首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 165 毫秒
1.
One broad-leaved pioneer tree, Alnus formosana, two broad-leaved understory shrubs, Ardisia crenata and Ardisia cornudentata, and four ferns with different light adaptation capabilities (ranked from high to low, Pyrrosia lingus, Asplenium antiquum, Diplazium donianum, Archangiopteris somai) were used to elucidate the light responses of photosynthetic rate and electron transport rate (ETR). Pot-grown materials received up to 3 levels of light intensity, i.e., 100%, 50% and 10% sunlight. Both gas exchange and chlorophyll (Chl) fluorescence were measured simultaneously by an equipment under constant temperature and 7 levels (0?C2,000 ??mol m?2 s?1) of photosynthetic photon flux density (PPFD). Plants adapted to-or acclimated to high light always had higher light-saturation point and maximal photosynthetic rate. Even materials had a broad range of photosynthetic capacity [maximal photosynthetic rate ranging from 2 to 23 ??mol(CO2) m?2 s?1], the ratio of ETR to gross photosynthetic rate (P G) was close for A. formosana and the 4 fern species when measured under constant temperature, but the PPFD varied. In addition, P. lingus and A. formosana grown under 100% sunlight and measured at different seasonal temperatures (15, 20, 25, and 30°C) showed increased ETR/P G ratio with increasing temperature and could be fitted by first- and second-order equations, respectively. With this equation, estimated and measured P G were closely correlated (r 2 = 0.916 and r 2 = 0.964 for P. lingus and A. formosana, respectively, p<0.001). These equations contain only the 2 easily obtained dynamic indicators, ETR and leaf temperature. Therefore, for some species with near ETR/P G ratio in differential levels of PPFD, these equations could be used to simulate dynamic variation of leaf scale photosynthetic rate under different temperature and PPFD conditions.  相似文献   

2.
The effects of elevated growth temperature (ambient + 3.5°C) and CO2 (700 μmol mol−1) on leaf photosynthesis, pigments and chlorophyll fluorescence of a boreal perennial grass (Phalaris arundinacea L.) under different water regimes (well watered to water shortage) were investigated. Layer-specific measurements were conducted on the top (younger leaf) and low (older leaf) canopy positions of the plants after anthesis. During the early development stages, elevated temperature enhanced the maximum rate of photosynthesis (P max) of the top layer leaves and the aboveground biomass, which resulted in earlier senescence and lower photosynthesis and biomass at the later periods. At the stage of plant maturity, the content of chlorophyll (Chl), leaf nitrogen (NL), and light response of effective photochemical efficiency (ΦPSII) and electron transport rate (ETR) was significantly lower under elevated temperature than ambient temperature in leaves at both layers. CO2 enrichment enhanced the photosynthesis but led to a decline of NL and Chl content, as well as lower fluorescence parameters of ΦPSII and ETR in leaves at both layers. In addition, the down-regulation by CO2 elevation was significant at the low canopy position. Regardless of climate treatment, the water shortage had a strongly negative effect on the photosynthesis, biomass growth, and fluorescence parameters, particularly in the leaves from the low canopy position. Elevated temperature exacerbated the impact of water shortage, while CO2 enrichment slightly alleviated the drought-induced adverse effects on P max. We suggest that the light response of ΦPSII and ETR, being more sensitive to leaf-age classes, reflect the photosynthetic responses to climatic treatments and drought stress better than the fluorescence parameters under dark adaptation.  相似文献   

