首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hyperglycemia increases glucose metabolism via the polyol pathway, which results in elevations of intracellular sorbitol concentration. Thus we hypothesized that elevated level of sorbitol contributes to the development of hyperglycemia-induced dysfunction of microvessels. In isolated, pressurized (80 mmHg) rat gracilis muscle arterioles (approximately 150 microm), high glucose treatment (25 mM) induced reduction in flow-dependent dilation (from maximum of 39 +/- 2% to 15 +/- 1%), which was significantly mitigated by an aldose reductase inhibitor, zopolrestat (maximum 27 +/- 2%). Increasing doses of sorbitol (10(-10)-10(-4) M) elicited dose-dependent constrictions (maximum 22 +/- 3%), which were abolished by endothelium removal, a prostaglandin H(2)/thromboxane A(2) (PGH(2)/TXA(2)) receptor (TP) antagonist SQ-29548, or superoxide dismutase (SOD) plus catalase (CAT). Incubation of arterioles with sorbitol (10(-7) M) reduced flow-dependent dilations (from maximum of 39 +/- 2% to 20 +/- 1.5%), which was not further affected by inhibition of nitric oxide synthase by N(omega)-nitro-l-arginine methyl ester but was prevented by SOD plus CAT and mitigated by SQ-29548. Nitric oxide donor sodium nitroprusside-induced (10(-9)-10(-6) M) dilations were also decreased in a SQ-29548 and SOD plus CAT-reversible manner, whereas adenosine dilations were not affected by sorbitol exposure. Sorbitol significantly increased arterial superoxide production detected by lucigenin-enhanced chemiluminescence, which was inhibited by SOD plus CAT. Sorbitol treatment also increased arterial formation of 3-nitrotyrosine. We suggest that hyperglycemia by elevating intracellular sorbitol induces oxidative stress, which interferes with nitric oxide bioavailability and promotes PGH(2)/TXA(2) release, both of which affect regulation of vasomotor responses of arterioles. Thus increased activity of the polyol pathway may contribute to the development of microvascular dysfunction in diabetes mellitus.  相似文献   

2.
The goal of this study was to determine whether acetylcholine evokes endothelium-dependent contraction in mouse arteries and to define the mechanisms involved in regulating this response. Arterial rings isolated from wild-type (WT) and endothelial nitric oxide (NO) synthase knockout (eNOS(-/-)) mice were suspended for isometric tension recording. In abdominal aorta from WT mice contracted with phenylephrine, acetylcholine caused a relaxation that reversed at the concentration of 0.3-3 microM. After inhibition of NO synthase [with N(omega)-nitro-l-arginine methyl ester (l-NAME), 1 mM], acetylcholine (0.1-10 microM) caused contraction under basal conditions or during constriction to phenylephrine, which was abolished by endothelial denudation. This contraction was inhibited by the cyclooxygenase inhibitor indomethacin (1 muM) or by a thromboxane A(2) (TxA(2)) and/or prostaglandin H(2) receptor antagonist SQ-29548 (1 microM) and was associated with endothelium-dependent generation of the TxA(2) metabolite TxB(2.) Also, SQ-29548 (1 microM) abolished the reversal in relaxation evoked by 0.3-3 microM acetylcholine and subsequently enhanced the relaxation to the agonist. The magnitude of the endothelium-dependent contraction to acetylcholine (0.1-10 microM) was similar in aortas from WT mice treated in vitro with l-NAME and from eNOS(-/-) mice. In addition, we found that acetylcholine (10 microM) also caused endothelium-dependent contraction in carotid and femoral arteries of eNOS(-/-) mice. These results suggest that acetylcholine initiates two competing responses in mouse arteries: endothelium-dependent relaxation mediated predominantly by NO and endothelium-dependent contraction mediated most likely by TxA(2).  相似文献   

