首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
In Swiss 3T3 murine fibroblasts, interleukin 1 (IL-1) and bradykinin stimulate prostaglandin E2 (PGE2) synthesis. However, in the present study, we found that neither agonist stimulated PGE2 synthesis in BALB/c 3T3 murine fibroblasts, this in spite of expression of similar numbers of receptors for each agonist compared to Swiss 3T3 cells. When BALB/c 3T3 cells were preincubated with cAMP analogs, both IL-1 and bradykinin stimulated PGE2 synthesis to levels similar to those observed in Swiss 3T3 cells. Similarly, when the cells were preincubated with forskolin, which activates the catalytic subunit of adenylate cyclase directly, or NECA, which stimulates cellular cAMP accumulation by activating adenosine receptors, IL-1 and bradykinin stimulated PGE2 synthesis. Rp-cAMPS, an inhibitor of cAMP-dependent protein kinase, blocked the ability of cAMP or NECA to render cells responsive to IL-1 and bradykinin. In basal BALB/c 3T3 cells, bradykinin and IL-1 stimulated arachidonate release in the absence of cAMP, but little conversion of released arachidonate to PGE2 occurred. cAMP, forskolin, and NECA all increased cyclooxygenase activity in the cells. SV-T2 is a clonal line originating from BALB/c 3T3 transformed with SV-40. In these cells, IL-1 and bradykinin stimulated PGE2 synthesis despite basal intracellular cAMP concentrations similar to BALB/c, and cAMP only modestly potentiated the response. In summary, cyclooxygenase expression appears to be regulated by cAMP in BALB/c 3T3 cells, and SV-40 transformation results in increased cyclooxygenase expression, apparently independent of cAMP.  相似文献   

2.
Mitogenic effect of prostaglandin E1 in Swiss 3T3 cells: role of cyclic AMP   总被引:3,自引:0,他引:3  
Addition of prostaglandin E1 (PGE1) to quiescent cultures of Swiss 3T3 cells rapidly elevates the intracellular levels of cAMP and increases the activity of adenylate cyclase in particulate fractions of these cells. In the presence of insulin, PGE1 stimulates the reinitiation of DNA synthesis. Both effects (increase in cellular cAMP and stimulation of DNA synthesis) are markedly potentiated by 1-methyl-3-isobutyl xanthine (IBMX) or by 4-(3-butoxy-4 methoxy benzyl)-2-imidazolidine (Ro 20-1724), both of which are potent inhibitors of cyclic nucleotide phosphodiesterase activity. In the presence of 50 microM IBMX, PGE1 caused a dose-dependent increase in cAMP levels and in [3H]thymidine incorporation into acid-insoluble material at concentrations (5-50 ng/ml) that are orders of magnitude lower than those used in previous studies (50 micrograms/ml) to demonstrate growth-inhibitory effects. Thus, the inhibitory effects produced by adding high concentrations of PGE1 on the initiation of DNA synthesis in Swiss 3T3 cells are not mediated by cAMP and should be regarded as nonspecific. In contrast, the mitogenic activity of PGE1 parallels its ability to increase the intracellular levels of cAMP. The findings support the proposition that a sustained increase in the level of this cyclic nucleotide acts as a mitogenic signal for confluent and quiescent Swiss 3T3 cells.  相似文献   