3.
Leaf chloroplast ultrastructure and photosynthetic properties of a natural, yellow-green leaf mutant (ygl1) of rice were characterized. Our results showed that chloroplast development was significantly delayed in the mutant leaves compared with the wild-type rice (WT). As leaves matured, more grana stacks formed concurrently with increasing leaf chlorophyll (Chl) content. Except for the lower intercellular CO2 concentration, the ygl1 plants had a higher leaf net photosynthetic rate, stomatal conductance, and transpiration rate than those of the WT plants. Under equal amounts of Chl, the excitation energy of PSI and PSII was much stronger in the mutant than that in the WT. The ygl1 plants showed higher nonphotochemical quenching and lower photochemical quenching. They also exhibited higher actual photochemical efficiency of PSII with a higher electron transport rate. Under the light of 200 μmol(photon) m?2 s?1, the ygl1 mutant showed lesser deepoxidation of violaxanthin in the xanthophyll cycle than WT, but it increased substantially under strong light conditions. In conclusion, the photosynthetic machinery of the ygl1 remained stable during leaf development. The plants were less sensitive to photoinhibition compared with WT due to the active xanthophyll cycle. The ygl1 plants were efficient in both light harvesting and conversion of solar energy.  相似文献   

4.
Winter wheat is a grass species widely planted in northern and central China, where the increase of aerosols, air pollutants and population density are causing significant reduction in solar irradiance. In order to investigate the adaptation of winter wheat (Triticum aestivum L., cv. Yangmai 13) to low irradiance conditions occurring in the downstream plain of the Yangtze River (China), plants were subjected to four solar irradiance treatments (100%, 60%, 40%, and 20% of environmental incident solar irradiance). Significant increases in chlorophyll (Chl) and xanthophyll (Xan) pigments, and decreases in Chl a/b and Xan/Chl ratios were observed in plants under low light. Light-response curves showed higher net photosynthetic rates (P N) in fully irradiated plants, that also showed a higher light-compensation point. Shaded plants maintained high values of minimal fluorescence of dark-adapted state (Fo) and maximum quantum efficiency of PSII photochemistry (Fv/Fm) that assess a lower degree of photoinhibition under low light. Reduced irradiance caused decreases in effective quantum yield of PSII photochemistry (ΦPSII), electron transport rate (ETR), and nonphotochemical quenching coefficient (qN), and the promotion of excitation pressure of PSII (1 − qP). The activities of the antioxidant enzymes superoxide dismutase and peroxidase were high under reduced light whereas no light-dependent changes in catalase activity were observed. Thiobarbituric acid reactive species content and electrolyte leakage decreased under shaded plants that showed a lower photooxidative damage. The results suggest that winter wheat cv. Yangmai 13 is able to maintain a high photosynthetic efficiency under reduced solar irradiance and acclimates well to shading tolerance. The photosynthetic and antioxidant responses of winter wheat to low light levels could be important for winter wheat cultivation and productivity.  相似文献   

5.
Previous evidence has demonstrated that vertical leaves of Styrax camporum, a woody shrub from the Brazilian savanna, have a higher net photosynthetic rate (P N) compared with horizontal leaves, and that it is detected only if gas exchange is measured with light interception by both leaf surfaces. In the present study, leaf temperature (T leaf), gas exchange and chlorophyll (Chl) a fluorescence with light interception on adaxial and also on abaxial surfaces of vertical and horizontal mature fully-expanded leaves subjected to water deficit (WD) were measured. Similar gas-exchange and fluorescence values were found when the leaves were measured with light interception on the respective surfaces of horizontal and vertical leaves. WD reduced P N values measured with light interception on leaf surfaces of both leaf types, but the effective quantum yield of PSII (ΦPSII) and the apparent electron transport rate (ETR) were reduced only when the leaves were measured with light interception on the adaxial surface. WD did not decrease the maximum quantum yield of PSII (Fv/Fm) or increase T leaf, even at the peak of WD stress. Vertical leaf orientation in S. camporum is not related to leaf heat avoidance. In addition, the similar P N values and the lack of higher values of ΦPSII and ETR in vertical compared with horizontal leaves measured with light interception by each of the leaf surfaces suggests that the vertical leaf position is not related to photoprotection in this species, even when subjected to drought conditions. The exclusion of this photoprotective role could raise the alternative hypothesis that diverse leaf angles sustain whole plant light interception efficiency increased in this species.  相似文献   

