首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Boersma  Maarten 《Hydrobiologia》1997,360(1-3):79-88
Variation in offspring size and number has beendescribed for a wide range of organisms. In this studyI investigated the relationship between resource levelof the mother and size of her offspring in thecladoceran Daphnia magna, in order to assess whetheroffspring produced at different food levels areoptimal in size for these food levels. Optimaloffspring size was defined as the size of offspringthat yields the highest parental fitness (i.e.offspring of optimal size have the highest juvenilefitness per unit maternal effort invested in them). Iobserved that especially at the higher food levels,daphnids produced offspring that are larger than thecomputed optimal offspring size at these food levels.I interpret this as a mechanism to avoid starvation ofneonates in the case of suddenly deteriorating foodconditions.  相似文献   

2.
Life-history theory predicts that older females will increase reproductive effort through increased fecundity. Unless offspring survival is density dependent or female size constrains offspring size, theory does not predict variation in offspring size. However, empirical data suggest that females of differing age or condition produce offspring of different sizes. We used a dynamic state-variable model to determine when variable offspring sizes can be explained by an interaction between female age, female state and survival costs of reproduction. We found that when costs depend on fecundity, young females with surplus state increase offspring size and reduce number to minimize fitness penalties. When costs depend on total reproductive effort, only older females increase offspring size. Young females produce small offspring, because decreasing offspring size is less expensive than number, as fitness from offspring investment is nonlinear. Finally, allocation patterns are relatively stable when older females are better at acquiring food and are therefore in better condition. Our approach revealed an interaction between female state, age and survival costs, providing a novel explanation for observed variation in reproductive traits.  相似文献   

3.
In a wide variety of species, a female's age of first reproduction influences offspring size and survival, suggesting that there exists an optimal timing of reproduction. Mothers in many species also influence offspring size and survival after birth through variation in parental care. We experimentally separated these effects in the burying beetle Nicrophorus vespilloides to test for coadaptation between prenatal and postnatal maternal effects associated with age at first reproduction. Females that reproduced early produced offspring with lower birth weight. The amount of parental care depended on the age of first reproduction of the caretaker, as did the extent of offspring begging. As predicted for a coadaptation of maternal effects, prenatal and postnatal effects were opposite for different-aged mothers, and larval weight gain and survival was greatest when the age of the caretaker and birth mother matched. Thus, prenatal effects intrinsically associated with age of first reproduction can be ameliorated by innate plasticity in postnatal care. A coadaptation of prenatal and postnatal maternal effects may evolve to allow variable timing of the first reproductive attempt. Such a coadaptation might be particularly valuable when females are constrained from reproducing at an optimal age, as, for example, in species that breed on scarce and unpredictable resources.  相似文献   

4.
A model which defines fitness in terms of the intrinsic rate of increase of phenotypes is used to analyse which life cycles are appropriate to which ecological circumstances. The following predictions are made for asexual animals and those sexual animals producing on average more than one daughter per brood. If there are no behavioural or physiological interactions between variables, then number of offspring per breeding should be maximized, survival until first/next breeding should be maximized, and time to first/next breeding should be minimized. If interactions occur such that altering one life-cycle variable affects another, then there are trade-offs between variables and the optimum trade-off will maximize fitness.Number of offspring per breeding will generally affect adult survivorship until next breeding. Given certain reasonable assumptions about this trade-off, high juvenile survivorship selects towards semelparity (many offspring per brood), low juvenile survivorship selects towards iteroparity (few offspring per brood). If juvenile survival depends on adult feeding, as in altricial birds, then juvenile survivorship declines as clutch size is increased. Optimal clutch size maximizes the number of surviving offspring per brood.Two trade-offs involve parental care. If parents guard their offspring they should take more risks if brood size is larger. The amount that parents feed their offspring should depend on how effective feeding is in enhancing growth. Growth may also be enhanced by taking risks, in juveniles or adults. The extent of risk-taking should depend on how effective risk-taking is in enhancing growth.If the number of offspring per brood is related to growing conditions for offspring, the prediction is that more offspring per brood should be produced if growing conditions for offspring are better. If the adult can protect the offspring, for example by encapsulating them, the amount of protection provided should depend on how effective the protection is in increasing offspring survivorship.  相似文献   

