful tool as a cell marker and reporter gene for cold-water fish, and that analysis of GFP expression in living cells is useful for characterizing the activity of cis-elements in vivo. Received December 21, 1998; accepted March 31, 1999.  相似文献   

10.
Heat shock (25° C) of 10° C-acclimated rainbow trout Oncorhynchus mykiss led to increases in heat shock protein 70 (hsp70) mRNA in blood, brain, heart, liver, red and white muscle, with levels in blood being amongst the highest. Hsp30 mRNA also increased with heat shock in all tissues with the exception of blood. When rainbow trout blood was heat shocked in vitro , both hsp70 and hsp30 mRNA increased significantly. In addition, these in vitro experiments demonstrated that blood from fish acclimated to 17° C water had a lower hsp70 mRNA heat shock induction temperature than did 5° C acclimated fish (20 v. 25° C). The hsp30 mRNA induction temperature (25° C), however, was unaffected by thermal acclimation. While increases in hsp70 mRNA levels in blood may serve as an early indicator of temperature stress in fish, tissue type, thermal history and the particular family of hsp must be considered when evaluating stress by these molecular means.  相似文献   

11.
Nath S  Kales S  Fujiki K  Dixon B 《Immunogenetics》2006,58(5-6):443-453
Major histocompatibility (MH) class II receptors are expressed on the surface of specialized antigen-presenting cells in vertebrate immune systems. Their function is to present peptides derived from exogenous pathogens to CD4+ T cells. Variation in the level of expression of these genes has been linked to pathogenesis in various diseases. Very little has been published on the function of MH class II receptors in teleost fish to date. In this study, we have produced polyclonal antibodies recognizing MH class II alpha and beta proteins of rainbow trout and employed them to characterize the expression pattern of these genes. Deglycosylation using N-glycosidase F and endoglycosidase H showed that MH class II alpha is glycosylated in rainbow trout. MH class II beta was also found to be glycosylated as reported previously. Results from Northern blotting revealed that the expression of these genes was not affected by exposure of rainbow trout to temperature of 5°C. However, at 2°C, downregulation of MH class II alpha and beta genes was evident at both the mRNA and protein levels as assessed by Northern and Western blotting, respectively. Because MH class II antigens play an important role in generating an immune response to bacterial and fungal pathogens, downregulation of these genes at low temperature could account for the susceptibility of fish to low temperature-related diseases such as bacterial cold-water disease and winter saprolegniosis.  相似文献   

12.
Extensive molecular characterization of mammalian beta-adrenoceptors has revealed complex modes of regulation and interaction. Relatively little attention, however, has focused on adrenoceptors from early branching vertebrates such as fish. Using an RT-PCR approach we have cloned a rainbow trout beta2-adrenoceptor gene that codes for a 409-amino-acid protein with the same seven transmembrane domain structure as its mammalian counterparts. This rainbow trout beta2-adrenoceptor shares a high degree of amino-acid sequence conservation with other vertebrate beta2-adrenoceptors. The conclusion that this sequence is a rainbow trout beta2-adrenoceptor is further supported by phylogenetic analysis of vertebrate beta-adrenoceptor sequences and competitive pharmacological binding data. RNase protection assays demonstrate that the rainbow trout beta2-adrenoceptor gene is highly expressed in the liver and red and white muscle, with lower levels of expression in the gills, heart, kidney and spleen of the rainbow trout. The lack of regulatory phosphorylation sites within the G-protein-binding domain of the rainbow trout beta2-adrenoceptor sequence suggests that the in vivo control of trout beta2-adrenoceptor signaling differs substantially from that of mammals.  相似文献   

13.
14.
Muscle growth is determined primarily by the balance between protein synthesis and degradation. When rates of protein synthesis are similar between individuals, protein degradation is critical in explaining differences in growth efficiency. Studies in mammals showed that muscle atrophy results from increased protein breakdown, and is associated with activation of the ubiquitin proteasome pathway, including induction of the muscle-specific ubiquitin protein ligase, MuRF1. Animals lacking MuRF1 are resistant to muscle atrophy. In fish, little is known about the role of the proteasome/MuRF pathway in muscle degradation. The objectives of this study were to: 1) clone and characterize MuRF genes in rainbow trout; and 2) determine expression of MuRF genes in association with starvation- and vitellogenesis-induced muscle atrophy in rainbow trout. We have identified full-length cDNA sequences for three MuRF genes (MuRF1, MuRF2, and MuRF3). These genes encode proteins with typical MuRF structural domains, including a RING-finger, a B-box and a Leucine-rich coiled-coil domain. RT-PCR analysis showed that MuRF genes are predominantly expressed in muscle and heart tissues. Real time PCR analysis revealed that expression of all MuRF genes is up-regulated during starvation and MuRF3 is up-regulated in vitellogenesis-associated muscle degradation. These results suggest that MuRF genes have an important role in fish muscle protein degradation. Further studies are warranted to assess the potential use of MuRF genes as tools to monitor fish muscle growth and degradation.  相似文献   