6.
The chlorophyll (Chl) fluorescence induction kinetics, net photosynthetic CO2 fixation rates P N, and composition of photosynthetic pigments of differently light exposed leaves of several trees were comparatively measured to determine the differences in photosynthetic activity and pigment adaptation of leaves. The functional measurements were carried out with sun, half-shade and shade leaves of seven different trees species. These were: Acer platanoides L., Ginkgo biloba L., Fagus sylvatica L., Platanus x acerifolia Willd., Populus nigra L., Quercus robur L., Tilia cordata Mill. In three cases (beech, ginkgo, and oak), we compared the Chl fluorescence kinetics and photosynthetic rates of blue-shade leaves of the north tree crown receiving only blue sky light but no direct sunlight with that of sun leaves. In these cases, we also determined in detail the pigment composition of all four leaf types. In addition, we determined the quantum irradiance and spectral irradiance of direct sunlight, blue skylight as well as the irradiance in half shade and full shade. The results indicate that sun leaves possess significantly higher mean values for the net CO2 fixation rates P N (7.8–10.7 μmol CO2 m?2 s?1 leaf area) and the Chl fluorescence ratio R Fd (3.85–4.46) as compared to shade leaves (mean P N of 2.6–3.8 μmol CO2 m?2 s?1 leaf area.; mean R Fd of 1.94–2.56). Sun leaves also exhibit higher mean values for the pigment ratio Chl a/b (3.14–3.31) and considerably lower values for the weight ratio total chlorophylls to total carotenoids, (a + b)/(x + c), (4.07–4.25) as compared to shade leaves (Chl a/b 2.62–2.72) and (a + b)/(x + c) of 5.18–5.54. Blue-shade and half-shade leaves have an intermediate position between sun and shade leaves in all investigated parameters including the ratio F v/F o (maximum quantum yield of PS2 photochemistry) and are significantly different from sun and shade leaves but could not be differentiated from each other. The mean values of the Chl fluorescence decrease ratio R Fd of blue-shade and half-shade leaves fit well into the strong linear correlation with the net photosynthetic rates P N of sun and shade leaves, thus unequivocally indicating that the determination of the Chl fluorescence decrease ratio R Fd is a fast and indirect measurement of the photosynthetic activity of leaves. The investigations clearly demonstrate that the photosynthetic capacity and pigment composition of leaves and chloroplasts strongly depend on the amounts and quality of light received by the leaves.  相似文献   

7.
The effects of shade on the growth, leaf photosynthetic characteristics, and chlorophyll (Chl) fluorescence parameters of Lycoris radiata var. radiata were determined under differing irradiances (15, 65, and 100% of full irradiance) within pots. The HI plants exhibited a typical decline in net photosynthetic rate (P N) during midday, which was not observed in MI- and LI plants. This indicated a possible photoinhibition in HI plants as the ratio of variable to maximum fluorescence (Fv/Fm) value was higher and the minimal fluorescence (F0) was lower in the, and LI plants. Diurnal patterns of stomatal conductance (g s) and transpiration rate (E) were remarkably similar to those of P N at each shade treatments, and the intercellular CO2 concentration (C i) had the opposite change trend. Under both shading conditions, the light saturation point, light compensation point and photon-saturated photosynthetic rate (P max) became lower than those under full sunlight, and it was the opposite for the apparent quantum yield (AQY). The higher the level of shade, the lower the integrated daytime carbon gain, stomatal and epidermis cell densities, specific leaf mass (SLM), bulb mass ratio (BMR), leaf thickness, and Chl a/b ratio. In contrast, contents of Chls per dry mass (DM), leaf area ratio (LAR), leaf mass ratio (LMR), leaf length, leaf area and total leaf area per plant increased under the same shade levels to promote photon absorption and to compensate for the lower radiant energy. Therefore, when the integrated daytime carbon gain, leaf area and total leaf area per plant, which are the main factors determining the productivity of L. radiata var. radiata plant, were taken into account together, this species may be cultivated at about 60∼70% of ambient irradiance to promote its growth.  相似文献   

