首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A marine unicellular alga, Nannochloris bacillaris Naumann, was studied with respect to growth, viability and photosynthesis during the steady-state and also subsequent to changes in the concentration of artificial seawater medium. Cells grew exponentially over the range of 2% to 300% artificial seawater, but more rapidly at lower salinities. In contrast to growth, photosynthesis as measured by both oxygen evolution and bicarbonate photoassimilation was not obviously inhibited for cells adapted within the range of 7% to 200% artificial seawater. In 300% artificial seawater, photosynthesis, especially bicarbonate photoassimilation, was inhibited. Osmotic shocks caused by transferring cells from 200% to 7% artificial seawater had little if any effect on growth, viability or photosynthesis. However, equal shocks in the upward direction (from 7% to 200% artificial seawater) caused long lag phases in growth, totally inhibited photosynthesis and very often led to cell death. Intermediate upward shocks were less deleterious, but did result in lags in growth.  相似文献   

2.
Short-term effects of irradiance (0-1560 micromol photons m(-2) s(-1)), temperature (10-25 degrees C), and salinity (40-160) on oxygenic photosynthesis and oxygen consumption in a hypersaline mat (Salin-de-Giraud, France) were investigated with microsensors under controlled laboratory conditions. Dark O(2) consumption rates were mainly regulated by the mass transfer limitations imposed by the diffusive boundary layer. Areal rates of net photosynthesis increased with irradiance and saturated at irradiances >400 micromol photons m(-2) s(-1). At low irradiances, oxygen consumption increased more strongly with temperature than photosynthesis, whereas the opposite was observed at saturating irradiances. Net photosynthesis vs. irradiance curves were almost unaffected by decreasing salinity (100 to 40), whereas increasing salinities (100 to 160) led to a decrease of net photosynthesis at each irradiance. Dark O(2) consumption rates, maximal gross and net photosynthesis at light saturation were relatively constant over a broad salinity range (60-100) and decreased at salinities above the in situ salinity of 100. Within the range of natural variation, temperature was more important than salinity in regulating photosynthesis and oxygen consumption. At higher salinities the inhibitory impact of salinity on these processes and therefore the importance of salinity as a regulating environmental parameter increased, indicating that in more hypersaline systems, salinity has a stronger limiting effect on microbial activity.  相似文献   

3.
Results of field surveys and laboratory measurements of oxygen consumption and body fluid osmolality at different salinities in the mysids Neomysis integer, Mesopodopsis slabberi, and Rhopalophthalmus mediterraneus from the Guadalquivir estuary (southwest Spain) were used to test the hypothesis that osmotic stress (oxygen consumption vs. isosmotic points) was lowest at salinities that field distributions suggest are optimal. The three species showed overlapping spatial distributions within the estuary but clear segregation along the salinity gradient: N. integer, M. slabberi, and R. mediterraneus displayed maximal densities at lower, intermediate, and higher salinities, respectively. Adults of N. integer were extremely efficient hyperregulators (isosmotic point 30 per thousand) over the full salinity range tested (3 per thousand-32 per thousand), and their oxygen consumption rates were independent of salinity; adults of M. slabberi were strong hyper- and hyporegulators at salinities between 7 per thousand and 29 per thousand (isosmotic point, 21 per thousand) and showed higher oxygen consumptions at the lowest salinity (6 per thousand); adults of R. mediterraneus hyperregulated at salinities between 19 per thousand and seawater (isosmotic point, 36 per thousand), with the lowest oxygen consumption at salinity around their isosmotic point (35 per thousand). Thus, the osmoregulation capabilities of M. slabberi and R. mediterraneus seem to determine the salinity ranges in which most of their adults live, but this is not so for adults of N. integer. Moreover, maximal field densities of M. slabberi (males and females) and R. mediterraneus (males) occur at the same salinities as the lowest oxygen consumption. In contrast, field distribution of N. integer was clearly biased toward the lower end of the salinity ranges within which it osmoregulated. We hypothesize that the greater euryhalinity of N. integer makes it possible for this species to avoid competition with R. mediterraneus by inhabiting the more stressful oligohaline zone.  相似文献   