3.
Severe dyslipidemia and the associated oxidative stress could accelerate the age-related decline in cerebrovascular endothelial function and cerebral blood flow (CBF), leading to neuronal loss and impaired learning abilities. We hypothesized that a chronic treatment with the polyphenol catechin would prevent endothelial dysfunction, maintain CBF responses, and protect learning abilities in atherosclerotic (ATX) mice. We treated ATX (C57Bl/6-LDLR(-/-)hApoB(+/+); 3 mo old) mice with catechin (30 mg · kg(-1) · day(-1)) for 3 mo, and C57Bl/6 [wild type (WT), 3 and 6 mo old] mice were used as controls. ACh- and flow-mediated dilations (FMD) were recorded in pressurized cerebral arteries. Basal CBF and increases in CBF induced by whisker stimulation were measured by optical coherence tomography and Doppler, respectively. Learning capacities were evaluated with the Morris water maze test. Compared with 6-mo-old WT mice, cerebral arteries from 6-mo-old ATX mice displayed a higher myogenic tone, lower responses to ACh and FMD, and were insensitive to NOS inhibition (P < 0.05), suggesting endothelial dysfunction. Basal and increases in CBF were lower in 6-mo-old ATX than WT mice (P < 0.05). A decline in the learning capabilities was also observed in ATX mice (P < 0.05). Catechin 1) reduced cerebral superoxide staining (P < 0.05) in ATX mice, 2) restored endothelial function by reducing myogenic tone, improving ACh- and FMD and restoring the sensitivity to nitric oxide synthase inhibition (P < 0.05), 3) increased the changes in CBF during stimulation but not basal CBF, and 4) prevented the decline in learning abilities (P < 0.05). In conclusion, catechin treatment of ATX mice prevents cerebrovascular dysfunctions and the associated decline in learning capacities.  相似文献   

4.
Chronic estrogen treatment increases endothelial vasodilator function in cerebral arteries. Endothelial nitric oxide (NO) synthase (eNOS) is a primary target of the hormone, but other endothelial factors may be modulated as well. In light of possible interactions between NO and prostaglandins, we tested the hypothesis that estrogen treatment increases prostanoid-mediated dilation using NOS-deficient female mouse models, i.e., mice treated with a NOS inhibitor [N(G)-nitro-l-arginine methyl ester (l-NAME)] for 21 days or transgenic mice with the eNOS gene disrupted (eNOS(-/-)). All mice were ovariectomized; some in each group were treated chronically with estrogen. Cerebral blood vessels then were isolated for biochemical and functional analyses. In vessels from control mice, estrogen increased protein levels of eNOS but had no significant effect on cyclooxygenase (COX)-1 protein, prostacyclin production, or constriction of pressurized, middle cerebral arteries to indomethacin, a COX inhibitor. In l-NAME-treated mice, however, cerebrovascular COX-1 levels, prostacyclin production, and constriction to indomethacin, as well as eNOS protein, were all greater in estrogen-treated animals. In vessels from eNOS(-/-) mice, estrogen treatment also increased levels of COX-1 protein and constriction to indomethacin, but no effect on prostacyclin production was detected. Thus cerebral blood vessels of control mice did not exhibit effects of estrogen on the prostacyclin pathway. However, when NO production was dysfunctional, the impact of estrogen on a COX-sensitive vasodilator was revealed. Estrogen has multiple endothelial targets; estrogen effects may be modified by interactions among these factors.  相似文献   

5.
6.
ADP mediates platelet-induced relaxation of blood vessels and may function as an important intercellular signaling molecule in the brain. We used pharmacological and genetic approaches to examine mechanisms that mediate responses of cerebral arterioles to ADP, including the role of endothelial nitric oxide synthase (eNOS). We examined responses of cerebral arterioles (control diameter approximately 30 microm) in anesthetized wild-type (WT, eNOS+/+) and eNOS-deficient (eNOS-/-) mice using a cranial window. In WT mice, local application of ADP produced vasodilation that was not altered by indomethacin but was reduced by approximately 50% by NG-nitro-L-arginine (L-NNA) or 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) (inhibitors of NOS and soluble guanylate cyclase, respectively). In eNOS-/- mice, responses to ADP were largely preserved, and a significant component of the response was resistant to L-NNA (a finding similar to that in WT mice treated with L-NNA). In the absence of L-NNA, responses to ADP were markedly reduced by charybdotoxin plus apamin [inhibitors of Ca2+-dependent K+ channels and responses mediated by endothelium-derived hyperpolarizing factor (EDHF)] in both WT and eNOS-/- mice. Thus pharmacological and genetic evidence suggests that a significant portion of the response to ADP in cerebral microvessels is mediated by a mechanism independent of eNOS. The eNOS-independent mechanism is functional in the absence of inhibited eNOS and most likely is mediated by an EDHF.  相似文献   