3.
Phorbol-12-myristate- 13-acetate (PMA) has been shown to induce hypertrophy of cardiac myocytes. The prostaglandin endoperoxide H synthase isoform 2 (cyclooxygenase-2, COX-2) has been associated with enhanced growth and/or proliferation of several types of cells. Thus we studied whether PMA induces COX-2 and prostanoid products PGE(2) and PGF(2alpha) in neonatal ventricular myocytes and whether endogenous COX-2 products participate in their growth. In addition, we examined whether PMA affects interleukin-1beta (IL-1beta) stimulation of COX-2 and PGE(2) production. PMA (0.1 micromol/l) stimulated growth, as indicated by a 1.6-fold increase in [(3)H]leucine incorporation. PMA increased COX-2 protein levels 2. 8-fold, PGE(2) 3.7-fold, and PGF(2alpha) 2.9-fold. Inhibition of either p38 kinase or protein kinase C (PKC) prevented PMA-stimulated COX-2. Inhibition of COX-2 with either indomethacin or NS-398 had no effect on PMA-stimulated [(3)H]leucine incorporation. Exogenous administration of PGF(2alpha), but not PGE(2), stimulated protein synthesis. Treatment with IL-1beta (5 ng/ml) increased COX-2 protein levels 42-fold, whereas cotreatment with IL-1beta and PMA stimulated COX-2 protein only 32-fold. IL-1beta did not affect control or PMA-stimulated protein synthesis. These findings indicate that: 1) PMA, acting through PKC and p38 kinase, enhances COX-2 expression, but chronic treatment with PMA partially inhibits IL-1beta stimulation of COX-2; and 2) exogenous PGF(2alpha) is involved in neonatal ventricular myocyte growth but endogenous COX-2 products are not.  相似文献   

4.
Using purified human T lymphocytes stimulated in serum-free media with adhered anti-CD3 + exogenous IL-2, we have shown that elevated [cAMP]i (mimicked by CPT-cAMP or induced by the physiological agonist PGE2) directly inhibits mitogen-induced 1) [3H]thymidine incorporation by PBMC, purified T cells, and isolated CD4+ and CD8+ T cell subpopulations; 2) expression of both high- and low-affinity IL-2 receptors; 3) plasma membrane expression of both p55 and p75 subunits of the IL-2 receptor; and 4) expression of p55 mRNA, but not p75 mRNA. The decrease in p55 mRNA is not due to enhanced mRNA metabolism. We conclude that elevated [cAMP]i, acting directly on T cells, inhibits mitogenesis by decreasing IL-2 receptor expression. We discuss the possible physiological relevance for the multiple stages of T cell activation that are sensitive to elevated [cAMP]i.  相似文献   

