首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Leptin administration to obese C57BL/6J (ob/ob) mice results in weight loss by reducing body fat. Because adipose tissue is an important storage depot for cholesterol, we explored evidence that leptin-induced weight loss in ob/ob mice was accompanied by transport of cholesterol to the liver and its elimination via bile. Consistent with mobilization of stored cholesterol, cholesterol concentrations in adipose tissue remained unchanged during weight loss. Plasma cholesterol levels fell sharply, and microscopic analyses of gallbladder bile revealed cholesterol crystals as well as cholesterol gallstones. Surprisingly, leptin reduced biliary cholesterol secretion rates without affecting secretion rates of bile salts or phospholipids. Instead, cholesterol supersaturation of gallbladder bile was due to marked decreases in bile salt hydrophobicity and not to hypersecretion of biliary cholesterol per se, such as occurs in humans during weight loss. In addition to regulating bile salt composition, leptin treatment decreased bile salt pool size. The smaller, more hydrophilic bile salt pool was associated with substantial decreases in intestinal cholesterol absorption. Within the liver, leptin treatment reduced the activity of 3-hydroxy-3-methylglutaryl-CoA reductase, but it did not change activities of cholesterol 7alpha-hydroxylase or acyl-CoA:cholesterol acyltransferase. These data suggest that leptin regulates biliary lipid metabolism to promote efficient elimination of excess cholesterol stored in adipose tissue. Cholesterol gallstone formation during weight loss in ob/ob mice appears to represent a pathologic consequence of an adaptive response that prevents absorption of biliary and dietary cholesterol.  相似文献   

2.
Leptin is a potent stimulator of bone growth in ob/ob mice   总被引:27,自引:0,他引:27  
Leptin, the product of the obese gene, is a circulating hormone secreted primarily from adipocytes. The lack of leptin in ob/ob mice, who are homozygous for the obese gene, results in hyperglycemia, hyperinsulinemia, hyperphagia, obesity, infertility, decreased brain size and decreased stature. To this end, we investigated the role of leptin as a hormonal regulator of bone growth. Leptin administration led to a significant increase in femoral length, total body bone area, bone mineral content and bone density in ob/ob mice as compared to vehicle treated controls. The increase in total body bone mass was a result of an increase in both trabecular and cortical bone mass. These results suggest that the decreased stature of the ob/ob mouse is due to a developmental defect that is readily reversible upon leptin administration. Our demonstration that the signalling or long form (Ob-Rb) of the leptin receptor is present in both primary adult osteoblasts and chondrocytes suggests that the growth promoting effects of leptin could be direct. In summary, these results indicate a novel role for leptin in skeletal bone growth and development.  相似文献   

3.
Gene therapy has become the most effective treatment for monogenic diseases. Congenital LEPTIN deficiency is a rare autosomal recessive monogenic obesity syndrome caused by mutations in the Leptin gene. Ob/ob mouse is a monogenic obesity model, which carries a homozygous point mutation of C to T in Exon 2 of the Leptin gene. Here, we attempted to edit the mutated Leptin gene in ob/ob mice preadipocytes and inguinal adipose tissues using CRISPR/Cas9 to correct the C to T mutation and restore the production of LEPTIN protein by adipocytes. The edited preadipocytes exhibit a correction of 5.5% of Leptin alleles and produce normal LEPTIN protein when differentiated into mature adipocytes. The ob/ob mice display correction of 1.67% of Leptin alleles, which is sufficient to restore the production and physiological functions of LEPTIN protein, such as suppressing appetite and alleviating insulin resistance. Our study suggests CRISPR/Cas9-mediated in situ genome editing as a feasible therapeutic strategy for human monogenic diseases, and paves the way for further research on efficient delivery system in potential future clinical application.  相似文献   