7.
The mechanisms that account for acetylcholine (ACh)-induced responses of skeletal muscle arterioles of mice lacking endothelial nitric oxide (NO) synthase (eNOS-KO) were investigated. Isolated, cannulated, and pressurized arterioles of gracilis muscle from male eNOS-KO (74.1 +/- 2.3 microm) and wild-type (WT, 87.2 +/- 2.1 microm) mice developed spontaneous tone accounting for 63 and 61% of their passive diameter (116.8 +/- 3.4 vs. 143.2 +/- 2.8 microm, respectively) and dilated dose-dependently to ACh (10(-9)-10(-7) M). These dilations were significantly smaller in vessels of eNOS-KO compared with WT mice (29.2 +/- 2.0 microm vs. 46.3 +/- 2.1 microm, at maximum concentration) but responses to the NO donor, sodium nitrite (NaNO(2), 10(-6)-3 x 10(-5) M), were comparable in the vessels of the two strains. N(G)-nitro-L-arginine (L-NNA, 10(-4) M), an inhibitor of eNOS, inhibited ACh-induced dilations by 60-90% in arterioles of WT mice but did not affect responses in those of eNOS-KO mice. In arterioles of eNOS-KO mice, dilations to ACh were not affected by indomethacin but were essentially abolished by inhibitors of cytochrome P-450, clotrimazole (CTZ, 2 x 10(-6) M) or miconazole (MCZ, 2 x 10(-6) M), as well as by either high K(+) (40 mM) or iberiotoxin [10(-7) M, a blocker of Ca(2+)-dependent K(+) channels (K(Ca) channels)]. On the other hand, in WT arterioles CTZ or MCZ inhibited ACh-induced dilations only by approximately 10% and only in the presence of L-NNA. These results indicate that in arterioles of eNOS-KO mice, endothelium-derived hyperpolarizing factor (EDHF), synthesized via cytochrome P-450, accounts entirely for the mediation of ACh-induced dilation via an increase in K(Ca)-channel activity. In contrast, in arterioles of WT mice, endothelium-derived NO predominantly mediates ACh-induced dilation in which participation of EDHF becomes apparent only after inhibition of NO synthesis.  相似文献   

8.
Pulmonary hypertension and blunted pulmonary vascular responses to ACh develop when newborn pigs are exposed to chronic hypoxia for 3 days. To determine whether a cyclooxygenase (COX)-dependent contracting factor, such as thromboxane, is involved with altered pulmonary vascular responses to ACh, newborn piglets were raised in 11% O(2) (hypoxic) or room air (control) for 3 days. Small pulmonary arteries (100-400 microm diameter) were cannulated and pressurized, and their responses to ACh were measured before and after either the COX inhibitor indomethacin; a thromboxane synthesis inhibitor, dazoxiben or feregrelate; or the thromboxane-PGH(2)-receptor antagonist SQ-29548. In control arteries, indomethacin reversed ACh responses from dilation to constriction. In contrast, hypoxic arteries constricted to ACh before indomethacin and dilated to ACh after indomethacin. Furthermore, ACh constriction in hypoxic arteries was nearly abolished by either dazoxiben, feregrelate, or SQ-29548. These findings suggest that thromboxane is the COX-dependent contracting factor that underlies the constrictor response to ACh that develops in small pulmonary arteries of piglets exposed to 3 days of hypoxia. The early development of thromboxane-mediated constriction may contribute to the pathogenesis of chronic hypoxia-induced pulmonary hypertension in newborns.  相似文献   