5.
The mitogenic effect of extracellular ATP on porcine aortic smooth muscle cells (SMC) was examined. Stimulation of [3H]thymidine incorporation by ATP was dose-dependent; the maximal effect was obtained at 100 microM. ATP acted synergistically with insulin, IGF-1, EGF, PDGF, and various other mitogens. Incorporation of [3H]thymidine was correlated with the fraction of [3H]thymidine-labeled nuclei and changes in cell counts. The stimulation of proliferation was also determined by measurement of cellular DNA using bisbenzamide and by following the increase of mitochondrial dehydrogenase protein. The effect of ATP was not due to hydrolysis to adenosine, which shows synergism with ATP. ATP acted as a competence factor. The mitogenic effect of ATP, but not adenosine, was further increased by lysophosphatidate, phosphatidic acid, or norepinephrine. The inhibitor of adenosine deaminase, EHNA, stimulated the effect of adenosine but not ATP. The adenosine receptor antagonist theophylline depressed adenosine-induced mitogenesis. ADP and the non-hydrolyzable analogue adenosine 5'-[beta, gamma-imido]triphosphate (AMP-PNP) were equally mitogenic. Thus extracellular ATP stimulated mitogenesis of SMC via P2Y purinoceptors. The mechanism of ATP acting as a mitogen in SMC was further explored. Extracellular ATP stimulated the release of [3H]arachidonic acid (AA) and prostaglandin E2 (PGE2) into the medium, and enhanced cAMP accumulation in a dose-dependent fashion similar to ATP-induced [3H]thymidine incorporation. Inhibitors of the arachidonic acid metabolism pathway, quinacrine and indomethacin, partially inhibited the mitogenic effect of ATP but not of adenosine. Pertussis toxin inhibited ATP-stimulated DNA synthesis, AA release, PGE2 formation, and cAMP accumulation. Down-regulation of protein kinase C (PKC) by long-term exposure to phorbol dibutyrate (PDBu) partially prevented stimulation of DNA synthesis and activation of the AA pathway by ATP. The PKC inhibitor, staurosporine, antagonized mitogenesis stimulated by ATP. No synergistic effect was found when PDBu and ATP were added together. Therefore, a dual mechanism, including both arachidonic acid metabolism and PKC, is involved in ATP-mediated mitogenesis in SMC. In addition, ATP acted synergistically with angiotensin II, phospholipase C, serotonin, or carbachol to stimulate DNA synthesis. Finally, the possible physiological significance of ATP as a mitogen in SMC was further studied. The effect of endothelin and heparin, which are released from endothelial cells, on ATP-dependent mitogenesis was investigated. Extracellular ATP acted synergistically with endothelin to stimulate a greater extent of [3H]thymidine incorporation than was seen with PDGF plus endothelin. Heparin, believed to have a regulatory role, partially inhibited the stimulation of DNA synthesis caused both by ATP and PDGF.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
We have previously shown that extracellular ATP acts as a mitogen via protein kinase C (PKC)-dependent and independent pathways (Wang, D., Huang, N., Gonzalez, F.A., and Heppel, L.A. Multiple signal transduction pathways lead to extracellular ATP-stimulated mitogenesis in mammalian cells. I. Involvement of protein kinase C-dependent and independent pathways in the mitogenic response of mammalian cells to extracellular ATP. J. Cell. Physiol., 1991). The present aim was to determine if metabolism of arachidonic acid, resulting in prostaglandin E2 (PGE2) synthesis and elevation of cAMP levels, plays a role in mitogenesis mediated by extracellular ATP. Addition of ATP caused a marked enhancement of cyclic AMP accumulation in 3T3, 3T6, and A431 cells. Aminophylline, an antagonist of the adenosine A2 receptor, had no effect on the accumulation of cyclic AMP elicited by ATP, while it inhibited the action of adenosine. The accumulation of cyclic AMP was concentration dependent, which corresponds to the stimulation of DNA synthesis by ATP. The maximal accumulation was achieved after 45 min, with an initial delay period of about 15 min. That the activation of arachidonic acid metabolism contributed to cyclic AMP accumulation and mitogenesis stimulated by ATP in 3T3, 3T6, and A431 cells was supported by the following observations: (a) extracellular ATP stimulated the release of [3H]arachidonic acid and PGE2 into the medium; (b) inhibition of arachidonic acid release by inhibitors of phospholipase A2 blocked PGE2 production, cyclic AMP accumulation, and DNA synthesis activated by ATP, and this inhibition could be reversed by adding exogenous arachidonic acid; (c) cyclooxygenase inhibitors, such as indomethacin and aspirin, diminished the release of PGE2 and blocked cyclic AMP accumulation as well as [3H]thymidine incorporation in response to ATP; (d) PGE2 was able to restore [3H]thymidine incorporation when added together with ATP in the presence of cyclooxygenase inhibitors; (e) pertussis toxin inhibited ATP-stimulated DNA synthesis in a time- and dose-dependent fashion as well as arachidonic acid release and PGE2 formation. Other evidence for involvement of a pertussis toxin-sensitive G protein(s) in ATP-stimulated DNA synthesis as well as in arachidonic acid release is presented. In A431 cells, the enhancement of arachidonic acid and cyclic AMP accumulation by ATP was partially blocked by PKC down-regulation, implying that the activation of PKC may represent an additional pathway in ATP-stimulated metabolism of arachidonic acid. In all of these studies, ADP and AMP-PNP, but not adenosine, were as active as ATP.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
Bradykinin stimulates [3H]thymidine incorporation and DNA synthesis in resting, serum-deprived NIL8 hamster cells. The ED50 for this stimulation is 4.52 +/- 2.91 nM. Other kinin peptides including lys-bradykinin (kallidin) and met-lys-bradykinin also stimulate [3H]thymidine incorporation in the NIL8 cells, whereas desarg9-bradykinin is without effect, suggesting action of the kinin peptides through type B2 receptors. Bradykinin also stimulates DNA synthesis in IMR-90 human fibroblasts; however, this effect is observed only in the presence of indomethacin, which blocks prostaglandin synthesis. These results suggest that prostaglandins act as negative modulators of the growth-stimulatory effects of bradykinin in the fibroblasts. This conclusion is supported by the observation that exogenously added PGE1, PGE2, PGA1, PGA2, PGB1, and PGB2 strongly inhibit [3H]thymidine incorporation in the human fibroblasts. The direct effect of bradykinin observed in the NIL8 cells may be attributable to the relative resistance of these cells to growth inhibition by prostaglandins.  相似文献   