4.
5.
Hepatocyte growth factor (HGF) is a potent mitogenic and angiogenic factor produced in human adipose tissue. In this study, we use 3T3-F442A preadipocytes to study the contribution of HGF to angiogenesis in an in vivo fat pad development model. As observed for human adipocytes, HGF is synthesized and secreted by 3T3-F442A preadipocytes and mature adipocytes. HGF knockdown with small-interfering RNA reduced HGF mRNA expression 82.3 +/- 4.2% and protein secretion 82.9 +/- 1.4% from 3T3-F442A preadipocytes. Silencing of HGF resulted in a 70.5 +/- 19.0% reduction in endothelial progenitor cell migration to 3T3-F442A-conditioned medium in vitro. 3T3-F442A preadipocytes injected under the skin of mice form a fat pad containing mature, lipid-filled adipocytes and a functional vasculature. At 72 h postinjection, expression of the endothelial cell genes TIE-1 and platelet endothelial cell adhesion molecule (PECAM)-1 was decreased 94.4 +/- 2.2 and 91.5 +/- 2.5%, respectively, in 3T3-F442A fat pads with HGF silencing. Knockdown of HGF had no effect on differentiation of 3T3-F442A preadipocytes to mature adipocytes in vitro or in vivo. In developing fat pads under the skin of HGF overexpressing transgenic mice, TIE-1 and PECAM-1 mRNA was increased 16.5- and 21.4-fold, respectively, at 72 h postinjection. The increase in gene expression correlated with immunohistochemical evidence of endothelial cell migration in the developing fat pad. These data suggest that HGF has a central role in regulating angiogenesis in adipose tissue.  相似文献   

6.
Leptin, the ob gene product secreted by adipocytes, controls overall energy balance. We previously showed that leptin administration to leptin-deficient obese (ob/ob) mice suppressed mRNA expression and activity of renal 25-hydroxyvitamin D(3)-1alpha-hydroxylase (CYP27B1). In leptin receptor-deficient (db/db) mice, we presently examined whether leptin affects 1alpha-hydroxylase expression in renal tubules through the active form of the leptin receptor (ObRb). Elevated serum concentrations of calcium and 1,25-dihydroxyvitamin D(3) [1,25-(OH)(2)D(3)] in untreated ob/ob mice showed sharp reduction with leptin administration (4 mg/kg, i.p. every 12h for 2 days); no such reduction of elevation occurred in db/db mice. ObRb mRNA was expressed in kidney, brain, fat, lung, and bone in wild-type and ob/ob mice, but not db/db mice. The ob/ob and db/db mice showed large increases in renal 1alpha-hydroxylase mRNA expression and activity. Leptin administration (4 mg/kg) completely abrogated these increases in ob/ob but not db/db mice. Renal 25-hydroxyvitamin D(3)-24-hydroxylase (CYP24) mRNA synthesis also was greatly elevated in ob/ob and db/db mice; excesses decreased significantly with leptin administration in ob/ob mice, but increased in db/db mice. Renal tubular cells in primary culture expressed mRNAs including proximal tubules markers (1alpha-hydroxylase and megalin), parathyroid hormone receptor, and vitamin D receptor. Calcitonin receptor mRNA, synthesized mainly in distal tubules, was scant, indicating that most cultured cells were from proximal tubules. Cells did not express ObRb mRNA. Forskolin exposure at 10(-6)M for 3 or 6h significantly increased 1alpha-hydroxylase mRNA. Leptin at 10(-6)M did not change mRNA expression in either presence or absence of forskolin. Accordingly, leptin attenuates renal 1alpha-hydroxylase gene expression through ObRb. Furthermore, leptin appears to act indirectly on renal proximal tubules to regulate 1alpha-hydroxylase gene expression.  相似文献   

7.
Exposure of preadipocytes to long-chain fatty acids induces the expression of several markers of adipocyte differentiation. In an attempt to identify novel genes and proteins that are regulated by fatty acids in preadipocytes, we performed a substractive hybridization screening and identified PTX3, a protein of the pentraxin family. PTX3 mRNA expression is transient during adipocyte differentiation of clonal cell lines and is absent in fully differentiated cells. Stable overexpression of PTX3 in preadipocytes has no effect on adipocyte differentiation. In line with this, PTX3 mRNA is expressed in the stromal-vascular fraction of adipose tissue, but not in the adipocyte fraction; however, in 3T3-F442A adipocytes, the PTX3 gene can be reinduced by tumor necrosis factor alpha (TNFalpha) in a dose-dependent manner. This effect is accompanied by PTX3 protein secretion from both 3T3-F442A adipocytes and explants of mouse adipose tissue. PTX3 mRNA levels are found to be higher in adipose tissue of genetically obese mice versus control mice, consistent with their increased TNFalpha levels. In conclusion, PTX3 appears as a TNFalpha-induced protein that provides a new link between chronic low-level inflammatory state and obesity.  相似文献   

