首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Browsing by large vertebrates has been a major force in the evolution of terrestrial plants but Holocene extinctions of the browsers have left a legacy of broken biotic partnerships. Ratite birds were the largest herbivores in several regions, such as the moas of New Zealand. Many woody plants there have a distinct form of branching, described as "divaricate", with thin, wide angled, branches intertwining to form a tangled canopy. Divaricate branching has been interpreted as a form of protection against climate extremes or as an anachronistic defense against the extinct moas. Here we report the first experimental evidence that many of these plants are defended against extant ratite browsers. In feeding experiments on two tree species with different (heteroblastic) juvenile and adult branch morphology, emus and ostriches obtained adequate feeding rates from adult shoots but sub-maintenance feeding rates from juvenile shoots with the ratite-resistant traits. Divaricate juvenile shoots suffered 30–70% less biomass removal to the birds than adult shoots. Ratites browse by a distinctive clamping and tugging action. Structural defence traits that exploit the limitations of this feeding mode include narrow, strong, elastic branches that resist being torn off, wide branching angle ("divaricate") that makes shoots difficult to swallow, and small, widely spaced leaves. This novel plant architectural defence has developed in at least 20% of the native woody flora of New Zealand, including 10 heteroblastic tree species that exhibit the ratite-resistant strategy until they reach ca 3 metres height. It is also a major axis of variation amongst homoblastic woody shrub species. The defences are useless against mammalian browsers that shear shoots, contributing to marked decreases in the abundances of ratite-resistant species in New Zealand after the introduction of mammals.  相似文献   

2.
The wire syndrome shared by plants in New Zealand and Madagascar appears to have evolved convergently as a defence against herbivory from now extinct avian giants.  相似文献   

3.
Aim Urban environments around the world share many features in common, including the local extinction of native plant species. We tested the hypothesis that similarity in environmental conditions among urban areas should select for plant species with a particular suite of traits suited to those conditions, and lead to the selective extinction of species lacking those traits. Location Eleven cities with data on the plant species that persisted and those that went locally extinct within at least the last 100 years following urbanization. Methods We compiled data on 11 plant traits for 8269 native species in the 11 cities and used hierarchical logistic regression models to identify the degree to which traits could distinguish species that persisted from those that went locally extinct in each city. The trait effects from each city were then combined in a meta‐analysis. Results The cities fell into two groups: those with relatively low rates of extinction (less than 0.05% species per year – Adelaide, Hong Kong, Los Angeles, San Diego and San Francisco), for which no traits reliably predicted the pattern of extinction, and those with higher rates of extinction (> 0.08% species per year – Auckland, Chicago, Melbourne, New York, Singapore and Worcester, MA), where short‐statured, small‐seeded plants were more likely to go extinct. Main conclusions Our analysis reveals patterns in trait selectivity consistent with local studies, suggesting some consistency in trait selection by urbanization. Overall, however, few traits reliably predicted the pattern of plant extinction across cities, making it difficult to identify a priori the extinction‐prone species most likely to be affected by urban expansion.  相似文献   