5.
Sex ratio at conception may be under selection pressure, given that male and female offspring differ in the cost of production or generate different fitness returns under specific conditions. We studied adjustments in the primary, secondary and tertiary sex ratio in house martin Delichon urbicum, which is a sexually monomorphic, socially monogamous, colonial bird. Males of this species engage in extra‐pair copulations with heavy males acquiring the highest fertilization success. We analyzed variation in the sex ratio in relation to clutch size and parental characteristics including body condition, wing length, as well as length and pigmentation of the white rump patch during three breeding seasons. The only variable which significantly explained the variation in the sex ratio was wing length of the social father and mother. The proportion of sons among offspring was positively correlated to wing length of the social father and negatively correlated to mother wing length. Social father wing length positively correlated with mean brood body mass at fledging, which may suggest that females that mated with long‐winged males produced sons, which acquired the highest total fertilization success. Consequently, our results indicate that house martin females may adaptively adjust offspring sex composition at egg laying in relation to the characteristics of their social mate.  相似文献   

6.
Abstract The existence of adaptive phenotypic plasticity demands that we study the evolution of reaction norms, rather than just the evolution of fixed traits. This approach requires the examination of functional relationships among traits not only in a single environment but across environments and between traits and plasticity itself. In this study, I examined the interplay of plasticity and local adaptation of offspring size in the Trinidadian guppy, Poecilia reticulata. Guppies respond to food restriction by growing and reproducing less but also by producing larger offspring. This plastic difference in offspring size is of the same order of magnitude as evolved genetic differences among populations. Larger offspring sizes are thought to have evolved as an adaptation to the competitive environment faced by newborn guppies in some environments. If plastic responses to maternal food limitation can achieve the same fitness benefit, then why has guppy offspring size evolved at all? To explore this question, I examined the plastic response to food level of females from two natural populations that experience different selective environments. My goals were to examine whether the plastic responses to food level varied between populations, test the consequences of maternal manipulation of offspring size for offspring fitness, and assess whether costs of plasticity exist that could account for the evolution of mean offspring size across populations. In each population, full‐sib sisters were exposed to either a low‐ or high‐food treatment. Females from both populations produced larger, leaner offspring in response to food limitation. However, the population that was thought to have a history of selection for larger offspring was less plastic in its investment per offspring in response to maternal mass, maternal food level, and fecundity than the population under selection for small offspring size. To test the consequences of maternal manipulation of offspring size for offspring fitness, I raised the offspring of low‐ and high‐food mothers in either low‐ or high‐food environments. No maternal effects were detected at high food levels, supporting the prediction that mothers should increase fecundity rather than offspring size in noncompetitive environments. For offspring raised under low food levels, maternal effects on juvenile size and male size at maturity varied significantly between populations, reflecting their initial differences in maternal manipulation of offspring size; nevertheless, in both populations, increased investment per offspring increased offspring fitness. Several correlates of plasticity in investment per offspring that could affect the evolution of offspring size in guppies were identified. Under low‐food conditions, mothers from more plastic families invested more in future reproduction and less in their own soma. Similarly, offspring from more plastic families were smaller as juveniles and female offspring reproduced earlier. These correlations suggest that a fixed, high level of investment per offspring might be favored over a plastic response in a chronically low‐resource environment or in an environment that selects for lower reproductive effort  相似文献   

7.
Theory suggests that multiple mating by females can evolve as a mechanism for acquiring compatible genes that promote offspring fitness. Genetic compatibility models predict that differences in fitness among offspring arise from interactions between male and female haplotypes. Using a cross-classified breeding design and in vitro fertilization, we raised families of maternal and paternal half-siblings of the frog Crinia georgiana, a species with a polyandrous breeding system and external fertilization. After controlling for variation in maternal provisioning, we found significant effects of interacting parental haplotypes on fertilization success, and nonadditive genetic effects on measures of offspring fitness such as embryo survival, and survival to, size at, and time to metamorphosis. Additive genetic variation due to males and females was negligible, and not statistically significant for any of the fitness traits measured. Combinations of parental haplotypes that resulted in high rates of fertilization produced offspring with higher embryo survival and rapid juvenile development. We suggest that a gamete recognition mechanism for selective fertilization by compatible sperm may promote offspring fitness in this system.  相似文献   