4.
The effect of salinity, pH, and dissolved inorganic carbon (TCO2) on growth and survival of three Arctic sea ice algal species, two diatoms (Fragilariopsis nana and Fragilariopsis sp.), and one species of chlorophyte (Chlamydomonas sp.) was assessed in controlled laboratory experiments. Our results suggest that the chlorophyte and the two diatoms have different tolerance to fluctuations in salinity and pH. The two species of diatoms exhibited maximum growth rates at a salinity of 33, and growth rates at a salinity of 100 were reduced by 50% compared to at a salinity of 33. Growth ceased at a salinity of 150. The chlorophyte species was more sensitive to high salinities than the two diatom species. Growth rate of the chlorophyte was greatly reduced already at a salinity of 50 and it could not grow at salinities above 100. At salinity 33 and constant TCO2 concentration, all species exhibited maximal growth rate at pH 8.0 and/or 8.5. The two diatom species stopped growing at pH > 9.5, while the chlorophyte species still was able to grow at a rate which was 1/3 of its maximum growth rate at pH 10. Thus, Chlamydomonas sp. was able to grow at high pH levels in the succession experiment and therefore outcompeted the two diatom species. Complementary experiments indicated that growth was mainly limited by pH, while inorganic carbon limitation only played an important role at very high pH levels and low TCO2 concentrations.  相似文献   

5.
The apostome ciliate Hyalophysa chattoni, a symbiont of the estuarine grass shrimp Palaemonetes pugio, was tested for its growth and reproductive ability in a wide range of salinities from 0.1 to 55 ppt. Shrimp, with their attached ciliates, were slowly acclimated to different salinities in order to assess protozoan cell size and division. The trophont and tomont stages of the ciliate life cycle were analyzed. In both stages, cell size increased with salinity from 0.1 to 20 ppt. Cell size leveled in the 20-35 ppt range, and decreased at higher salinities. The number of daughter cells produced per tomont cyst correlated with increased cell size, and also correlated with increased salinity. Additionally, increased salinity correlated with an increase in the percentage of cells able to divide and excyst as tomite stages. These results indicate that H. chattoni is able to grow and divide more effectively at salinities closer to seawater than in the estuarine environment from which they were collected. Though able to survive salinities from 0.1 to 55 ppt, the species is better adapted for an existence in the higher salt concentrations.  相似文献   

6.
Ulva prolifera (Müller) J. Agardh is the main causative species of the 2008 Yellow Sea green tide incident. We investigated the influences of diluted seawater on the vegetative growth and reproductive cell formation of the alga. The thalli that were cultivated under low salinities (10‰ and 20‰) and low pH values (pH around 7.0) showed obvious and steady biomass gain, while those cultivated under high salinities (40‰) and relatively higher pH conditions (pH around 8.0) manifested significant biomass loss. The trend was, however, completely the opposite for reproductive cell formation and there were indications that enrichment, over very wide concentration ranges of both nitrogen and phosphate, could significantly promote vegetative growth. Results also indicated that relatively low salinity and low pH regimes boosted vegetative growth but were unfavorable for reproductive cell formation and vice versa. Based on these results, the possible origin and development mechanisms of the green tide event are discussed. Eutrophication in the Changjiang River estuary and adjacent sea areas, as well as extremely high freshwater inflows before, and during, the flood of 2007 – due to the full operation of large‐scale water facilities in the area – may have both played an important role in the formation and development of the green tide event.  相似文献   

7.
为了研究条斑紫菜耐盐机理,对条斑紫菜叶状体进行了高盐胁迫处理,继而采用氧电极法测量了光合放氧速率和呼吸耗氧速率的变化,采用实时荧光定量PCR技术测量了S-腺苷甲硫氨酸合成酶(命名为PySAMS)基因的表达变化。结果显示藻体的光合与呼吸作用均受到高盐度海水的显著影响,随着盐度的增加,光合放氧率逐渐降低,呼吸耗氧率也逐渐降低。高盐度海水对PySAMS基因表达量也产生了显著影响,40和50盐度的海水诱导了PySAMS表达,但60至80盐度的海水却不同程度地抑制了PySAMS表达。据此推测,在面对较高盐度胁迫时条斑紫菜叶状体将逐步降低体内新陈代谢以度过不良环境。  相似文献   