4.
Avian herbivores dominated New Zealand?s pre-settlement terrestrial ecosystems to an unparalleled extent, in the absence of a terrestrial mammal fauna. Approximately 50% (88 taxa) of terrestrial bird species consumed plant foliage, shoots, buds and flowers to some degree, but fewer than half these species were major herbivores. Moa (Dinornithiformes) represent the greatest autochthonous radiation of avian herbivores in New Zealand. They were the largest browsers and grazers within both forest and scrubland ecosystems. Diverse waterfowl (Anatidae) and rail (Rallidae) faunas occupied forests, wetlands and grasslands. Parrots (Psittacidae) and wattlebirds (Callaeidae) occupied a range of woody vegetation types, feeding on fruits/seeds and foliage/ fruits/nectar, respectively. Other important herbivores were the kereru (Columbidae), stitchbird (Notiomystidae) and two honeyeaters (Meliphagidae). Cryptic colouration, nocturnal foraging and fossil evidence suggest that avian populations were strongly constrained by predation. With the absence of migratory avian herbivores, plant structural, constitutive defences prevailed, with the unusual ?wire syndrome? representing an adaptation to limit plant offtake by major terrestrial avian browsers. Inducible plant defences are rare, perhaps reflecting longstanding nutrient-limitations in New Zealand ecosystems. Evidence from coprolites suggests moa were important dispersers of now rare, annual, disturbance-tolerant herb species, and their grazing may have maintained diverse prostrate herbs in different vegetation types. The impact of moa on forest structure and composition remains speculative, but many broadleaved woody species would likely have experienced markedly reduced niches in pre-settlement time. Several distinctive avian-mediated vegetation types are proposed: dryland woodlands, diverse turf swards, coastal herb-rich low-forest-scrubland, and conifer-rich forests. Since human settlement (c. 750 yrs ago), c. 50% of endemic avian herbivore species or c. 40% overall have become extinct, including all moa, 60% of waterfowl and 33% of rail species. Numerically, avian herbivore introductions (c. 24 taxa) since European settlement have compensated for extinctions (c. 27 taxa), but the naturalised birds are mostly small, seed-eating species restricted to human-modified landscapes. Several naturalised species (e.g. Canada goose, Branta canadensis; brown quail, Coturnix ypsilophorus) may provide modes and levels of herbivory comparable with extinct species. The original avian and current introduced mammal herbivore regimes were separated by several centuries when New Zealand lacked megaherbivores. This ?herbivory hiatus? complicates comparisons between pre-settlement and current herbivore systems in New Zealand. However, predation, animal mobility, feeding mode, nutrient transfer patterns and soil impacts were different under an avian regime compared with current mammalian herbivore systems. Levels of ecological surrogacy between avifauna and introduced mammals are less evident. Ungulates generally appear to have impacts qualitatively different from those of the extinct moa. Because of New Zealand?s peculiar evolutionary history, avian herbivores will generally favour the persistence of indigenous vegetation, while mammalian herbivores continue to induce population declines of select plant species, change vegetation regeneration patterns, and generally favour the spread and consolidation of introduced plant species with which they share an evolutionary history.  相似文献   

5.
Flightless birds were once the largest and heaviest terrestrial fauna on many archipelagos around the world. Robust approaches for estimating their population parameters are essential for understanding prehistoric insular ecosystems and extinction processes. Body mass and population density are negatively related for extant flightless bird species, providing a method for quantifying densities and population sizes of extinct flightless species. Here we assemble an updated global data set of body mass and population densities for extant flightless birds and estimate the relationship between these variables. We use generalised least squares models that account for phylogenetic relatedness and incorporate the effects of limiting factors (e.g. habitat suitability) on population density. We demonstrate the applicability of this allometric relationship to extinct species by estimating densities for each of the nine species of moa (Dinornithiformes) and generating a combined spatially explicit map of total moa density across New Zealand. To compare our density estimates with those previously published, we summed individual species' abundances to generate a mean national density of 2.02–9.66 birds km−2 for low- and high-density scenarios, respectively. Our results reconcile the extreme bimodality of previous estimates (< 2 birds km−2 and > 10 birds km−2) and are comparable to contemporary densities of large herbivorous wild mammals introduced into New Zealand about 150 yr ago. The revised moa density has little effect on the harvest rates required to bring about extinction within 150–200 yr, indicating that rapid extinction was an inevitable response to human hunting, irrespective of the initial population of moa.  相似文献   

6.
Madagascar is well known for its diverse fauna and flora, being home to many species not found anywhere else in the world. However, its biodiversity in the recent past included a range of extinct enigmatic fauna, such as elephant birds, giant lemurs and dwarfed hippopotami. The ‘Malagasy aardvark’ (Plesiorycteropus) has remained one of Madagascar’s least well-understood extinct species since its discovery in the 19th century. Initially considered a close relative of the aardvark (Orycteropus) within the order Tubulidentata, more recent morphological analyses challenged this placement on the grounds that the identifiably derived traits supporting this allocation were adaptations to digging rather than shared ancestry. Because the skeletal evidence showed many morphological traits diagnostic of different eutherian mammal orders, they could not be used to resolve its closest relatives. As a result, the genus was tentatively assigned its own taxonomic order ‘Bibymalagasia’, yet how this order relates to other eutherian mammal orders remains unclear despite numerous morphological investigations. This research presents the first known molecular sequence data for Plesiorycteropus, obtained from the bone protein collagen (I), which places the ‘Malagasy aardvark’ as more closely related to tenrecs than aardvarks. More specifically, Plesiorycteropus was recovered within the order Tenrecoidea (golden moles and tenrecs) within Afrotheria, suggesting that the taxonomic order ‘Bibymalagasia’ is obsolete. This research highlights the potential for collagen sequencing in investigating the phylogeny of extinct species as a viable alternative to ancient DNA (aDNA) sequencing, particularly in cases where aDNA cannot be recovered.  相似文献   