8.
Sexual dimorphisms of dioecious plants are important in controlling and maintaining sex ratios under changing climate environments. Yet, little is known about sex-specific responses to elevated CO2 with soil nitrogen (N) deposition. To investigate sex-related physiological and biochemical responses to elevated CO2 with N deposition, Populus cathayana Rehd. was employed as a model species. The cuttings were subjected to two CO2 regimes (350 and 700???mol?mol?1) with two N levels (0 and 5?g?N?m?2?year?1). Our results showed that elevated CO2 and N deposition separately increased the total number of leaves, leaf area (LA), leaf mass, net photosynthetic rate (P n), light saturated photosynthetic rate (P max), chlorophyll a (Chl a), and chlorophyll a to chlorophyll b ratio (Chl a/b) in both males and females of P. cathayana. However, the effects on LA, leaf mass, P n, P max, Chl a and Chl a/b were weakened under the combined treatment of elevated CO2 and N deposition. Males had higher leaf mass, P n, P max, apparent quantum yield (??), carboxylation efficiency (CE), Chl a, Chl a/b, leaf N, and root carbon to N ratio (C/N) than did females under elevated CO2 with N deposition. In contrast to males, females had significantly higher levels of soluble sugars in leaves and greater starch accumulation in roots and stems under the same condition. The results of the present work imply that P. cathayana females are more responsive and suffer from greater negative effects on growth and photosynthetic capacity than do males when grown under elevated CO2 with soil N deposition.  相似文献   

9.
Changes in photosynthetic pigment ratios showed that the Chlorophyll d-dominated oxyphotobacterium Acaryochloris marina was able to photoacclimate to different light regimes. Chl d per cell were higher in cultures grown under low irradiance and red or green light compared to those found when grown under high white light, but phycocyanin/Chl d and carotenoid/Chl d indices under the corresponding conditions were lower. Chl a, considered an accessory pigment in this organism, decreased respective to Chl d in low irradiance and low intensity non-white light sources. Blue diode PAM (Pulse Amplitude Modulation) fluorometry was able to be used to measure photosynthesis in Acaryochloris. Light response curves for Acaryochloris were created using both PAM and O2 electrode. A linear relationship was found between electron transport rate (ETR), measured using a PAM fluorometer, and oxygen evolution (net and gross photosynthesis). Gross photosynthesis and ETR were directly proportional to one another. The optimum light for white light (quartz halogen) was about 206 ± 51 μmol m− 2 s− 1 (PAR) (Photosynthetically Active Radiation), whereas for red light (red diodes) the optimum light was lower (109 ± 27 μmol m− 2 s− 1 (PAR)). The maximum mean gross photosynthetic rate of Acaryochloris was 73 ± 7 μmol mg Chl d− 1 h− 1. The gross photosynthesis/respiration ratio (Pg/R) of Acaryochloris under optimum conditions was about 4.02 ± 1.69. The implications of our findings will be discussed in relation to how photosynthesis is regulated in Acaryochloris.  相似文献   