8.
The decrease in the saturation state of seawater, Ω, following seawater acidification, is believed to be the main factor leading to a decrease in the calcification of marine organisms. To provide a physiological explanation for this phenomenon, the effect of seawater acidification was studied on the calcification and photosynthesis of the scleractinian tropical coral Stylophora pistillata. Coral nubbins were incubated for 8 days at three different pH (7.6, 8.0, and 8.2). To differentiate between the effects of the various components of the carbonate chemistry (pH, CO32−, HCO3, CO2, Ω), tanks were also maintained under similar pH, but with 2-mM HCO3added to the seawater. The addition of 2-mM bicarbonate significantly increased the photosynthesis in S. pistillata, suggesting carbon-limited conditions. Conversely, photosynthesis was insensitive to changes in pH and pCO2. Seawater acidification decreased coral calcification by ca. 0.1-mg CaCOg−1 d−1 for a decrease of 0.1 pH units. This correlation suggested that seawater acidification affected coral calcification by decreasing the availability of the CO32− substrate for calcification. However, the decrease in coral calcification could also be attributed either to a decrease in extra- or intracellular pH or to a change in the buffering capacity of the medium, impairing supply of CO32− from HCO3.  相似文献   

9.
In line with current conservation efforts, some success in the captive breeding of the seahorse Hippocampus kuda (Teleostei: Syngnathidae) has been achieved. To evaluate the salinity tolerance of these hatchery‐bred juveniles, 9‐week‐old H. kuda were transferred without prior acclimatization from ambient full strength seawater (32–33 ppt) to salinities ranging from freshwater to 85 ppt. Survival, growth, and total body water content were determined after 4 and 18 days of exposure. Juvenile H. kuda are able to survive in dilute seawater (15 ppt) for at least 18 days without any compromise in growth (both wet and dry body weight), survival, and total body water. Fish abruptly transferred to freshwater succumbed within 4–24 h, while survival of 5 ppt‐reared fish decreased to ca. 65% in 18 days. Although 10 ppt‐reared seahorses had growth and survival comparable with the control (30 ppt seawater), total body water was significantly elevated indicating reduced adaptability. The upper limit of H. kuda salinity tolerance was 50 ppt. Fish reared at salinities ≥55 ppt succumbed within 24 h. Like several other marine teleosts, growth and survival of juvenile H. kuda tended to peak in diluted seawater salinities of 15 and 20 ppt. These results indicate the possibility of growing hatchery‐bred H. kuda in brackishwater environments.  相似文献   

10.
ABSTRACT Pseudocohnilembus species exhibit a polymorphic life cycle consisting of trophic cells, theronts, and cysts. Pseudocohnilembus pusillus isolated from the intertidal mats of Laguna Figueroa, Baja California Norte, Mexico, forms desiccation-resistant cysts in response to bacterial food depletion. This isolate is a euryhaline organism, able to grow at salinities from freshwater to 96 ppt total salinity and from pH 6–9. Electron micrographs show that oral and somatic cilia and kinetids are retained inside young cysts. Cyst walls are composed of a single layer (0.1 μm) of granular material. Under all conditions, as bacterial food was depleted, P. pusillus cells formed cysts, except for a small proportion (1–5%) that continued to swim. Changes in pH and salinity did not directly induce cyst formation. Salinity did greatly affect growth rate. Doubling times were shortest at 16 ppt salinity and at pH 7–8. Cyst formation occurred later in the growth cycle as more food bacteria were added. Additionally, ciliates grown in small culture volumes (10 ml) formed cysts sooner than cultures in larger volumes (100 ml), suggesting that crowding may influence cyst formation. Mature cysts may survive desiccation at least as long as one month at 37° C and for as long as one year at 20 ± 3° C. Although trophic cells did not survive desiccation or anoxia, encysted ciliates from liquid stationary phase cultures kept in anoxic seawater for one month excysted into swimming cells within 2.5 h after exposure to air. The adaptability of P. pusillus to extremes of salinity, pH, desiccation, and anoxia permits survival in its environmentally variable, microbial mat habitat.  相似文献   

11.
Most studies of oxygen solubility values for high salinity conditions have used synthetic solutions. The object of this study is therefore to propose an equation, valid for high salinity conditions, based on the analysis of oxygen saturation in evaporated seawater. In this study, the solubility of oxygen in evaporated seawater has been determined over a temperature range of 8–35°C and with salinity values of up to 133‰. Based on experimental data, an equation is proposed that introduces a S 2 (salinity) term, at 1 atm pressure, giving increased importance to salinity. The equation provides a valid means of predicting the amount of dissolved oxygen in this range of temperatures and salinities. In addition, for high salinity conditions, with this equation there is no need to extrapolate other established equations, which are less accurate at salinities higher than 40‰. The use of the proposed equation offers a more precise way of calculating oxygen solubility in seawater at high salinity values (up to 133‰), and small deviations from experimental values, of the order of 2 μmol kg−1, are obtained. Handling editor: J. Melack  相似文献   