8.
Fisher DO  Blomberg SP 《PloS one》2011,6(1):e15226
Evolutionary explanations for life history diversity are based on the idea of costs of reproduction, particularly on the concept of a trade-off between age-specific reproduction and parental survival, and between expenditure on current and future offspring. Such trade-offs are often difficult to detect in population studies of wild mammals. Terminal investment theory predicts that reproductive effort by older parents should increase, because individual offspring become more valuable to parents as the conflict between current versus potential future offspring declines with age. In order to demonstrate this phenomenon in females, there must be an increase in maternal expenditure on offspring with age, imposing a fitness cost on the mother. Clear evidence of both the expenditure and fitness cost components has rarely been found. In this study, we quantify costs of reproduction throughout the lifespan of female antechinuses. Antechinuses are nocturnal, insectivorous, forest-dwelling small (20-40 g) marsupials, which nest in tree hollows. They have a single synchronized mating season of around three weeks, which occurs on predictable dates each year in a population. Females produce only one litter per year. Unlike almost all other mammals, all males, and in the smaller species, most females are semelparous. We show that increased allocation to current reproduction reduces maternal survival, and that offspring growth and survival in the first breeding season is traded-off with performance of the second litter in iteroparous females. In iteroparous females, increased allocation to second litters is associated with severe weight loss in late lactation and post-lactation death of mothers, but increased offspring growth in late lactation and survival to weaning. These findings are consistent with terminal investment. Iteroparity did not increase lifetime reproductive success, indicating that terminal investment in the first breeding season at the expense of maternal survival (i.e. semelparity) is likely to be advantageous for females.  相似文献   

9.
Geographical variation in offspring size effects across generations   总被引:2,自引:0,他引:2  
Dustin J. Marshall 《Oikos》2005,108(3):602-608
Offspring size is thought to strongly affect offspring fitness and many studies have shown strong offspring size/fitness relationships in marine and terrestrial organisms. This relationship is strongly mitigated by local environmental conditions and the optimal offspring size that mothers should produce will vary among different environments. It is assumed that offspring size will consistently affect the same traits among populations but this assumption has not been tested. Here I use a common garden experiment to examine the effects of offspring size on subsequent performance for the marine bryozoan Bugula neritina using larvae from two very different populations. The local conditions at one population (Williamstown) favour early reproduction whereas the other population (Pt. Wilson) favours early growth. Despite being placed in the same habitat, the effects of parental larval size were extremely variable and crossed generations. For larvae from Williamstown, parental larval size positively affected initial colony growth and larval size in the next generation. For larvae from the other population, parental larval size positively affected colony fecundity and negatively affected larval size in the next generation. Traditionally, exogenous factors have been viewed as the sole source of variation in offspring size/fitness relationship but these results show that endogenous factors (maternal source population) can also cause variation in this crucial relationship. It appears offspring size effects can be highly variable among populations and organisms can adapt to local conditions without changing the size of their offspring.  相似文献   

10.
SYNOPSIS. The degree to which a female partitions resourcesbetween fecundity and per offspring investment is a centralquestion in life-history theory. Maternal effects may influencethe nature of this tradeoff through their effect on per offspringinvestment and subsequent offspring fitness. The purpose ofthis study was to determine the effect of female age and sizeon brood size (number of offspring), per offspring investment,and fitness in the polychaete Streblospio benedicti. Early stageembryos were collected from brooding females of known age andsize over a period of 100 days; these embryos were counted andanalyzed for their C and N content. Female size had a positiveeffect on brood size; larger females produced larger broods.However, brood size decreased with female age (females did notincrease in size after reaching sexual maturity). Brood sizedeclined 20–46% between 60 and 160 days of age. Duringthis same age period per offspring investment, measured in termsof C and N, increased by 25%. Offspring survivorship and sizeat two weeks post-release from the female were used as measuresof offspring fitness. Offspring survivorship increased 28% between60 and 160 days of age. Increased growth in offspring from olderfemales resulted in a 23% increase in offspring size at twoweeks. Including the maternal age effect in two population modelsfor S. benedicti increased population growth rate (). Populationgrowth was increased to a greater degree when the maternal effectwas modeled by enhancing offspring survival compared to whenfecundity was increased by the same proportional amount. Thissuggests that the maternal effect may be adaptive, particularlywhen conditions for offspring survival and growth are poor.  相似文献   