8.
Adiponectin (ApN) is an adipokine whose expression and plasma levels are inversely related to obesity and insulin-resistant states. The in vivo effects of a chronic expression of exogenous ApN restricted to adipose tissue are unclear. Moreover, the regulatory effects of ApN on its own expression and on that of its receptors are still unknown. In this study, we generated transgenic (Tg) mice with moderate expression of exogenous ApN targeted to adipose tissue (native full-length ApN being placed under control of the adipocyte promoter aP2). After a transient overexpression of ApN in young pups, we intriguingly observed a reduction of ApN mRNA levels and protein content in fat depots, together with a decrease of circulating ApN in adult mice. As a result, the phenotype of these adult mice included glucose intolerance, insulin resistance, and increased adiposity. Reduced expression of ApN in fat tissue was associated with diminished expression of uncoupling protein 2 involved in energy dissipation, and higher expression of fatty acid synthase, a key enzyme of lipogenesis, and of TNFalpha implicated in insulin resistance. Concomitantly, the expression of the ApN receptor AdipoR2 that mediates action of full-length ApN was downregulated, while that of AdipoR1 was unaffected. In agreement with the in vivo studies, recombinant ApN added to the culture medium of 3T3-F442A adipocytes caused a decrease in AdipoR2 and ApN mRNA levels. This treatment did not affect the expression of AdipoR1. Eventually, we demonstrated a contrario that AdipoR2 (but not R1) was specifically upregulated in fat of ApN(-/-) mice. Our in vivo and in vitro data provide evidence for a novel regulatory feedback loop by which ApN downregulates its own production and the expression of its AdipoR2 receptor.  相似文献   

9.
10.
Hormone-sensitive lipase (HSL) plays a crucial role in the hydrolysis of triacylglycerol and cholesteryl ester in various tissues including adipose tissues. To explore the role of HSL in the metabolism of fat and carbohydrate, we have generated mice lacking both leptin and HSL (Lep(ob/ob)/HSL(-/-)) by cross-breeding HSL(-/-) mice with genetically obese Lep(ob/ob) mice. Unexpectedly, Lep(ob/ob)/HSL(-/-) mice ate less food, gained less weight, and had lower adiposity than Lep(ob/ob)/HSL(+/+) mice. Lep(ob/ob)/HSL(-/-) mice had massive accumulation of preadipocytes in white adipose tissues with increased expression of preadipocyte-specific genes (CAAT/enhancer-binding protein beta and adipose differentiation-related protein) and decreased expression of genes characteristic of mature adipocytes (CCAAT/enhancer-binding protein alpha, peroxisome proliferator activator receptor gamma, and adipocyte determination and differentiation factor 1/sterol regulatory element-binding protein-1). Consistent with the reduced food intake, hypothalamic expression of neuropeptide Y and agouti-related peptide was decreased. Since HSL is expressed in hypothalamus, we speculate that defective generation of free fatty acids in the hypothalamus due to the absence of HSL mediates the altered expression of these orexigenic neuropeptides. Thus, deficiency of both leptin and HSL has unmasked novel roles of HSL in adipogenesis as well as in feeding behavior.  相似文献   

11.
Leptin-deficient obese mice (ob/ob) have decreased circulating growth hormone (GH) and pituitary GH and ghrelin receptor (GHS-R) mRNA levels, whereas hypothalamic GH-releasing hormone (GHRH) and somatostatin (SST) expression do not differ from lean controls. Given the fact that GH is suppressed in diet-induced obesity (a state of hyperleptinemia), it remains to be determined whether the absence of leptin contributes to changes in the GH axis of ob/ob mice. Therefore, to study the impact of leptin replacement on the hypothalamic-pituitary GH axis of ob/ob mice, leptin was infused for 7 days (sc), resulting in circulating leptin levels that were similar to wild-type controls (approximately 1 ng/ml). Leptin treatment reduced food intake, body weight, and circulating insulin while elevating circulating n-octanoyl ghrelin concentrations. Leptin treatment did not alter hypothalamic GHRH, SST, or GHS-R mRNA levels compared with vehicle-treated controls. However, leptin significantly increased pituitary GH and GHRH-R expression and tended to enhance circulating GH levels, but this latter effect did not reach statistical significance. In vitro, leptin (1 ng/ml, 24 h) did not affect pituitary GH, GHRH-R, or GHS-R mRNA but did enhance GH release. The in vivo effects of leptin on circulating hormone and pituitary mRNA levels were not replicated by pair feeding ob/ob mice to match the food intake of leptin-treated mice. However, leptin did prevent the fall in hypothalamic GHRH mRNA and circulating IGF-I levels observed in pair-fed mice. These results demonstrate that leptin replacement has positive effects on multiple levels of GH axis function in ob/ob mice.  相似文献   