7.
Owing to exceptional biomolecule preservation, fossil avian eggshell has been used extensively in geochronology and palaeodietary studies. Here, we show, to our knowledge, for the first time that fossil eggshell is a previously unrecognized source of ancient DNA (aDNA). We describe the successful isolation and amplification of DNA from fossil eggshell up to 19 ka old. aDNA was successfully characterized from eggshell obtained from New Zealand (extinct moa and ducks), Madagascar (extinct elephant birds) and Australia (emu and owl). Our data demonstrate excellent preservation of the nucleic acids, evidenced by retrieval of both mitochondrial and nuclear DNA from many of the samples. Using confocal microscopy and quantitative PCR, this study critically evaluates approaches to maximize DNA recovery from powdered eggshell. Our quantitative PCR experiments also demonstrate that moa eggshell has approximately 125 times lower bacterial load than bone, making it a highly suitable substrate for high-throughput sequencing approaches. Importantly, the preservation of DNA in Pleistocene eggshell from Australia and Holocene deposits from Madagascar indicates that eggshell is an excellent substrate for the long-term preservation of DNA in warmer climates. The successful recovery of DNA from this substrate has implications in a number of scientific disciplines; most notably archaeology and palaeontology, where genotypes and/or DNA-based species identifications can add significantly to our understanding of diets, environments, past biodiversity and evolutionary processes.  相似文献   

8.
The bird fauna of Madagascar includes a high proportion of endemic species, particularly among passerine birds (Aves: Passeriformes). The endemic genera of Malagasy songbirds are not allied obviously with any African or Asiatic taxa, and their affinities have been debated since the birds first were described. We used mitochondrial sequence data to estimate the relationships of 13 species of endemic Malagasy songbirds, 17 additional songbird species, and one species of suboscine passerine. In our optimal trees, nine of the 13 Malagasy species form a clade. although these birds currently are classified in three different families. In all optimal trees, the sister to this endemic clade is a group of Old World warblers including both African and Malagasy birds. The endemic Malagasy songbird clade rivals other island radiations, including the vangas of Madagascar and the finches of the Galapagos, in ecological diversity.  相似文献   

9.
Extinction and endemism in the New Zealand avifauna   总被引:5,自引:0,他引:5  
Aim Species belonging to higher taxa endemic to islands are more likely to go extinct following human arrival. This selectivity may occur because more highly endemic island species possess features that make them uniquely vulnerable to impacts associated with human arrival, specifically: (1) restricted distribution (2) reduced predator escape response, including loss of flight, and (3) life history traits, such as large body mass, associated with greater susceptibility to hunting or habitat loss. This study aims to identify which of these features can explain the selective extinction of more highly endemic bird species in New Zealand. Location North and South Island, New Zealand. Methods Bird species breeding in New Zealand prior to human arrival were classified according to whether they became extinct or not during two periods of human settlement, prehistoric (post‐Maori but pre‐European arrival) and historic (post‐European arrival). We modelled the relationships between extinction probability, level of endemism and life history traits in both periods. Results The prehistoric extinction–endemism relationship can be explained entirely by the selective extinction of large‐bodied species, whereas the historic extinction–endemism relationship appears due to increased susceptibility to introduced predators resulting from the loss of predator escape responses, including loss of flight. Conclusions These features may explain extinction–endemism relationships more generally, given that human hunting and predator introductions are major impacts associated with human arrival on islands.  相似文献   

10.
The lemurs of Madagascar represent a prodigious adaptive radiation. At least 17 species ranging from 11 to 160 kg have become extinct during the past 2000 years. The effect of this loss on contemporary lemurs is unknown. The concept of competitive release favours the expansion of living species into vacant niches. Alternatively, factors that triggered the extinction of some species could have also reduced community-wide niche breadth. Here, we use radiocarbon and stable isotope data to examine temporal shifts in the niches of extant lemur species following the extinction of eight large-bodied species. We focus on southwestern Madagascar and report profound isotopic shifts, both from the time when now-extinct lemurs abounded and from the time immediately following their decline to the present. Unexpectedly, the past environments exploited by lemurs were drier than the protected (albeit often degraded) riparian habitats assumed to be ideal for lemurs today. Neither competitive release nor niche contraction can explain these observed trends. We develop an alternative hypothesis: ecological retreat, which suggests that factors surrounding extinction may force surviving species into marginal or previously unfilled niches.  相似文献   