10.
Seedlings of eight forest maple (Acer L.) species were grown outdoors through a full season under two irradiation treatments: (a) “gap edge” with a photosynthetic photon flux density of 30 μmol m-2 s-1 and a red:far-red ratio of 0.55, and (b) “gap centre” with 400 μmol m-2 s-1 and a red:far-red ratio of 1.12. Area-based leaf nitrogen concentration was greater in gap centre-grown seedlings, whereas, except for A. saccharum, area-based chlorophyll (Chl) (a+b) was higher in gap edge-grown plants. There was also a significantly lower Chl a/b ratio in gap edge-grown plants. Maximum photosynthetic rate (P max ) was 60 % higher in the gap-centre treatment. These results are consistent with the functional expectation that shade-acclimated plants will increase their radiant-energy harvesting capacity as a result of limited photon input while gap-acclimated plants will operate more efficiently under bright irradiance by increasing their carboxylation capacity. This inverse relationship between the capacity of the light-harvesting component and the carboxylation component is, however, only partially supported by Chl fluorescence measurements of intact leaves. Compared to gap centre-grown plants, the lower total fluorescence quenching in gap edge-grown plants indicated a lower carboxylation capacity that was in accord with the observed P max . However, edge-grown seedlings did not show the expected improvement in light-harvesting efficiency and reduction in electron transport of photosystem 2 inferred from their marginally greater t1/2 and lower Fv/Fm, respectively. Hence while maples acclimated to different irradiation levels by adjusting leaf N and Chl contents, they showed limited acclimation potential at the photosystem level. Variations in the leaf traits examined had only minor effect on low irradiance photosynthesis and sunfleck utilization. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
为了解竹柏(Podocarpus nagi)的光合特性,以3 a生全绿叶和花叶竹柏为材料,测定其光合色素含量和气体交换参数。结果表明,全绿叶竹柏叶片的叶绿素a、叶绿素b、类胡萝卜素、叶绿素a+b、叶绿素a/b和叶绿素a+b/类胡萝卜素均显著高于花叶竹柏;全绿叶竹柏叶片的初始量子效率、最大光合速率和暗呼吸速率均显著高于花叶,而光饱和点和光补偿点均显著低于花叶;全绿叶竹柏叶片的初始羧化效率、光合速率、CO2饱和点和光呼吸速率均高于花叶,而CO2补偿点低于花叶。2种颜色叶片的气孔导度、蒸腾速率和水分利用效率均随着光合有效辐射的增大而增大,且均表现为全绿叶花叶,而胞间CO2浓度则相反,表现为花叶全绿叶。因此,全绿叶竹柏利用弱光的能力强于花叶竹柏,而花叶竹柏利用强光的能力更强,在园林绿化配置中,可根据2种颜色叶片的光合特性合理配置。  相似文献   

12.
In order to investigate the effects of low irradiation (LI) on cucumber (Cucumis sativus L. cv. Jinyou 35) during a ripening stage, our experiment was carried out in a climate chamber. Two levels of PAR were set for plants: normal irradiation [NI, 600 μmol(photon) m?2 s?1] and low irradiation [LI, 100 μmol(photon) m?2 s?1], respectively. The experiments lasted for 9 d; then both groups of plants were transferred under NI to recover for 16 d. The plants showed severe chlorosis after the LI treatment. Chlorophyll (Chl) a, initial slope, photosynthetic rate at saturating irradiation (Pmax), light saturation point, maximal photochemical efficiency of PSII (Fv/Fm), electron transport rate of PSII (ETR), soluble protein content, and catalase (CAT) activity in cucumber leaves decreased under LI stress, while Chl b, carotenoids, light compensation point, nonphotochemical quenching (qN), superoxide dismutase (SOD), and malondialdehyde (MDA) exhibited an increasing trend under LI. After 16 d of recovery, values of Pmax, Fv/Fm, ETR, qN, SOD, CAT, MDA, and soluble protein were close to those of the control after one, three, and five days of the LI treatment, while those kept under LI for 7 and 9 d could not return to the control level. Therefore, 7 d of LI stress was a meteorological disaster index for LI in cucumber at the fruit stage.  相似文献   