9.
Vasodilation to increases in flow was studied in isolated gracilis muscle arterioles of female endothelial nitric oxide synthase (eNOS)-knockout (KO) and female wild-type (WT) mice. Dilation to flow (0-10 microl/min) was similar in the two groups, yet calculated wall shear stress was significantly greater in arterioles of eNOS-KO than in arterioles of WT mice. Indomethacin, which inhibited flow-induced dilation in vessels of WT mice by approximately 40%, did not affect the responses of eNOS-KO mice, whereas miconazole and 6-(2-proparglyoxyphenyl)hexanoic acid (PPOH) abolished the responses. Basal release of epoxyeicosatrienonic acids from arterioles was inhibited by PPOH. Iberiotoxin eliminated flow-induced dilation in arterioles of eNOS-KO mice but had no effect on arterioles of WT mice. In WT mice, neither N(omega)-nitro-L-arginine methyl ester nor miconazole alone affected flow-induced dilation. Combination of both inhibitors inhibited the responses by approximately 50%. 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) alone inhibited flow-induced dilation by approximately 49%. ODQ + indomethacin eliminated the responses. Thus, in arterioles of female WT mice, nitric oxide and prostaglandins mediate flow-induced dilation. When eNOS is inhibited, endothelium-derived hyperpolarizing factor substitutes for nitric oxide. In female eNOS-KO mice, metabolites of cytochrome P-450, via activation of large-conductance Ca2+-activated K+ channels of smooth muscle, mediate entirely the arteriolar dilation to flow.  相似文献   

10.
The aim of the current study was to determine the central cyclooxygenase (COX) pathway and central thromboxane signaling in the cardiovascular effects evoked by arachidonic acid (AA). As a main control for the study, different doses of AA (75, 150, or 300?μg) were administered intracerebroventricularly (i.c.v.). Centrally injected AA dose- and time-dependently increased mean arterial pressure and decreased heart rate in conscious normotensive Sprague-Dawley rats. The maximal cardiovascular effects of AA were observed at min 10 of the injection and lasted almost 30?min. To investigate the central mechanism of the AA-induced cardiovascular effect in conscious normotensive animals, pretreatment with nonselective COX inhibitor indomethacin (200?μg; i.c.v.), thromboxane A2 (TXA2) synthesis inhibitor furegrelate (250 or 500?μg; i.c.v.), or TXA2 receptor antagonist SQ-29548 (8 or 16?μg; i.c.v.) was carried out 15?min before AA (150?μg; i.c.v.) injection. While indomethacin completely prevented the pressor and bradycardic responses to AA, furegrelate and SQ-29548 attenuated these effects in part in awake normotensive rats. In conclusion, these findings suggest that the pressor and bradycardic cardiovascular effects of centrally injected AA are dependent on COX activity being totally central and the TXA2 signaling pathway being subsequently central, at least in part.  相似文献   

11.
To test the deterioration of endothelial function during the progression of diabetes, shear stress-induced dilation (SSID; 10, 20, and 40 dyn/cm(2)) was determined in isolated mesenteric arteries (80-120 μm in diameter) of 6-wk (6W), 3-mo (3M), and 9-mo (9M)-old male db/db mice and their wild-type (WT) controls. Nitric oxide (NO)-mediated SSID was comparable in 6W WT and db/db mice, but the dilation was significantly reduced in 3M db/db mice and declined further in 9M db/db mice. Vascular superoxide production was progressively increased in 3M and 9M db/db mice, associated with an increased expression of NADPH oxidase. Inhibition of NADPH oxidase significantly improved NO-mediated SSID in arteries of 3M, but not in 9M, db/db mice. Although endothelial nitric oxide synthase (eNOS) expression was comparable in all groups, a progressive reduction in shear stress-induced eNOS phosphorylation existed in vessels of 3M and 9M db/db mice. Moreover, inducible NOS (iNOS) that was not detected in WT, nor in 6W and 3M db/db mice, was expressed in vessels of 9M db/db mice. A significantly increased expression of nitrotyrosine in total protein and immunoprecipitated eNOS was also found in vessels of 9M db/db mice. Thus, impaired NO bioavailability plays an essential role in the endothelial dysfunction of diabetic mice, which becomes aggravated when endothelial nitrosative stress is further activated via perhaps, an additional iNOS-mediated pathway during the progression of diabetes.  相似文献   