12.
Eggs of Pacific herring (Clupea pallasi) were incubated at 5°C in salinities of 5, 20, and 35‰, and in cadmium concentrations of 0.05, 0.1, 1, 5, and 10 ppm (20‰ S). Bursting pressures of eggs in the eight groups were measured throughout incubation. In general, bursting pressures rose to a primary maximum after fertilization, declined, rose to a secondary maximum, then declined again toward hatching. Rate of attainment of the primary maximum was related to salinity of the incubation medium. Bursting pressures at the primary and secondary maxima reached final values of about 1300 and 700 g, respectively, in incubation salinities at and above 20‰. Corresponding egg volumes were greatest in low salinities (5‰) and near minimum values in salinities of 20‰ or greater (35‰). Cadmium in the incubation medium delayed attainment of primary maximum bursting pressures and primary and secondary maxima were reduced to 200–350 g at Cd concentrations near 1 ppm. Egg volumes also decreased with increased Cd concentration. It appears that Ca++/Cd++ ratios, depending on salinity and Cd levels in the incubation medium, influence the properties of both the jelly coat and the capsule of herring eggs. Changes in the properties of these layers could make the eggs more susceptible to mechanical damage, particularly at combinations of higher (?1 ppm) Cd concentration and lower (?20 ‰) salinities.  相似文献   

13.
The effects of NaCl salinity on growth, morphology and photosynthesis of Salvinia natans (L.) All. were investigated by growing plants in a growth chamber at NaCl concentrations of 0, 50, 100 and 150 mM. The relative growth rates were high (ca. 0.3 d−1) at salinities up to 50 mM and decreased to less than 0.2 d−1 at higher salinities, but plants produced smaller and thicker leaves and had shorter stems and roots, probably imposed by the osmotic stress and lowered turgor pressure restricting cell expansion. Na+ concentrations in the plant tissue only increased three-fold, but uptake of K+ was reduced, resulting in very high Na+/K+ ratios at high salinities, indicating that S. natans lacks mechanisms to maintain ionic homeostasis in the cells. The contents of proline in the plant tissue increased at high salinity, but concentrations were very low (<0.1 μmol g−1 FW), indicating a limited capacity of S. natans to synthesize proline as a compatible compound. The potential photochemical efficiency of PSII (Fv/Fm) of S. natans remained unchanged at 50 mM NaCl but was reduced at higher salinities, and the photosynthetic capacity (ETRmax) was significantly reduced at 50 mM NaCl and higher. It is concluded that S. natans is a salt-sensitive species lacking physiological measures to cope with exposure to high NaCl salinity. At low salinities salts are taken up and accumulate in old leaves, and high growth rates are maintained because new leaves are produced at a higher rate than for plants not exposed to salt.  相似文献   

14.
Mechanisms of response to salinity in halotolerant microalgae   总被引:3,自引:0,他引:3  
Summary A limited number of organic solutes are used by microalgae to adjust their internal osmotic pressure in response to changing external salinities. Glycerol and proline are used by the most extremely halotolerant algae. Only glycerol allows growth at salinities approaching saturation. In addition to organic osmoregulatory solutes, inorganic ions also play an important role in osmoregulation. The ability of microalgae to maintain intracellular ions at levels compatible with metabolic functions may set upper limits for their salt tolerance. Requirements for NaCl in the external medium for nutrient transport may define the lower salinity limits for growth observed for some euryhaline algae.Osmotic upshocks generally cause severe temporary inhibition of photosynthesis in euryhaline microalgae. Extensive osmotic downshocks have little effect on photosynthesis in microalgae with strong cell walls, while wall-less species appear to be more sensitive. Rapid glycerol synthesis takes place in response to increased external salinity inChlamydomonas pulsatilla both in light and dark. Starch supplies carbon for glycerol synthesis in the dark and also during the initial periods of inhibition of photosynthesis in the light. Turnover of osmoregulatory solutes such as glycerol and isofloridoside may be an important aspect of the osmoregulatory mechanism.At salinities beyond the growth limit for the green flagellateChlamydomonas pulsatilla, resting spores are formed that enable this alga to survive extreme salinities.  相似文献   