8.
Activation of human monocytes results in the production of interstitial collagenase through a prostaglandin E2 (PGE2)-cAMP-dependent pathway. Inasmuch as interleukin 4 (IL-4) has been shown to inhibit PGE2 synthesis by monocytes, we examined the effect of IL-4 on the production of human monocyte interstitial collagenase. Additionally, we also assessed the effect of IL-4 on the production of 92-kDa type IV collagenase/gelatinase and tissue inhibitor of metalloproteinase-1 (TIMP-1) by monocytes. The inhibition of PGE2 synthesis by IL-4 resulted in decreased interstitial collagenase protein and activity that could be restored by exogenous PGE2 or dibutyryl cyclic AMP (Bt2cAMP). IL-4 also suppressed ConA-stimulated 92-kDa type IV collagenase/gelatinase protein and zymogram enzyme activity that could be reversed by exogenous PGE2 or Bt2cAMP. Moreover, indomethacin suppressed the ConA-induced production of 92-kDa type IV collagenase/gelatinase. These data demonstrate that, like monocyte interstitial collagenase, the conA-inducible monocyte 92-kDa type IV collagenase/gelatinase is regulated through a PGE2-mediated cAMP-dependent pathway. In contrast to ConA stimulation, unstimulated monocytes released low levels of 92-kDa type IV collagenase/gelatinase that were not affected by IL-4, PGE2, or Bt2cAMP, indicating that basal production of this enzyme is PGE2-cAMP independent. IL-4 inhibition of both collagenases was not a result of increased TIMP expression since Western analysis of 28.5-kDa TIMP-1 revealed that IL-4 did not alter the increased TIMP-1 protein in response to ConA. These data indicate that IL-4 may function in natural host regulation of connective tissue damage by monocytes.  相似文献   

9.
The proliferative capacity of PHA-stimulated lymphocytes following removal of PHA from the cultures was investigated. Lymphocytes were incubated with different PHA concentrations for 3 or 24 h and were then cultured in fresh medium with or without PHA in the original concentration. Cell proliferation was measured by incorporation of 3H-TdR. The effect of removing PHA was found to vary with the PHA concentration used for stimulation. Thus removal of PHA at 3 and 24 h from cells stimulated with half the optimal and at 3 h from cells stimulated with optimal PHA concentrations inhibited thymidine incorporation almost completely. Removal at 24 h from the latter cells resulted in a moderately decreased thymidine incorporation, whereas no decrease was seen after the removal of PHA from cells stimulated with twice the optimal concentration. When the cells were stimulated with very high PHA concentrations (20 × optimal), removal of PHA even resulted in an increased thymidine incorporation, a phenomenon that most probably has to do with the utilization of exogenous thymidine being inhibited by high PHA concentrations.The decreased thymidine incorporation after removal of low PHA concentrations was due to a reduction in the number of cells entering the proliferation cycle as well as to a decreased multiplication of cells already in DNA synthesis. This shows that PHA stimulates the cells even after they have initiated DNA synthesis. Various explanations for the results are discussed.  相似文献   