12.
13.
Obesity is a major health care problem and is associated with significant cardiovascular morbidity. Leptin, a neuroendocrine hormone released by adipose tissue, is important in modulating obesity by signaling satiety and increasing metabolism. Moreover, leptin receptors are expressed on vascular endothelial cells (ECs) and mediate angiogenesis. We hypothesized that leptin may also play an important role in vasoregulation. We investigated vasoregulatory mechanisms in the leptin-deficient obese (ob/ob) mouse model and determined the influence of leptin replacement on endothelial-dependent vasorelaxant responses. The direct effect of leptin on EC nitric oxide (NO) production was also tested by using 4, 5-diaminofluorescein-2 diacetate staining and measurement of nitrate and nitrite concentrations. Vasoconstrictor responses to phenylephrine, norepinephrine, and U-46619 were markedly enhanced in aortic rings from ob/ob mice and were modulated by NO synthase inhibition. Vasorelaxant responses to ACh were markedly attenuated in mesenteric microvessels from ob/ob mice. Leptin replacement resulted in significant weight loss and reversal of the impaired endothelial-dependent vasorelaxant responses observed in ob/ob mice. Preincubation of ECs with leptin enhanced the release of NO production. Thus leptin-deficient ob/ob mice demonstrate marked abnormalities in vasoregulation, including impaired endothelial-dependent vasodilation, which is reversed by leptin replacement. These findings may be partially explained by the direct effect of leptin on endothelial NO production. These vascular abnormalities are similar to those observed in obese, diabetic, leptin-resistant humans. The ob/ob mouse may, therefore, be an excellent new model for the study of the cardiovascular effects of obesity.  相似文献   

14.
Energy expenditure in ob/ob mice kept at thermoneutrality was quantified from food intake and body composition of mice treated with leptin over 15 and 75 days, respectively. Energy expenditure in response to 15 days of treatment with leptin was twice as high as under pair-feeding conditions, indicating extensive breakdown of adipose tissue independent of a centrally mediated satiation. Leptin-induced reduction of food intake ceased during treatment with leptin over 75 days, when the lipid reserves of the mice were depleted and energy expenditure became similar to that in lean mice. Energy mobilized in leptin-treated ob/ob mice from endogenous lipid resources and similar to the food energy consumed in hyperphagic ob/ob controls may cause satiation. Maximal energy expenditure in both groups may correspond to their energy supply: energy expenditure in ob/ob mice was shown to be correlated to the food intake in the absence of leptin. Leptin effects observed in ob/ob mice under thermoneutral conditions may modify the traditional view of the functionality of the hormone.  相似文献   

15.
Skeletal growth is tightly coupled to energy balance via complex and incompletely understood mechanisms. Leptin-deficient ob/ob mice are obese and develop multiple pathologies associated with the metabolic syndrome. Additionally, ob/ob mice have skeletal abnormalities. The objective of this study was to evaluate the effects of leptin deficiency and long duration selective central leptin repletion via recombinant adeno-associated virus-leptin (rAAV-lep) gene therapy on bone in growing ob/ob mice. The ob/ob mice were injected in the hypothalamus with either rAAV-lep or rAAV-GFP (control vector). Treated ob/ob and untreated wild-type (WT) mice were then maintained on a normal diet for 15 weeks. In a second experiment, similarly treated mice along with a group of pair-fed mice were maintained for 30 weeks. Leptin was not detected in blood of either rAAV-lep- or rAAV-GFP-treated mice although rAAV-lep-treated mice displayed leptin transgene expression in the hypothalamus. As expected, rAAV-lep normalized body weight and food intake. Compared to WT mice, rAAV-GFP-treated ob/ob mice had decreased femoral length (by 1.6 mm or 10%, P<0.001), decreased total femur bone volume (by 3.3 mm(3) or 19%, P<0.001), but increased cancellous bone volume in the distal femur (by 0.04 mm(3) or 60%, P<0.09) and lumbar vertebrae (by 0.26 mm(3) or 118%, P<0.001). Treatment with rAAV-lep rescued the ob/ob skeletal phenotype by increasing femoral length and total bone volume, and decreasing femoral and vertebral cancellous bone volume, so that at 15 weeks post-rAAV-lep injection the ob/ob mice no longer differed from WT mice. No further skeletal changes in either the femur or lumbar vertebra were observed at 30 weeks post-rAAV-lep administration. The results suggest that hypothalamic leptin functions as an essential permissive factor for normal bone growth.  相似文献   