15.
Macler BA 《Plant physiology》1988,88(3):690-694
The long-term effects of altered salinities on the physiology of the intertidal red alga Gelidium coulteri Harv. were assessed. Plants were transfered from 30 grams per liter salinity to media with salinities from 0 to 50 grams per liter. Growth rate, agar, photosynthesis, respiration, and various metabolites were quantified after 5 days and 5 weeks adaptation. After 5 days, growth rates were lower for plants at all altered salinities. Growth rates recovered from these values with 5 weeks adaptation, except for salinities of 10 grams per liter and below, where tissues bleached and died. Photosynthetic O2 evolution was lower than control values at both higher and lower salinities after 5 days and did not change over time. Carbon fixation at the altered salinities was unchanged after 5 days, but decreased below 25 grams per liter and above 40 grams per liter after 5 weeks. Respiration increased at lower salinities. Phycobili-protein and chlorophyll were lower for all altered salinities after 5 days. These decreases continued at lower salinities, then were stable after 5 weeks. Chlorophyll recovered over time at higher salinities. Decreases in protein at lower salinities were quantitatively attributable to phycobili-protein loss. Total N levels and C:N ratios were nearly constant across all salinities tested. Carbon flow into glutamate and aspartate decreased with both decreasing and increasing salinities. Glycine, serine, and glycolate levels increased with both increasing and decreasing salinity, indicating a stimulation of photorespiration. The cell wall component agar increased with decreasing salinity, although biosynthesis was inhibited at both higher and lower salinities. The storage compound floridoside increased with increasing salinity. The evidence suggests stress responses to altered salinities that directly affected photosynthesis, respiration, and nitrogen assimilation and indirectly affected photosynthate flow. At low salinities, respiration and photorespiration exceeded photosynthesis with lethal results. At higher salinities, although photosynthesis was inhibited, respiration was low and carbon fixation adequate to offset increased photorespiration.  相似文献   

16.
The relationship between the behavioral and physiological responses to hyposaline exposure was investigated in Cancer gracilis, the graceful crab. The status of C. gracilis as an osmoconformer was confirmed. Survival decreased with salinity: the LT(50) in 50% seawater (a practical salinity of 16, or 16 per thousand) was 31.5 +/- 22.7 h and in 25% seawater (a salinity of 8) was 8.0 +/- 0.7 h. When exposed to a salinity gradient, most crabs moved towards the highest salinity. However, in the salinity range of 55% to 65% seawater, they became quiescent. This "closure response" was also evident at low salinities: the mouthparts were tightly closed and animals remained motionless for 2 to 2.5 h. During closure, crabs were able to maintain the salinity of water within the branchial chambers at a level that was about 30% higher than that of the surrounding medium. The closure response was closely linked to a short-term decrease in oxygen uptake. During closure, oxygen within the branchial chamber was rapidly depleted, with oxygen uptake returning to pretreatment levels upon the resumption of activity. In addition to the short-term decrease in oxygen uptake, there was a longer-term bradycardia, which may serve to further reduce diffusive ion loss across the gills. By exhibiting a closure response during acute hyposaline exposure and an avoidance reaction during prolonged or severe hyposaline exposure, C. gracilis is able to use behavior to exploit areas prone to frequent episodes of low salinity.  相似文献   

17.
Yeo, A. R., Caporn, S. J. M.and Flowers, T. J. 1985. The effectof salinity upon photosynthesis in rice (Oryza sativa L.): Gasexchange by individual leaves in relation to their salt content.—J.exp. Bot. 36: 1240–1248. The effect of salinity upon net photosynthesis and transpirationby individual leaves of rice has been investigated by gas exchangemeasurements in seedlings at the five to six leaf stage. Salinitydid not, initially, reduce net photosynthesis in the whole plantbut only in the older leaves in which sodium accumulated. Analysisof the course of events in leaf four following salinizationof the medium showed that net photosynthesis was inversely correlatedwith the sodium concentration in the leaf tissue. There wasno evidence of a threshold effect; net photosynthesis declinedlinearly with increasing leaf sodium concentration and was reducedby 50% at only 05 mmol sodium per gram dry weight. The relationshipbetween transpiration rate and leaf sodium concentration closelyparalleled that for photosynthesis; there was no effect of leafsodium concentration on the carbon dioxide concentration inthe intercellular spaces, showing that sodium accumulation inthe leaf affected stomatal aperture and carbon dioxide fixationsimultaneously. Photosynthesis was reduced by half at a sodiumconcentration in the leaf which did not reduce the concentrationof chlorophyll. The nature of the effect of salinity upon leafgas exchange is discussed. Key words: Salinity, rice, Oryza sativa L., photosynthesis, apoplastic salt load  相似文献   