11.
Whereas in constant environments parental survival has no effect on optimal clutch size in the absence of trade-offs between juvenile and parental survival, the situation is drastically different in fluctuating environments. We consider a model in which, with respect to reproduction, parents and offspring are equivalent at the start of the next breeding season. When generations are non-overlapping, the clutch size maximizing geometric mean surviving number of offspring is optimal among all pure clutch size strategies. We prove that, as parental survival increases relative to that of the offspring, the optimal clutch size converges to the arithmetic mean maximizing clutch size (the so-called ‘Lack clutch size’). We also give a numerical procedure for calculating optimal mixed strategies and we show that, as environmental variance increases and/or parental survival decreases, mixed rather than pure strategies become optimal. Furthermore, we explain how to estimate fitness from empirical data under the assumptions of our model. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
Rollinson N  Hutchings JA 《Oecologia》2011,166(4):889-898
Positive associations between maternal investment per offspring and maternal body size have been explained as adaptive responses by females to predictable, body size-specific maternal influences on the offspring’s environment. As a larger per-offspring investment increases maternal fitness when the quality of the offspring environment is low, optimal egg size may increase with maternal body size if larger mothers create relatively poor environments for their eggs or offspring. Here, we manipulate egg size and rearing environments (gravel size, nest depth) of Atlantic salmon (Salmo salar) in a 2 × 2 × 2 factorial experiment. We find that the incubation environment typical of large and small mothers can exert predictable effects on offspring phenotypes, but the nature of these effects provides little support to the prediction that smaller eggs are better suited to nest environments created by smaller females (and vice versa). Our data indicate that the magnitude and direction of phenotypic differences between small and large offspring vary among maternal nest environments, underscoring the point that removal of offspring from the environmental context in which they are provisioned in the wild can bias experimentally derived associations between offspring size and metrics of offspring fitness. The present study also contributes to a growing literature which suggests that the fitness consequences of egg size variation are often more pronounced during the early juvenile stage, as opposed to the egg or larval stage.  相似文献   

13.
Optimal allocation of parental resources is an important life history trait. However, it has been rarely investigated empirically. We tested aspects of optimal allocation theory in a digger wasp, the European beewolf. Investment allocation theory assumes (1) a trade‐off between investment per offspring and offspring number and (2) a convex relationship between investment per offspring and fitness returns. From mis relationship an optimum amount of investment per offspring can be derived and parents are predicted to provide each offspring with this optimum amount of investment. We used the number of bees in a brood cell as a measure of parental investment. Offspring fitness was quantified as both survival until emergence and success as adults. There is evidence for a trade‐off between current and future reproduction, suggesting that the first assumption is met. In contradiction to the second assumption, one mortality factor, parasitism, increased proportionally with the number of bees in a brood cell. However, overall mortality until emergence significantly decreased with the number of bees in a brood cell as assumed by the theory. The determination of the optimum amount of investment per offspring is complicated because the sexes possibly differ in their relationship between amount of investment and fitness. Individual males received considerably fewer bees (2.2 ± 0.8) than females (3.8 ± 0.5). Two independent estimates of the investment specific survival suggested that sons with two bees had the highest fitness returns per single bee and, consistent with the prediction, most sons were provisioned with two bees. For daughters, four bees is probably the optimum amount and most daughters were provisioned with this number. In both sexes the variation of investment per offspring was less than expected by a Poisson distribution with the same mean. These findings support the view that parental investment is allocated in a way that optimizes the trade‐off between offspring number and investment per offspring. However, variation contradicting the hypothesis still occurred. This might be explained either by adaptive variation in the amount of investment per offspring, constraints in the adjustment of the optimum amount of investment, or problems in measuring parental investment.  相似文献   