12.
The in vitro responses to ACh, flow, and hypoxia were studied in arterioles isolated from the diaphragms of rats. The endothelium was removed in some vessels by low-pressure air perfusion. In endothelium-intact arterioles, pressurized to 70 mmHg in the absence of luminal flow, ACh (10(-5) M) elicited dilation (from 103 +/- 10 to 156 +/- 13 microm). The response to ACh was eliminated by endothelial ablation and by the nitric oxide synthase antagonists NG-nitro-L-arginine (L-NNA; 10(-5) M) and NG-nitro-L-arginine methyl ester (L-NAME, 10(-5) M) but not by indomethacin (10(-5) M). Increases in luminal flow (5-35 microl/min in 5 microl/min steps) at constant distending pressure (70 mmHg) elicited dilation (from 98 +/- 8 to 159 +/- 12 microm) in endothelium-intact arterioles. The response to flow was partially inhibited by L-NNA, L-NAME, and indomethacin and eliminated by endothelial ablation and by concurrent treatment with L-NAME and indomethacin. The response to hypoxia was determined by reducing the periarteriolar PO2 from 100 to 25-30 Torr by changing the composition of the gas used to bubble the superfusing solution. Hypoxia elicited dilation (from 110 +/- 9 to 165 +/- 12 microm) in endothelium-intact arterioles but not in arterioles from which the endothelium had been removed. Hypoxic vasodilation was eliminated by treatment with indomethacin and was not affected by L-NAME or L-NNA. In rat diaphragmatic arterioles, the response to ACh is dependent on endothelial nitric oxide release, whereas the response to hypoxia is mediated by endothelium-derived prostaglandins. Flow-dilation requires that both nitric oxide and cyclooxygenase pathways be intact.  相似文献   

13.
Myocardial infarction (MI) is associated with endothelial dysfunction resulting in an imbalance in endothelium-derived vasodilators and vasoconstrictors. We have previously shown that despite increased endothelin (ET) plasma levels, the coronary vasoconstrictor effect of endogenous ET is abolished after MI. In normal swine, nitric oxide (NO) and prostanoids modulate the vasoconstrictor effect of ET. In light of the interaction among NO, prostanoids, and ET combined with endothelial dysfunction present after MI, we investigated this interaction in control of coronary vasomotor tone in the remote noninfarcted myocardium after MI. Studies were performed in chronically instrumented swine (18 normal swine; 13 swine with MI) at rest and during treadmill exercise. Furthermore, endothelial nitric oxide synthase (eNOS) and cyclooxygenase protein levels were measured in the anterior (noninfarcted) wall of six normal and six swine with MI. eNOS inhibition with N(ω)-nitro-L-arginine (L-NNA) and cyclooxygenase inhibition with indomethacin each resulted in coronary vasoconstriction at rest and during exercise, as evidenced by a decrease in coronary venous oxygen levels. The effect of l-NNA was slightly decreased in swine with MI, although eNOS expression was not altered. Conversely, in accordance with the unaltered expression of cyclooxygenase-1 after MI, the effect of indomethacin was similar in normal and MI swine. L-NNA enhanced the vasodilator effect of the ET(A/B) receptor blocker tezosentan but exclusively during exercise in both normal and MI swine. Interestingly, this effect of L-NNA was blunted in MI compared with normal swine. In contrast, whereas indomethacin increased the vasodilator effect of tezosentan only during exercise in normal swine, indomethacin unmasked a coronary vasodilator effect of tezosentan in MI swine both at rest and during exercise. In conclusion, the present study shows that endothelial control of the coronary vasculature is altered in post-MI remodeled myocardium. Thus the overall vasodilator influences of NO as well as its inhibition of the vasoconstrictor influence of ET on the coronary resistance vessels were reduced after MI. In contrast, while the overall prostanoid vasodilator influence was maintained, its inhibition of ET vasoconstrictor influences was enhanced in post-MI remote myocardium.  相似文献   