11.
Anthropogenic alteration of biotic distributions and disturbance regimes has dramatically changed the evolutionary context for the differentiation of species traits. Some of the most striking examples in recent centuries have been on islands where flightless birds, which evolved in the absence of mammalian carnivores, have been decimated following the widespread introduction of exotic predators. Until now, no equivalent case has been reported for plants. Here, we make use of robust analytical tools and an exceptionally well-sampled molecular phylogeny to show that a majority of New Zealand danthonioid grasses (Poaceae) may have adapted to the relaxed vertebrate herbivore pressure during the late Cenozoic through the development of a distinctive and unusual habit: abscission of old leaves. This feature occurs in only about 3 per cent of the world''s roughly 11 000 grass species and has been empirically shown to increase plant productivity but to reduce protection against mammal grazing. This result suggests that release from a selective pressure can lead to species radiations. This seemingly anachronistic adaptation may represent an overlooked factor contributing to the severe decline in the geographical extent and species diversity of New Zealand''s indigenous grasslands following the introduction of herbivorous terrestrial mammals in the 19th century.  相似文献   

12.
Abstract There has been debate over the cause of the extinction of ‘megafauna’ species during the late Pleistocene of Australia. One view is that environmental change, either natural or human‐induced, was the main factor in the extinctions. Some support for this comes from the observation that, among herbivores, most of the species that went extinct were apparently browsers rather than grazers. Browsers would presumably have been more dependent on shrubland and woodland habitats than grazers, and it has been argued that such habitats might have contracted in response to aridity or changed fire regimes in the late Pleistocene. Here, we test this idea by comparing extinction rates of browsers and grazers in the late Pleistocene, controlling for body mass in both groups. We show that in both browsers and grazers the probability of extinction was very strongly related to body mass, and the body mass at which extinction became likely was similar in the two groups. It is true that more browsers than grazers went extinct, but this is largely because most very large herbivores in the late Pleistocene were browsers, not because large browsers were more likely to go extinct than similarly sized grazers. This result provides evidence against some forms of environmental change as a cause of the extinctions.  相似文献   

13.
Large herbivorous vertebrates have strong interactions with vegetation, affecting the structure, composition and dynamics of plant communities in many ways. Living large herbivores are a small remnant of the assemblages of giants that existed in most terrestrial ecosystems 50 000 years ago. The extinction of so many large herbivores may well have triggered large changes in plant communities. In several parts of the world, palaeoecological studies suggest that extinct megafauna once maintained vegetation openness, and in wooded landscapes created mosaics of different structural types of vegetation with high habitat and species diversity. Following megafaunal extinction, these habitats reverted to more dense and uniform formations. Megafaunal extinction also led to changes in fire regimes and increased fire frequency due to accumulation of uncropped plant material, but there is a great deal of variation in post-extinction changes in fire. Plant communities that once interacted with extinct large herbivores still contain many species with obsolete defences against browsing and non-functional adaptations for seed dispersal. Such plants may be in decline, and, as a result, many plant communities may be in various stages of a process of relaxation from megafauna-conditioned to megafauna-naive states. Understanding the past role of giant herbivores provides fundamental insight into the history, dynamics and conservation of contemporary plant communities.  相似文献   

14.
The expansion of humans into previously unoccupied parts of the globe is thought to have driven the decline and extinction of numerous vertebrate species. In New Zealand, human settlement in the late thirteenth century AD led to the rapid demise of a distinctive vertebrate fauna, and also a number of ''turnover'' events where extinct lineages were subsequently replaced by closely related taxa. The recent genetic detection of an Australian little penguin (Eudyptula novaehollandiae) in southeastern New Zealand may potentially represent an additional ‘cryptic’ invasion. Here we use ancient-DNA (aDNA) analysis and radiocarbon dating of pre-human, archaeological and historical Eudyptula remains to reveal that the arrival of E. novaehollandiae in New Zealand probably occurred between AD 1500 and 1900, following the anthropogenic decline of its sister taxon, the endemic Eudyptula minor. This rapid turnover event, revealed by aDNA, suggests that native species decline can be masked by invasive taxa, and highlights the potential for human-mediated biodiversity shifts.  相似文献   