14.
We present a biosocial model of human male parental care that allows male parental allocations to be influenced not only by changes in the fitness (welfare) of the recipient offspring, but also by their effects on the man's relationship with the child's mother. The model recognizes four classes of relationships between males and the children they parent: genetic offspring of current mates (combined relationship and parental effort), genetic offspring of previous mates (parental effort solely), step offspring of current mates (relationship effort solely), and stepchildren of previous mates (essentially no expected investment). We test the model using data on parental investments collected from adult males living in Albuquerque, New Mexico, U.S.A. Four measures of paternal investment are examined: the probability that a child attends college (2,191 offspring), the probability that a child who attends college receives money for it (N = 1,212), current financial expenditures on children (N = 635), and the amount of time per week that men spend with children ages 5 to 12 years (N = 2,589). The tests are consistent with a role for relationship effort in parental care: men invest more in the children of their current mates, even when coresidence with offspring is not a confounder.  相似文献   

15.
Absence of seasonal variation in great tit offspring sex ratios   总被引:3,自引:0,他引:3  
When the timing of breeding affects the reproductive value of sons and daughters differently, parents are expected to increase their fitness by changing the offspring sex ratio during the course of the breeding season. Previous studies have shown that in great tits Parus major hatching date has a stronger effect on the fitness of juvenile males than on that of juvenile females. We tested whether this difference was reflected in a seasonal decline in the proportion of sons per breeding attempt. Although offspring sex ratio was more variable than would be expected from a binomial distribution, there was no significant relationship between the proportion of sons and the laying date of the clutch. Moreover, individual females did not adjust the sex ratio of their offspring following an experimental delay of breeding. This study therefore fails to demonstrate adaptive seasonal variation in great tit offspring sex ratios.  相似文献   

16.
Molumby  Alan 《Behavioral ecology》1997,8(3):279-287
Mass-provisioning wasps package maternal investment into broodcells, sealed structures that contain all the provisions necessaryfor an offspring's growth and development. Optimal sex-allocationtheory predicts that if maternal provisions determine the sizeof each offspring, and the amount of provisions available toeach offspring varies, females should allocate well-stockedbrood cells to the sex that benefits most from being large.I tested this hypothesis using observations of organ-pipe wasps,Trypoxylon politum, and dissections of their nests. A Mississippipopulation of T. politum was intensively studied from 1993 to1995. This population fit the assumptions of optimal sex-allocationmodels by Green and Brockmann and Grafen. Female weight at emergencewas 1.29 times that of males, and wing length was 1.15 timesthat of males. This discrepancy in size occurred because thevolume of parental provisions strongly influenced adult bodysize, and better-stocked brood cells were preferentially allocatedto daughters. Brood-cell volume correlated with both wing lengthand weight at emergence in both sexes, and the chance that agiven brood cell contained a female offspring increased withincreasing brood-cell volume. Fitness was positively relatedto body size for females, but I found no evidence of an advantageto large males. Although there was evidence of stabilizing selectionfor male wing length in one year, there was no evidence of anincreasing relationship between body size and fitness (directionalselection) for males in either 1993 or 1994. Female fecunditywas positively related to body size in both years, indicatingthat larger females have increased reproductive success. Therate at which females provisioned brood cells was also correlatedwith body size. Observed patterns of investment in brood cellsare quantitatively consistent with the predictions of optimalsex-allocation theory, but certain aspects of female provisioningbehavior suggest females are not following a single "optimal"strategy. Patterns of provisioning were variable among differentfemales at the study site during the same year. Large femalestended to produce larger offspring. Although Brockmann and Grafen'smodel predicts a single, population wide "switchpoint" fromthe production of male to female offspring, there was no evidencefor such a switchpoint  相似文献   