10.
Vasoactive intestinal peptide synergistically stimulated initiation of DNA synthesis in Swiss 3T3 cells. The peptide stimulated [3H]thymidine incorporation in the presence of insulin and either forskolin or an inhibitor of cAMP phosphodiesterase in a concentration-dependent manner. Half-maximal effect was obtained at 1 nM. At mitogenic concentrations, VIP stimulated a marked accumulation (eightfold) of cAMP. In contrast to other growth-promoting neuropeptides, VIP did not induce an increase in cytosolic free Ca2+ or an activation of protein kinase C. We conclude that neuropeptides can modulate long-term cell proliferation through multiple signaling pathways.  相似文献   

11.
The effects of interleukin (IL)-1 alpha, IL-1 beta and TNF alpha on prostaglandin-E2 synthesis in Madin-Darby canine kidney (MDCK) cells were investigated. IL-1 beta time- and dose-dependently stimulated prostaglandin-E2 synthesis. While TNF alpha produced a comparatively small but significant stimulation of PGE2 release, coincubation of IL-1 beta with TNF alpha produced a marked synergistic stimulation of PGE2 release. The effect of IL-1 beta and of IL-1 beta and TNF alpha was apparent as early as after 2 h of incubation. The enhanced PGE2 synthesis was inhibited by indomethacin as well as actinomycin D, while cycloheximide surprisingly potentiated PGE2 synthesis in response to both IL-1 beta and TNF alpha. IL-1 alpha alone was ineffective in stimulating a significant release of PGE2 at concentrations as high as 10 nM. However, it also showed a marked synergistic interaction with TNF alpha in stimulating PGE2 release.  相似文献   

12.
The effect of cAMP on prostaglandin production may depend on cell types. To clarify the relationship between PG and cAMP, we examined arachidonate's effects on PG synthesis and intracellular cAMP accumulation in monolayers of rat gastric mucosal cells. These cells produced PGE2, PGI2 and thromboxaneA2 (TXA2) in amounts of 316 +/- 18, 100 +/- 7 and 30 +/- 5 pg per 10(5) cells in 10 min, respectively, in response to 10 microM arachidonic acid (AA). The production of these PG, however, leveled off subsequently. Cells initially exposed to AA responded poorly to a subsequent stimulation by AA. AA simultaneously stimulated intracellular cAMP accumulation; this stimulatory effect on cAMP production was abolished by the pretreatment with indomethacin. Nevertheless, the pretreatments with dibutyryl cAMP (0.1-5 mM) did not alter the amount of subsequent AA-induced PGE2 production. Furthermore, the preincubation with 1mM isobutyl methyl xanthine also failed to affect PGE2 synthesis, while it increased intracellular cAMP accumulation. Our studies suggest AA stimulates intracellular cAMP formation in cultured gastric mucosal cells, linked with conversion of AA to cyclooxygenase metabolites, AA-induced PG production is limited in these cells, and it seems, however, unlikely that intracellular cAMP modulates AA metabolism to PG.  相似文献   

13.
The divalent cation ionophore, A23187, at a concentration of 0.25 microgram/ml, enhanced influx of Ca2+, activity of ornithine decarboxylase and incorporation of [3H]thymidine into DNA of guinea pig lymphocytes. Combined treatment of cells with A23187 and dibutyryladenosine 3',5'-monophosphate (Bt2cAMP) augmented these three events. A23187 at a concentration of 0.06 microgram/ml was insufficient for induction of ornithine decarboxylase stimulated neither Ca2+ influx nor [3H]thymidine incorporation, but stimulated Ca2+ efflux. A23187 (0.06 microgram/ml) in combination with Bt2cAMP caused a marked induction of ornithine decarboxylase and stimulation of [3H]thymidine incorporation into DNA. When the time of Bt2cAMP addition was delayed after A23187, the stimulation of ornithine decarboxylase activity decreased. Washout of Bt2cAMP from cell culture earlier than 4 h of incubation caused a reduction in the stimulatory effect of Bt2cAMP. These results suggest that raising concentrations of cytoplasmic Ca2+ and cellular cAMP are important to some initial events leading to induction of ornithine decarboxylase and these biochemical changes are obligatory sequential steps for stimulation of DNA synthesis.  相似文献   