14.
Endothelium-dependent vasorelaxation in large vessels is mainly attributed to Nomega-nitro-L-arginine methyl ester (L-NAME)-sensitive endothelial nitric oxide (NO) synthase (eNOS)-derived NO production. Endothelium-derived hyperpolarizing factor (EDHF) is the component of endothelium-dependent relaxations that resists full blockade of NO synthases (NOS) and cyclooxygenases. H2O2 has been proposed as an EDHF in resistance vessels. In this work we propose that in mice aorta neuronal (n)NOS-derived H2O2 accounts for a large proportion of endothelium-dependent ACh-induced relaxation. In mice aorta rings, ACh-induced relaxation was inhibited by L-NAME and Nomega-nitro-L-arginine (L-NNA), two nonselective inhibitors of NOS, and attenuated by selective inhibition of nNOS with L-ArgNO2-L-Dbu-NH2 2TFA (L-ArgNO2-L-Dbu) and 1-(2-trifluoromethylphehyl)imidazole (TRIM). The relaxation induced by ACh was associated with enhanced H2O2 production in endothelial cells that was prevented by the addition of L-NAME, L-NNA, L-ArgNO2-L-Dbu, TRIM, and removal of the endothelium. The addition of catalase, an enzyme that degrades H2O2, reduced ACh-dependent relaxation and abolished ACh-induced H2O2 production. RT-PCR experiments showed the presence of mRNA for eNOS and nNOS but not inducible NOS in mice aorta. The constitutive expression of nNOS was confirmed by Western blot analysis in endothelium-containing vessels but not in endothelium-denuded vessels. Immunohistochemistry data confirmed the localization of nNOS in the vascular endothelium. Antisense knockdown of nNOS decreased both ACh-dependent relaxation and ACh-induced H2O2 production. Antisense knockdown of eNOS decreased ACh-induced relaxation but not H2O2 production. Residual relaxation in eNOS knockdown mouse aorta was further inhibited by the selective inhibition of nNOS with L-ArgNO2-L-Dbu. In conclusion, these results show that nNOS is constitutively expressed in the endothelium of mouse aorta and that nNOS-derived H2O2 is a major endothelium-dependent relaxing factor. Hence, in the mouse aorta, the effects of nonselective NOS inhibitors cannot be solely ascribed to NO release and action without considering the coparticipation of H2O2 in mediating vasodilatation.  相似文献   

15.
5-Oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE) is a proinflammatory mediator, but its effects on airway smooth muscle (ASM) have never been assessed. Tension measurements performed on guinea pig ASM showed that 5-oxo-ETE induced sustained concentration-dependent positive inotropic responses (EC50 = 0.89 microM) of somewhat lower amplitude than those induced by carbamylcholine and the thromboxane A2 (TXA2) agonist U-46619. Transient inotropic responses to 5-oxo-ETE were recorded in Ca2+-free medium, suggesting mobilization of intracellular Ca2+. Meanwhile, the sustained contraction, which required Ca2+ entry, was partially blocked by 1 microM nifedipine (an L-type Ca2+ channel blocker) but relatively insensitive to 100 microM Gd3+. The 5-oxo-ETE responses were also inhibited by indomethacin and SC-560 [a cyclooxygenase (COX-1) inhibitor] pretreatments but not by NS-398 (a selective COX-2 inhibitor). The contractile effects of 5-oxo-ETE on ASM were inhibited by the selective TXA2 receptor (TP receptor) antagonist SQ-29548 (-75%) and by 2-(p-amylcinnamoyl) amino-4-chlorobenzoic acid pretreatment, a phospholipase A2 inhibitor (-66%), suggesting that the major part of its effect is mediated by the release of TXA2. ASM responses to 5-oxo-ETE were also blocked by the Rho-kinase inhibitor Y-27632, which also partially inhibited the response to the TP receptor agonist U-46619, suggesting that the contractile response is due in part to Ca2+ sensitization of ASM cell myofilaments.  相似文献   