13.
A greenhouse experiment was conducted to examine the effect of foliar application of triacontanol (TRIA) on two cultivars (cv. S-24 and MH-97) of wheat (Triticum aestivum L.) at different growth stages. Plants were grown in full strength Hoagland’s nutrient solution under salt stress (150 mM NaCl) or control (0 mM NaCl) conditions. Three TRIA concentrations (0, 10, and 20 μM) were sprayed over leaves at three different growth stages, i.e. vegetative (V), boot (B), and vegetative + boot (VB) stages (two sprays on same plants, i.e., the first at 30-d-old plants and the second 78-d-old plants). Salt stress decreased significantly growth, net photosynthetic rate (P N), transpiration rate (E), chlorophyll contents (Chl a and b), and electron transport rate (ETR), while membrane permeability increased in both wheat cultivars. Stomatal conductance (g s) decreased only in salt-sensitive cv. MH-97 under saline conditions. Foliar application of TRIA at different growth stages enhanced significantly the growth, P N, g s, Chl a and b contents, and ETR, while membrane permeability was reduced in both cultivars under salt stress. Of various growth stages, foliar-applied TRIA was comparatively more effective when it was applied at V and VB stages. Overall, 10 μM TRIA concentration was the most efficient in reducing negative effects of salinity stress in both wheat cultivars. The cv. S-24 showed the better growth and ETR, while cv. MH-97 exhibited higher nonphotochemical quenching.  相似文献   

14.
We aimed to find out relations among nonphotochemical quenching (NPQ), gross photosynthetic rate (P G), and photoinhibition during photosynthetic light induction in three woody species (one pioneer tree and two understory shrubs) and four ferns adapted to different light regimes. Pot-grown plants received 100% and/or 10% sunlight according to their light-adaptation capabilities. After at least four months of light acclimation, CO2 exchange and chlorophyll fluorescence were measured simultaneously in the laboratory. We found that during light induction the formation and relaxation of the transient NPQ was closely related to light intensity, light-adaption capability of species, and P G. NPQ with all treatments increased rapidly within the first 1–2 min of the light induction. Thereafter, only species with high P G and electron transport rate (ETR), i.e., one pioneer tree and one mild shade-adapted fern, showed NPQ relaxing rapidly to a low steady-state level within 6–8 min under PPFD of 100 μmol(photon) m?2 s?1 and ambient CO2 concentration. Leaves with low P Gand ETR, regardless of species characteristics or inhibition by low CO2 concentration, showed slow or none NPQ relaxation up to 20 min after the start of low light induction. In contrast, NPQ increased slowly to a steady state (one pioneer tree) or it did not reach the steady state (the others) from 2 to 30 min under PPFD of 2,000 μmol m?2 s?1. Under high excess of light energy, species adapted to or plants acclimated to high light exhibited high NPQ at the initial 1 or 2 min, and showed low photoinhibition after 30 min of light induction. The value of fastest-developing NPQ can be quickly and easily obtained and might be useful for physiological studies.  相似文献   

15.
C. Xu  Y. Yin  R. Cai  P. Wang  Y. Ni  J. Guo  E. Chen  T. Cai  Z. Cui  T. Liu  D. Yang  Z. Wang 《Photosynthetica》2013,51(1):139-150
In a field experiment, two winter wheat (Triticum aestivum L.) cultivars, Tainong 18 (a large-spike cultivar) and Jinan 17 (a multiple-spike cultivar), were treated with 78% (S1), 50% (S2), and 10% (S3) of full sunshine (S0, control) from anthesis to maturity to determine the responses of photosynthetic characteristics and antioxidative enzyme activities in a flag leaf. Compared with S0 treatment, the chlorophyll (Chl) content and maximal efficiency of photosystem II (PSII) photochemistry (Fv/Fm) of flag leaves were enhanced in treatments S1 and S2. From 0 to 7 d post flowering, the Chl content and Fv/Fm in S3 were also higher than those in S0, but significantly lower than those in controls, respectively. With the increase of shading intensity, the effective quantum yield of PSII (ΦPSII) was promoted; whereas, the ratio of Chl a/b declined. Compared with S0, treatments S2 and S3 significantly suppressed the activities of superoxide dismutase (SOD) and peroxidase (POD), net photosynthetic rate (P N), and contents of total soluble sugar, nevertheless, S1 treatment showed positive effects on the above parameters. Under the same shading condition, Jinan 17 had larger Chl content and higher activities of PSII and antioxidative enzymes, but lower malondialdehyde (MDA) content than Tainong 18. The results indicated that multiple-spike cultivar was more advantageous for the Huang-Huai-Hai Plain, where shading problem occurs later during the growth period, than the large-spike cultivar, because of the lesser damage in a flag leaf and better photosynthetic function of the former one. Wheat plants under S1 shading condition had relatively high activities of antioxidative enzymes and a low degree of membrane lipid peroxidation, which was in favor of stress resistance, maintaining high P N duration, and accumulation of photosynthates in wheat plants.  相似文献   