16.
Potential role of leptin in endochondral ossification.   总被引:7,自引:0,他引:7  
Leptin, a 16-kD circulating hormone secreted mainly by white adipose tissue, is a product of the obese (ob) gene. Leptin acts on human marrow stromal cells to enhance differentiation into osteoblasts and inhibit differentiation into adipocytes. Leptin also inhibits bone formation through a hypothalamic relay. To obtain a better understanding of the potential role of leptin in bone formation, the localization of leptin in endochondral ossification was examined immunohistochemically. High expression of leptin was identified in hypertrophic chondrocytes in the vicinity of capillary blood vessels invading hypertrophic cartilage and in a number of osteoblasts of the primary spongiosa beneath the growth plate. The hypertrophic chondrocytes far from the blood vessels were negative for leptin. Moreover, we detected the production and secretion of leptin by a mouse osteoblast cell line (MC3T3-E1) and a mouse chondrocyte cell line (MCC-5) by RT-PCR, immunocytochemistry, and Western blotting. Leptin enhanced the proliferation, migration, tube formation, and matrix metalloproteinase-2 (MMP-2) activity of human endothelial cells (HUVECs) in vitro. These findings suggest the possibility that leptin exerts its influence on endochondral ossification by regulating angiogenesis.  相似文献   

17.
Disruption of leptin signaling has been associated with both obesity and heart failure. We recently demonstrated that leptin deficiency in ob/ob mice and leptin insensitivity in db/db mice leads to increased myocyte apoptosis and left ventricular (LV) hypertrophy. We showed that LV mass, while similar among young ob/ob, db/db, and WT (WT) mice, is significantly higher in old ob/ob and db/db versus WT. Ob/ob and db/db mice developed markedly increased rates of myocyte apoptosis by TUNEL and activated caspase 3 levels. An intriguing candidate for the study of obesity-associated cardiac hypertrophy and apoptosis is PI3K, which functions to regulate not only cell size but also maintains cell integrity through protection from apoptosis. Here we further show that ob/ob mice have decreased catalytic activity of PI3K (p110α) which is reversed with leptin treatment. Leptin repletion in ob/ob mice reduced both myocyte apoptosis and LV hypertrophy to WT levels. We have therefore concluded that normal leptin signaling is necessary to prevent age-related myocyte apoptosis and LV hypertrophy and that PI3K is a critical component of the leptin signaling axis. The decrease in p110α catalytic activity could explain the development of increased myocyte apoptosis and cardiac hypertrophy in these obese mouse models.  相似文献   

18.
19.
Leptin deficiency produces a phenotype of obesity, diabetes, and infertility in the ob/ob mouse. In humans, leptin deficiency occurs in some cases of congenital obesity and in lipodystrophic disorders characterized by reduced adipose tissue and insulin resistance. Cutaneous gene therapy is considered an attractive potential method to correct circulating protein deficiencies, since gene-transferred human keratinocytes can produce and secrete gene products with systemic action. However, no studies showing correction of a systemic defect have been reported. We report the successful correction of leptin deficiency using cutaneous gene therapy in the ob/ob mouse model. As a feasibility approach, skin explants from transgenic mice overexpressing leptin were grafted on immunodeficient ob/ob mice. One month later, recipient mice reached body weight values of lean animals. Other biochemical and clinical parameters were also normalized. In a second human gene therapy approach, a retroviral vector encoding both leptin and EGFP cDNAs was used to transduce HK and, epithelial grafts enriched in high leptin-producing HK were transplanted to immunosuppressed ob/ob mice. HK-derived leptin induced body weight reduction after a drop in blood glucose and food intake. Leptin replacement through genetically engineered HK grafts provides a valuable therapeutic alternative for permanent treatment of human leptin deficiency conditions.  相似文献   

20.
Leptin:a multifunctional hormone   总被引:34,自引:0,他引:34  
Huang L  Li C 《Cell research》2000,10(2):81-92
Leptin is the protein product encoded by the obese(ob) gene.It is a circulating hormone produced primarily by the adipose tissue.ob/ob mice with mutations of the gene encoding leptin become morbidly obese,infertile,hyperphagic,hypothermic,and diabetic.Since the cloning of leptin in 1994,our knowledge in body weight regulation and the role played by leptin has increased substantially.We now know that leptin signals through its receptor,OB-R,which is a member of the cytokine receptor superfamily.Leptin serves as an adiposity signal to inform the brain the adipose tissue mass in a negative feedback loop regulating food intake and energy expenditure.Leptin also plays important roles in angiogenesis,immune function,fertility,and bone formation.Humans with mutations in the gene encoding leptin are also morbidly obese and respond to leptin treatment,demonstrating that enhancing or inhibiting leptin‘s activities in vivo may have potential therapeutic benefits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号