15.
Beta2-microglobulin (beta2m) associates with MHC and related class I H chains to form cell surface glycoproteins that mediate a variety of functions in defense. In humans, monomorphism of a single beta2m gene contrasts with the diversity and polymorphism of the class I H chain genes, and a similar picture was seen in almost all other species examined. In this regard, rainbow trout (Oncorhynchus mykiss) appeared unusual: trout beta2m genes gave a complicated and polymorphic pattern in Southern blots, and a minimum of 10 different mRNA encoding two distinct types of beta2m were expressed by a single fish. Characterization of genomic clones from the same fish now shows that the rainbow trout beta2m locus consists of two expressed genes and one partial gene that are closely linked. Four copies of the locus were identified and allelic variants of each gene defined, largely through comparison of the noncoding regions. A dramatic variation in the lengths of introns is caused by variable repetitive elements and accounts for the complex pattern seen in Southern blots. By comparison to noncoding sequences, the coding regions are conserved but the three loci differ within a cluster of codons that encode residues of beta2m that do not interact with class I H chains. Additional diversity in the trout beta2m genes appears to be due to somatic mutation that might be facilitated by the abundance of repetitive DNA elements within the 12 beta2m genes of an individual rainbow trout.  相似文献   

16.
The carnitine palmitoyltransferase I (EC.2.3.1.21; CPT I) mediates the transport of fatty acids across the outer mitochondrial membrane. In mammals, there are two different proteins CPT I in the skeletal muscle (M) and liver (L) encoded by two genes. The carnitine palmitoyltransferase system of lower vertebrates received little attention. With the aim of improving knowledge on the CPT family in fish, we examined CPT I cDNA and CPT activity in different tissues of rainbow trout (Oncorhynchus mykiss). Using RT-PCR, we successfully cloned a partial CPT I cDNA sequence (1650 bp). The predicted protein sequence revealed identities of 63% and 61% with human L-CPT I and M-CPT I, respectively. This mRNA is expressed in liver, white and red skeletal muscles, heart, intestine, kidney and adipose tissue of trout. This is in good agreement with the measurement of the CPT activity in the same tissues. The [IC(50)] that reflects the sensitivity to malonyl-CoA inhibition was 0.116+/-0.004 microM for the liver and 0.426+/-0.041 microM for the white muscle. These results demonstrate for the first time the existence of at least one gene encoding for CPT I present in both the liver and the muscle of rainbow trout.  相似文献   

17.
To clarify the divergence of the growth hormone receptor (GHR) family, we characterized a novel GHR from a teleost fish (rainbow trout). A 2357-nt cDNA was isolated and found to contain a single initiation site 71 nt from the most 5′ end, an open reading frame of 1971 nt encoding a 657-amino acid protein, and a single polyadenylation site 229 nt from the poly-A tail. Based on structural analysis, the protein was identified as a type 1 GHR (GHR1). The new GHR1 shares 42% and 43% amino acid identity, respectively, with GHR2a and GHR2b, the two type 2 GHRs isolated from trout previously. GHR1 mRNA was found in a wide array of tissues with the highest expression in the liver, red muscle, and white muscle. Fasting animals for 4 weeks reduced steady state levels of GHR1 in the liver, adipose, and red muscle. These findings help clarify the divergence and nomenclature of GHRs and provide insight into the function of duplicated GHR types.  相似文献   

18.
19.
Three interferon-inducible Mx genes have been identified in rainbow trout Oncorhynchus mykiss and their roles in virus resistance have yet to be determined. In mice, expression of the Mx1 protein is associated with resistance to influenza virus. We report a study to determine whether there was a correlation between the expression of Mx in rainbow trout and resistance to a fish rhabdovirus, infectious hematopoietic necrosis virus (IHNV). A comparison of Mx mRNA expression was made between different families of cultured rainbow trout selected for resistance or for susceptibility to IHNV. A trout-specific Mx cDNA gene probe was used to determine whether there was a correlation between Mx mRNA expression and resistance to the lethal effects of IHNV infection. Approximately 99% of trout injected with a highly virulent strain of the fish rhabdovirus, IHNV, were able to express full length Mx mRNA at 48 h post infection. This is markedly different from the expression of truncated, non-functional Mx mRNA found in most laboratory strains of mice, and the ability of only 25% of wild mice to express functional Mx protein. A restriction fragment length polymorphism (RFLP) assay was developed to compare the Mx locus between individual fish and between rainbow trout genetic crosses bred for IHNV resistance or susceptibility. The assay was able to discriminate 7 distinct RFLP patterns in the rainbow trout crosses. One cross was identified that showed a correlation between homozygosity at the Mx locus and greater susceptibility to IHN-caused mortality.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号