16.
We hypothesized that impaired nitric oxide (NO)-dependent dilation (endothelial dysfunction) in type 2 diabetes results, in part, from elevated production of superoxide (O(2)(*-)) induced by the interaction of advanced glycation end products (AGE)/receptor for AGE (RAGE) and TNF-alpha signaling. We assessed the role of AGE/RAGE and TNF-alpha signaling in endothelial dysfunction in type 2 diabetic (Lepr(db)) mice by evaluation of endothelial function in isolated coronary resistance vessels of normal control (nondiabetic, m Lepr(db)) and diabetic mice. Although dilation of vessels to the endothelium-independent vasodilator sodium nitroprusside (SNP) was not different between diabetic and control mice, dilation to the endothelium-dependent agonist acetylcholine (ACh) was reduced in diabetic vs. control mice. The activation of RAGE with RAGE agonist S100b eliminated SNP-potentiated dilation to ACh in Lepr(db) mice. Administration of a soluble form of RAGE (sRAGE) partially restored dilation in diabetic mice but did not affect dilation in control mice. The expression of RAGE in coronary arterioles was markedly increased in diabetic vs. control mice. We also observed in diabetic mice that augmented RAGE signaling augmented expression of TNF-alpha, because this increase was attenuated by sRAGE or NF-kappaB inhibitor MG132. Protein and mRNA expression of NAD(P)H oxidase subunits including NOX-2, p22(phox), and p40(phox) increased in diabetic compared with control mice. sRAGE significantly inhibited the expression of NAD(P)H oxidase in diabetic mice. These results indicate that AGE/RAGE signaling plays a pivotal role in regulating the production/expression of TNF-alpha, oxidative stress, and endothelial dysfunction in type 2 diabetes.  相似文献   

17.
Fish oil has been reported as having beneficial effects on cardiovascular diseases. Elevated serum lipoproteins, prostaglandins and intracellular free calcium concentrations [( Ca2+]i) of the vasculature and thus the phosphoinositide (PI) turnover may be involved in the pathogenesis of these disorders. Therefore, the effect of fish oil on the potency of both low-density lipoprotein (LDL) and angiotensin II (AII) to stimulate the PI turnover in cultured rat vascular smooth muscle cells (VSMC) has been studied. Furthermore, a possible link between PI turnover activity and thromboxane A2 (TXA2) metabolism in these cells has been investigated. In VSMC cultured for up to 7 weeks with either fish oil or n-3 eicosapentaenoic acid (EPA) a decrease to 5-48% of the LDL-induced inositol trisphosphate (IP3) formation (= 100%) was found. A similar range of decreased IP3 synthesis was observed, when AII was used instead of LDL. Both LDL- and AII-stimulated TXA2 synthesis was suppressed concomitantly within the range 34-60%. Blockade of VSMC TXA2 biosynthesis with either indomethacin or TXA2 synthetase blocker (SQ-80338) inhibited LDL-induced formation of IP3 in a dose-dependent manner. Similar results were obtained, when TXA2 receptor coupling antagonists (SQ-27427 or BM-13177) were used. However, blockers of TXA2 synthesis and of TXA2 receptor binding failed to affect AII-induced formation of IP3.  相似文献   