14.
15.
16.
The effects of insulin and secretory agonists on amino acid incorporation into submandibular gland proteins were studied using isolated acinar cell aggregates. Insulin stimulated the incorporation of 3H-leucine into TCA-precipitable proteins in a rapid, dose-dependent manner (half-maximal response at 1 nM). Isoproterenol, a beta-adrenergic agonist, also stimulated amino acid incorporation, and this effect was mimicked by both dibutyryl cAMP and IBMX, a phosphodiesterase inhibitor. Although insulin further stimulated incorporation in the presence of isoproterenol and IBMX, no additional increase in the rate of synthesis was observed after stimulation by dibutyryl cAMP. High concentrations of carbamylcholine, a cholinergic agonist, inhibited both basal and insulin-stimulated incorporation. At low concentrations, however, carbamylcholine stimulated synthesis, and the effects of insulin and carbamylcholine were additive. A23187, a calcium ionophore, also inhibited 3H-leucine incorporation and insulin stimulation, but in contrast to carbamylcholine, low concentrations of A23187 neither inhibited nor enhanced the rate of synthesis. Thus, protein synthesis in the rat submandibular gland is regulated by both insulin and neurotransmitters. Whereas beta-adrenergic stimulation appears to be mediated through cAMP, the intracellular signals mediating the actions of insulin and cholinergic agonists remain to be elucidated.  相似文献   

17.
Prostaglandin E1 (PGE1) at 1 nM inhibits arginine-vasopressin (AVP)-induced water reabsorption in the rabbit cortical collecting tubule (RCCT), while 100 nM PGE1, by itself, stimulates water reabsorption (Grantham, J. J., and Orloff, J. (1968) J. Clin. Invest. 47, 1154-1161). To investigate the basis for these two responses, we measured the effects of prostaglandins on cAMP metabolism in purified RCCT cells. In freshly isolated cells, PGE2, PGE1, and 16,16-dimethyl-PGE2 acting at high concentrations (0.1-10 microM) stimulated cAMP accumulation; however, one PGE2 analog, sulprostone (16-phenoxy-17,18,19,20-tetranor-PGE2 methylsulfonilamide), failed to stimulate cAMP accumulation or to antagonize PGE2-induced cAMP formation; PGD2, PGF2 alpha, and a PGI2 analog, carbacyclin (6-carbaprostaglandin I2), also failed to stimulate cAMP synthesis. These results suggest that there is a PGE-specific stimulatory receptor in RCCT cells which mediates activation of adenylate cyclase. Occupancy of this receptor would be anticipated to cause water reabsorption by the collecting tubule. At lower concentrations (0.1-100 nM) PGE2, PGE1, 16,16-dimethyl-PGE2, and, in addition, sulprostone inhibited AVP-induced cAMP accumulation by fresh RCCT cells in the presence of cAMP phosphodiesterase inhibitors. Pertussis toxin pretreatment of RCCT cells blocked the ability of both PGE2 and sulprostone to inhibit AVP-induced cAMP accumulation. In membranes prepared from RCCT cells, sulprostone prevented stimulation of adenylate cyclase by AVP. These results suggest that E-series prostaglandins (including sulprostone) can act through an inhibitory PGE receptor(s) coupled to the inhibitory guanine nucleotide regulatory protein, Gi, to block AVP-induced cAMP synthesis by RCCT cells. Occupancy of this receptor would be expected to cause inhibition of AVP-induced water reabsorption in the intact tubule. Curiously, after RCCT cells were cultured for 5-7 days, PGE2 no longer inhibited AVP-induced cAMP accumulation, but PGE2 by itself could still stimulate cAMP accumulation. In contrast to PGE2, epinephrine acting via an alpha 2-adrenergic, Gi-linked mechanism did block AVP-induced cAMP formation by cultured RCCT cells. This implies that some component of the inhibitory PGE response other than Gi is lost when RCCT cells are cultured.  相似文献   