15.
Madagascar has lost about half of its forest cover since 1953 with much regional variation, for instance most of the coastal lowland forests have been cleared. We sampled the endemic forest-dwelling Helictopleurini dung beetles across Madagascar during 2002-2006. Our samples include 29 of the 51 previously known species for which locality information is available. The most significant factor explaining apparent extinctions (species not collected by us) is forest loss within the historical range of the focal species, suggesting that deforestation has already caused the extinction, or effective extinction, of a large number of insect species with small geographical ranges, typical for many endemic taxa in Madagascar. Currently, roughly 10% of the original forest cover remains. Species-area considerations suggest that this will allow roughly half of the species to persist. Our results are consistent with this prediction.  相似文献   

16.
We describe two events of water plant extinction in the Hula Valley, northern Israel: the ancient, natural extinction of 3 out of 14 extinct species at Gesher Benot Ya‘aqov, which occurred some 800-700 k.yr., and an anthropogenic, near contemporary extinction of seven species in the artificial drainage of the Hula Lake in the 1950s. We conclude that the considerable fraction of water plants that disappeared from the Hula Valley in the Early-Middle Pleistocene was the result of habitat desiccation and not global warming. Thus, there is evidence that the hominins who lived in the Hula Valley inhabited a comparatively dry place. The disappearance of water plant species was partially the result of reduced seed dispersal by birds (ornitochory) as a result of the shrinkage of water bodies and their number along the Rift Valley. We suggest that the disappearance of a group of rare, local water plants can be used as an indicator of climate drying and impacts on the local vegetation.  相似文献   

17.
18.
New ecological niches that may arise due to climate change can trigger diversification, but their colonisation often requires adaptations in a suite of life‐history traits. We test this hypothesis in species‐rich Mycalesina butterflies that have undergone parallel radiations in Africa, Asia, and Madagascar. First, our ancestral state reconstruction of habitat preference, using c. 85% of extant species, revealed that early forest‐linked lineages began to invade seasonal savannahs during the late Miocene‐Pliocene. Second, rearing replicate pairs of forest and savannah species from the African and Malagasy radiation in a common garden experiment, and utilising published data from the Asian radiation, demonstrated that savannah species consistently develop faster, have smaller bodies, higher fecundity with an earlier investment in reproduction, and reduced longevity, compared to forest species across all three radiations. We argue that time‐constraints for reproduction favoured the evolution of a faster pace‐of‐life in savannah species that facilitated their persistence in seasonal habitats.  相似文献   

19.
In this study we provide an update to the taxonomy of the ant genus Tetramorium Mayr in Madagascar. We report the first record of the Tetramorium setigerum species group in Madagascar and describe the only Malagasy representative as Tetramorium cavernicola sp. n., which is known only from a cave in Ankarana. In addition, we provide an overview of the 19 proposed Malagasy species groups, and discuss their zoogeography and relationships to other groups and larger lineages within the hyper-diverse genus Tetramorium. At present, we recognise a highly unique Malagasy Tetramorium fauna with 113 species endemic to the island of Madagascar out of a total of 125 translating into an endemism rate of 93%. We hypothesise that this fauna is based on one or a few colonisation events from the Afrotropical region, with subsequent adaptive radiation in Madagascar. Furthermore, we present an updated and illustrated identification key to the Tetramorium species groups in the Malagasy region.  相似文献   

20.
Plants and herbivores are thought to be engaged in a coevolutionary arms race: rising frequencies of plants with anti-herbivore defences exert pressure on herbivores to resist or circumvent these defences and vice versa. Owing to its frequency-dependent character, the arms race hypothesis predicts that herbivores exhibit genetic variation for traits that determine how they deal with the defences of a given host plant phenotype. Here, we show the existence of distinct variation within a single herbivore species, the spider mite Tetranychus urticae, in traits that lead to resistance or susceptibility to jasmonate (JA)-dependent defences of a host plant but also in traits responsible for induction or repression of JA defences. We characterized three distinct lines of T. urticae that differentially induced JA-related defence genes and metabolites while feeding on tomato plants (Solanum lycopersicum). These lines were also differently affected by induced JA defences. The first line, which induced JA-dependent tomato defences, was susceptible to those defences; the second line also induced JA defences but was resistant to them; and the third, although susceptible to JA defences, repressed induction. We hypothesize that such intraspecific variation is common among herbivores living in environments with a diversity of plants that impose diverse selection pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号