18.
Aging impairs shear-stress-dependent dilation of arteries via increased superoxide production, decreased SOD activity, and decreased activation of endothelial nitric oxide (NO) synthase (eNOS). In the present study, we investigated whether chronic increases in shear stress, elicited by increases in blood flow, would improve vascular endothelial function of aged rats. To this end, second-order mesenteric arteries of young (6 mo) and aged (24 mo) male Fischer-344 rats were selectively ligated for 3 wk to elevate blood flow in a first-order artery [high blood flow (HF)]. An in vitro study was then conducted on first-order arteries with HF and normal blood flow (NF) to assess shear stress (1, 10, and 20 dyn/cm(2))-induced release of NO into the perfusate. In HF arteries of both age groups, shear stress-induced NO production increased significantly. In 24-mo-old rats, the reduced shear stress-induced NO production in NF arteries was normalized by HF to a level similar to that in NF arteries of 6-mo-old rats. The increased NO production in HF arteries of 24-mo-old rats was associated with increased shear stress-induced dilation, expression of eNOS protein, and shear stress-induced eNOS phosphorylation. Wortmannin, a phosphatidylinositol 3-kinase inhibitor, reduced shear stress-induced eNOS phosphorylation and vasodilation. Superoxide production decreased significantly in HF compared with NF arteries in 24-mo-old rats. The decreased superoxide production was associated with significant increases in CuZn-SOD and extracellular SOD protein expressions and total SOD activity. These results suggest that stimulation with chronic HF restores shear-stress-induced activation of eNOS and antioxidant ability in aged arteries.  相似文献   

19.
These studies tested the hypothesis that in obese Zucker rats (OZRs), a model of metabolic syndrome, the impaired functional vasodilation is due to increased thromboxane receptor (TP)-mediated vasoconstriction and/or decreased prostacyclin-induced vasodilation. Spinotrapezius arcade arterioles from 12-wk-old lean (LZR) and OZR were chosen for microcirculatory observation. Arteriolar diameter (5 LZR and 6 OZR) was measured after 2 min of muscle stimulation in the absence or presence of 1 microM SQ-29548 (TP antagonist). Additionally, arteriolar diameter (6 for each group) was measured after application of iloprost (prostacyclin analog; 0.28, 2.8, and 28 microM), arachidonic acid (10 microM), and sodium nitroprusside (0.1, 1, and 10 microM) in the absence or presence of 1 microM SQ-29548. A 10 microM concentration of adenosine was used to induce a maximal dilation. Basal diameters were not different between LZRs and OZRs. Functional hyperemia and arachidonic acid-mediated vasodilations were significantly attenuated in OZR compared with LZR, and treatment with 1 microM SQ-29548 significantly enhanced the dilations in OZRs, although it had no effect in LZRs. Vasodilatory responses to iloprost and sodium nitroprusside (1 and 10 microM) were significantly reduced in OZR. Adenosine-mediated vasodilation was not different between groups. These results suggest that the impaired functional dilation in the OZR is due to an increased TP-mediated vasoconstriction and a decreased PGI2-induced vasodilation.  相似文献   

20.
The endothelial function declines with age, and dyslipidemia (DL) has been shown to hasten this process by favoring the generation of reactive oxygen species (ROS). Cyclooxygenase-2 (COX-2) can be induced by ROS, but its contribution to the regulation of the endothelial function is unknown. Since COX-2 inhibitors may be deleterious to the cardiovascular system, we hypothesized that DL leads to ROS-dependent endothelial damage and a protective upregulation of COX-2. Dilations to acetylcholine (ACh) of renal arteries isolated from 3-, 6-, and 12-mo-old wild-type (WT) and DL mice expressing the human ApoB-100 were recorded with or without COX inhibitors and the antioxidant N-acetyl-l-cystein (NAC). Nitric oxide (NO) and endothelium-derived hyperpolarizing factor (EDHF) were inhibited using N(omega)-nitro-l-arginine (l-NNA) and a depolarizing solution, respectively. In WT mice, the dilation to ACh declined at 12 mo but was insensitive to COX-1/2 inhibition alone or with NAC. DL led to an early endothelial dysfunction at 6 mo, normalized, however, by NAC. At 12 mo, vascular sensitivity to ACh was further reduced by DL. At this age, selective COX-2 inhibition reduced the dilation, whereas addition of NAC improved it. In 3- and 6-mo-old WT mice, l-NNA significantly reduced the dilation, whereas it limited the dilation only in 3-mo-old DL mice. EDHF-dependent dilation remains identical in both groups. These data suggest that COX-2 activity confers endothelium-dependent vasodilatory function in aged DL mice in the face of a pro-oxidative environment. Upregulation of this pathway compensates for the early loss of the contribution of NO in DL mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号