18.
The aim of this study was to define metabolic signaling pathways that mediate DNA synthesis and cell cycle progression in adult rodent islets to devise strategies to enhance survival, growth, and proliferation. Since previous studies indicated that glucose-stimulated activation of mammalian target of rapamycin (mTOR) leads to [3H]thymidine incorporation and that mTOR activation is mediated, in part, through the K(ATP) channel and changes in cytosolic Ca2+, we determined whether glyburide, an inhibitor of K(ATP) channels that stimulates Ca2+ influx, modulates [3H]thymidine incorporation. Glyburide (10-100 nm) at basal glucose stimulated [3H]thymidine incorporation to the same magnitude as elevated glucose and further enhanced the ability of elevated glucose to increase [3H]thymidine incorporation. Diazoxide (250 microm), an activator of KATP channels, paradoxically potentiated glucose-stimulated [3H]thymidine incorporation 2-4-fold above elevated glucose alone. Cell cycle analysis demonstrated that chronic exposure of islets to basal glucose resulted in a typical cell cycle progression pattern that is consistent with a low level of proliferation. In contrast, chronic exposure to elevated glucose or glyburide resulted in progression from G0/G1 to an accumulation in S phase and a reduction in G2/M phase. Rapamycin (100 nm) resulted in an approximately 62% reduction of S phase accumulation. The enhanced [3H]thymidine incorporation with chronic elevated glucose or glyburide therefore appears to be associated with S phase accumulation. Since diazoxide significantly enhanced [3H]thymidine incorporation without altering S phase accumulation under chronic elevated glucose, this increase in DNA synthesis also appears to be primarily related to an arrest in S phase and not cell proliferation.  相似文献   

19.
Human rTNF-alpha stimulates the metabolism of murine peritoneal macrophages as demonstrated by an increased consumption of arginine and an increased release of L-ornithine. This TNF-mediated effect is augmented by several substances that raise the intracellular concentration of cAMP, including PGE2, cholera toxin, and dibutyryl-cAMP. TNF also stimulates the endogenous production of PGE2 in cultures of peritoneal macrophages. The addition of the cyclo-oxygenase inhibitor, indomethacin, suppresses the TNF-mediated metabolic activation of macrophages, and this suppressive effect of indomethacin is overcome if exogenous PGE2 or cholera toxin is added to the culture. Taken together, the experiments indicate that the TNF-induced production of PGE2 and the PGE2-induced increase of the intracellular cAMP concentration are essential elements of an auto-regulatory loop that controls the magnitude of the TNF-mediated effect in the macrophage.  相似文献   

20.
The effect of prostaglandin E2 (PGE2) on osteoblastic cell proliferation was investigated using osteoblastic clone MC3T3-E1 cells cultured in serum-free medium. PGE2 at 2 micrograms/ml increased the number of the cells by 2 days after its addition. PGE2 raised the level of DNA synthesis in a dose-related fashion after a constant lag time, the maximal effect being at 2-10 micrograms/ml and the level about fourfold over that of the control at 36 hr after its addition. However, at low doses (below 0.2 microgram/ml), PGE2 rather depressed DNA synthesis. Isobutyl methylxanthine counteracted the stimulation of DNA synthesis by PGE2, and forskolin depressed the synthesis, which was inversely correlated with increasing intracellular cAMP content. These results indicate that an increase in cAMP content inhibits DNA synthesis. In addition, 2',5'-dideoxyadenosine did not negate the stimulatory effect of PGE2 on DNA synthesis, suggesting that PGE2 increases DNA synthesis, probably via a pathway different from the adenylate cyclase/cAMP system. Moreover, at a high dose, PGE2 stimulated both the production and degradation of cAMP; the elevation of cAMP content was rapidly depressed by the stimulated degradation system. Consequently, the stimulatory effect of PGE2 on DNA synthesis would be released from the inhibition by cAMP, resulting in an increase in DNA synthesis. Taken together with data from our previous reports, these results indicate that PGE2 enhances both the proliferation and differentiation of osteoblastic cells in vitro, which are probably mediated by two different second messengers dependent on the concentration of PGE2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号