17.
Life‐history theory predicts that females who experienced stressful conditions, such as larval competition or malnutrition, should increase their investment in individual offspring to increase offspring fitness (the adaptive parental hypothesis). In contrast, it has been shown that when females were reared under stressful conditions, they become smaller, which consequently decreases egg size (the parental stress hypothesis). To test whether females adjust their egg volume depending on larval competition, independent of maternal body mass constraint, we used a pest species of stored adzuki beans, Callosobruchus chinensis (L.) (Coleoptera: Chrysomelidae: Bruchinae). The eggs of females reared with competitors were smaller than those of females reared alone, supporting the parental stress hypothesis; however, correcting for female body size, females reared with competitors produced larger eggs than those reared in the absence of competition, supporting the adaptive parental hypothesis, as predicted. The phenotypic plasticity in females' investment in each offspring in stressful environments counteracts the constraint of body size on egg size.  相似文献   

18.
While ecological causes of sociality (or group living) have been identified, proximate mechanisms remain less clear. Recently, close connections between sociality, glucocorticoid hormones (cort) and fitness have been hypothesized. In particular, cort levels would reflect a balance between fitness benefits and costs of group living, and therefore baseline cort levels would vary with sociality in a way opposite to the covariation between sociality and fitness. However, since reproductive effort may become a major determinant of stress responses (i.e., the cort–adaptation hypothesis), cort levels might also be expected to vary with sociality in a way similar to the covariation between sociality and fitness. We tested these expectations during three years in a natural population of the communally rearing degu, Octodon degus. During each year we quantified group membership, measured fecal cortisol metabolites (a proxy of baseline cort levels under natural conditions), and estimated direct fitness. We recorded that direct fitness decreases with group size in these animals. Secondly, neither group size nor the number of females (two proxies of sociality) influenced mean (or coefficient of variation, CV) baseline cortisol levels of adult females. In contrast, cortisol increased with per capita number of offspring produced and offspring surviving to breeding age during two out of three years examined. Together, our results imply that variation in glucocorticoid hormones is more linked to reproductive challenge than to the costs of group living. Most generally, our study provided independent support to the cort–adaptation hypothesis, according to which reproductive effort is a major determinant, yet temporally variable, influence on cort–fitness covariation.  相似文献   

19.
When individuals receive different returns from their reproductive investment dependent on mate quality, they are expected to invest more when breeding with higher quality mates. A number of studies over the past decade have shown that females may alter their reproductive effort depending on the quality/attractiveness of their mate. However, to date, despite extensive work on parental investment, such a differential allocation has not been demonstrated in fish. Indeed, so far only two studies from any taxon have suggested that females alter the quality of individual offspring according to the quality/attractiveness of their mate. The banggai cardinal fish is an obligate paternal mouth brooder where females lay few large eggs. It has previously been shown that male size determines clutch weight irrespective of female size in this species. In this study, I investigated whether females perform more courtship displays towards larger males and whether females allocate their reproductive effort depending on the size of their mate by experimentally assigning females to either large or small males. I found that females displayed more towards larger males, thereby suggesting a female preference for larger males. Further, females produced heavier eggs and heavier clutches but not more eggs when paired with large males. My experiments show that females in this species adjust their offspring weight and, thus, presumably offspring quality according to the size of their mate.  相似文献   

20.
The differential allocation hypothesis predicts increased investment in offspring when females mate with high-quality males. Few studies have tested whether investment varies with mate relatedness, despite evidence that non-additive gene action influences mate and offspring genetic quality. We tested whether female lekking lance-tailed manakins (Chiroxiphia lanceolata) adjust offspring sex and egg volume in response to mate attractiveness (annual reproductive success, ARS), heterozygosity and relatedness. Across 968 offspring, the probability of being male decreased with increasing parental relatedness but not father ARS or heterozygosity. This correlation tended to diminish with increasing lay-date. Across 162 offspring, egg volume correlated negatively with parental relatedness and varied with lay-date, but was unrelated to father ARS or heterozygosity. Offspring sex and egg size were unrelated to maternal age. Comparisons of maternal half-siblings in broods with no mortality produced similar results, indicating differential allocation rather than covariation between female quality and relatedness or sex-specific inbreeding depression in survival. As males suffer greater inbreeding depression, overproducing females after mating with related males may reduce fitness costs of inbreeding in a system with no inbreeding avoidance, while biasing the sex of outbred offspring towards males may maximize fitness via increased mating success of outbred sons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号