16.
In this paper, photosynthetic characteristics of green leaves (GL) and green pseudobulbs (GPSB) of C3 orchid Oncidium Golden Wish were first studied. Light saturation for photosynthesis and maximum photosynthetic rates (P max) were significantly higher in GL than in GPSB. The results of the optimal PSII quantum yield (Fv/Fm ratio), electron transport rate (ETR), the effective photochemical quantum yield (ΔF/Fm′) and nonphotochemical quenching (NPQ) of Chl fluorescence revealed that GPSB had lower light utilization than that of GL. Significantly higher photosynthetic pigments were found in GL than in GPSB. Alteration of source/sink ratio had no impact on all photosynthetic parameters for both GL and GPSB after a short term of 3 days or even a long term of 2 weeks of treatments although there were significant decreases in GL carbohydrate concentration of GL-darkened plants by the end of the day. However, decreases of all photosynthetic parameters of GL were observed in GL-darkened plants after 4 weeks of treatment compared to those of fully illuminated (FI) and GPSB-darkened plants. These results indicate that the level of carbohydrates in GL plays an important role in regulating their photosynthesis. Due to their lower photosynthetic capacities, GPSB function mainly as sinks. Darkening GPSB up to 2 weeks did not affect their own P max and the P max of GL and thus, did not result in significant decreases of total carbohydrate concentration of GPSB. As GPSB store a large amount of carbohydrates, it could also act as a source when the level of carbohydrates decreased. Thus, GL could depend on GPSB carbohydrates to regulate their photosynthesis when their source capacity was removed. However, 4 weeks after treatments, photosynthetic capacities of GL were significantly lower in GL- and GPSB-darkened plants than in FI plants, which could be due to the lower total soluble and insoluble sugar concentrations of both GL and GPSB in these plants.  相似文献   

17.
Young leaves of tropical trees frequently appear red in color, with the redness disappearing as the leaves mature. During leaf expansion, plants may employ photoprotective mechanisms to cope with high light intensities; however, the variations in anthocyanin contents, nonphotochemical quenching (NPQ), and photorespiration during leaf expansion are poorly understood. Here, we investigated pigment contents, gas exchange, and chlorophyll (Chl) fluorescence in Woodfordia fruticosa leaves during their expansion. Young red leaves had significantly lower Chl content than that of expanding or mature leaves, but they accumulated significantly higher anthocyanins and dissipated more excited light energy through NPQ. As the leaves matured, net photosynthetic rate, total electron flow through PSII, and electron flow for ribulose-1,5-bisphosphate oxygenation gradually increased. Our results provided evidence that photorespiration is of fundamental importance in regulating the photosynthetic electron flow and CO2 assimilation during leaf expansion.  相似文献   

18.
雌雄异株植物资源分配模式上往往表现出显著的性别二态性,但在叶片光合及功能性状上是否有差异目前仍未有定论,且与发育阶段的关系尚不明确。阐明上述问题,能够进一步了解雌雄异株植物的生理生态特征,并为理解性别对性二态植物生长发育的影响机制提供理论依据。以雌雄异株绒毛白蜡(Fraxinus velutina Torr.)为研究对象,针对不同发育阶段不同性别植株进行光合特征及叶功能性状测定,采用双因素方差分析了不同发育阶段下雌雄植株光合能力及叶功能性状的性别间差异,采用Pearson检验了雌雄植株各叶功能性状之间的相关性,并采用标准化主轴分析(Standardized major axis regression, SMA)分析不同性别植株净光合速率与叶功能性状的相关性。结果表明性别和发育阶段显著影响植物个体的光合能力和叶功能性状。总体而言,雄树在坐果期和果实成熟期均表现出更强的净光合速率(Pn)、更高的比叶面积(SLA)、叶绿素含量(Chl)和叶氮含量(LNC);而雌树在果实膨大期表现出更强Pn、SLA和Chl。雌雄性别内Pn与SLA、Chl和LNC间均呈显著正相关(P<0.05),雄树的S...  相似文献   