18.
Summary The gammarid amphipod Onisimus litoralis, which inhabits arctic and subarctic intertidal and under-ice habitats, is a euryhaline hyperosmotic regulator. It survives 10 d exposures to salinities from 5 to 55 ppt. It hyperregulates its hemolymph osmolality during 3 h exposures to dilutions of 33 ppt seawater and remains hyperosmotic for at least 2 w. The hemolymph is isosmotic to the medium after 12 h exposures to salinities higher than 33 ppt. The gammarid amphipod Anonyx nugax, which inhabits arctic and subarctic subtidal areas, tolerates salinities from 23 to 45 ppt with little mortality. Unlike Onisimus, however, it is an osmoconformer and its hemolymph becomes isosmotic to all dilute salinities within its tolerance range after 12 h and to concentrated media after 3 h. The salinity tolerances and osmoregulatory abilities of both species are reflected in their distributions in the field.  相似文献   

19.
Various physiological characteristics of photosynthesis in the unicellular red alga Porphyridium cruentum Naegeli have been investigated. The rate of photosynthesis was optimal at 25° C and pH 7.5 and was not inhibited by 21% oxygen over a temperature range of 5 to 35° C. Kinetics of whole cell photosynthesis as a function of substrate concentration gave a K1/2, (CO2) of 0.3 μM. CO2 compensation point, measured in a closed system at pH 7.5, was a constant 6.7 m?L · L?1 over the temperature range 15 to 30° C and was unaffected by O2 concentration. Whole cell photosynthesis, measured in a closed system at alkaline pH, showed that the rates of oxygen evolution were greatly in excess of the rate of CO2 supply from the spontaneous dehydration of HCO3? in the medium. This indicates that bicarbonate is utilized by the cell to support this photosynthetic rate. These physiological characteristics of Porphyridium cruentum are consistent with the hypothesis that this alga transports bicarbonate across the plasmalemma.  相似文献   

20.
Zou D  Gao K  Chen W 《Photosynthesis research》2011,107(2):159-168
The photosynthetic oxygen evolution characteristics were examined in both vegetative (blade) and sexual reproductive (receptacle) tissues of Sargassum henslowianum (Fucales, Phaeophyta) from the Shenao bay of Nanao Island, China, to establish the mechanism of photosynthetic acquisition of inorganic carbon (Ci) in this species. In natural seawater (pH 8.1, ca. 2.2 mM Ci), irradiance-saturated net photosynthetic rate (NPR) was greater by 25.3% in blade than receptacle, whereas dark respiratory rate (DR) was 2-fold higher in receptacle than blade. NPR at pH 8.1 was nearly saturated with the 2.2 mM Ci for both blade and receptacle. However, the values of the half-saturation constant for Ci were sharply increased at pH 9.0. NPR was significantly affected, but DR was remained unchanged, with the variation of the pH values in seawater. The data from the final pH value derived from the pH-drift experiments and the comparison between the measured and theoretically estimated photosynthetic rates suggested that both blade and receptacle were capable of acquiring HCO3 in seawater. The inhibitors experiments showed that a HCO3 dehydration mechanism mediated by external carbonic anhydrase activity occurred in both the blade and receptacle tissues of S. henslowianum. The proton buffer TRIS had no inhibitory effect on NPR at normal pH value in natural seawater (pH 8.1), but it significantly depressed NPR at pH 9.0. This suggested that proton transport occurred at the outside of the plasma membrane facilitated the operation of the carbon acquisition at pH 9.0. It was proposed that the strategy of photosynthetic carbon acquisition at higher pH would prevent the alga from the damage of over-excitation and photoinhibition in case of sunshine and calm water. We concluded that the blade and receptacle tissues of S. henslowianum have similar mechanism of acquisition of exogenous Ci from seawater to drive photosynthesis; yet they are differentiated more or less with the photosynthetic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号