19.
The spatial patterns of photosynthetic characteristics and leaf physical traits of 171 plants belonging to nine life-forms or functional groups (trees, shrubs, herbs, evergreen trees, deciduous trees, C3 and C4 herbaceous plants, leguminous and non-leguminous species) and their relationships with environmental factors in seven sites, Yangling, Yongshou, Tongchuan, Fuxian, Ansai, Mizhi and Shenmu, ranging from south to north in the Loess Plateau of China were studied. The results showed that the leaf light-saturated photosynthetic rate (Pmax), photosynthetic nitrogen use efficiency (PNUE), chlorophyll content (Chl), and leaf mass per area (LMA) of all the plants in the Loess Plateau varied significantly among three life-form groups, i.e., trees, shrubs and herbs, and two groups, i.e., evergreen trees and deciduous trees, but leaf nitrogen content differed little among different life-form groups. For the 171 plants in the Loess Plateau, leaf Pmax was positively correlated with PNUE. The leaf nitrogen content per unit area (Narea) was positively correlated but Chl was negatively correlated with the LMA. When controlling the LMA, the Narea was positively correlated with the Chl (partial r = 0.20, P < 0.05). With regard to relationships between photosynthetic characteristics and leaf physical traits, the Pmax was positively correlated with N area, while the PNUE was positively correlated with the Chl and negatively correlated with the Narea and LMA. For all the species in the Loess Plateau, the PNUE was negatively correlated with the latitude and annual solar radiation (ASR), but positively correlated with the mean annual rainfall (MAR) and mean annual temperature (MAT). With regard to the leaf physical traits, the leaf Chl was negatively correlated with the latitude and ASR, but positively correlated with the MAR and MAT. However, the Narea and LMA were positively correlated with the latitude and ASR, but negatively correlated with the MAR and MAT. In general, leaf Narea and LMA increased, while PNUE and Chl decreased with increases in the latitude and ASR and decreases in MAR and MAT. Electronic supplementary material The online version of this article () contains supplementary material, which is available to authorized users.  相似文献   

20.
Terry N 《Plant physiology》1983,71(4):855-860
Using iron stress to reduce the total amount of light-harvesting and electron transport components per unit leaf area, the influence of light-harvesting and electron transport capacity on photosynthesis in sugar beet (Beta vulgaris L. cv F58-554H1) leaves was explored by monitoring net CO2 exchange rate (P) in relation to changes in the content of Chl.

In most light/CO2 environments, and especially those with high light (≥1000 microeinsteins photosynthetically active radiation per square meter per second) and high CO2 (≥300 microliters CO2 per liter air), P per area was positively correlated with changes in Chl (a + b) content (used here as an index of the total amount of light-harvesting and electron transport components). This positive correlation of P per area with Chl per area was obtained not only with Fe-deficient plants, but also over the normal range of variation in Chl contents found in healthy, Fe-sufficient plants. For example, light-saturated P per area at an ambient CO2 concentration close to normal atmospheric levels (300 microliters CO2 per liter air) increased by 36% with increase in Chl over the normal range, i.e. from 40 to 65 micrograms Chl per square centimeter. Iron deficiency-mediated changes in Chl content did not affect dark respiration rate or the CO2 compensation point. The results suggest that P per area of sugar beet may be colimited by light-harvesting and electron transport capacity (per leaf area) even when CO2 is limiting photosynthesis as occurs under field conditions.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号