首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The C4 grass Arundinella hirta exhibits a unique C4 anatomy, with isolated Kranz cells (distinctive cells) and C4-type expression of photosynthetic enzymes in the leaf sheath and stem as well as in the leaf blade. The border zones between these organs are pale green. Those between the leaf blade and sheath and between the sheath and stem are called the lamina joint and sheath pulvinus, respectively, and are involved in gravity sensing. We investigated the structure and localization of C3 and C4 photosynthetic enzymes in these tissues. In both zones the epidermis lacked stomata. The inner tissue was composed of parenchyma cells and vascular bundles. The parenchyma cells were densely packed with small intercellular spaces and contained granal chloroplasts with large starch grains. No C4-type cellular differentiation was recognized. Western blot analysis showed that the lamina joint and pulvinus accumulated substantial amounts of phosphoenolpyruvate carboxylase (PEPC), pyruvate,Pi dikinase (PPDK), and ribulose 1,5-bisphosphate carboxylase/oxygenase (rubisco). Immunogold electron microscopy revealed PEPC in the cytosol and both PPDK and rubisco in the chloroplasts of parenchyma cells, suggesting the occurrence of C3 and C4 enzymes within a single type of chlorenchyma cell. These data indicate that the lamina joint and pulvinus have unique expression patterns of C3 and C4 enzymes, unlike those in C4-type anatomy.  相似文献   

2.
Complementary to our previous project on the molecular phylogeny of Camphorosmeae, the leaf anatomy of ca. 35 species including all non-Australian and selected Australian species was studied by use of light microscopy. Nine anatomical leaf types were described, compared to previous classifications, and discussed with regard to their putative evolution on the background of phylogenetic trees. Particular emphasis was given to the relationships between the C3 and C4 leaf types: Chenolea type (C3), Eokochia type (C3), Neokochia type (C3), Sedobassia type (C3/C4 intermediate), Bassia prostrata type (C4), B. muricata type (C4), B. eriantha type, B. lasiantha type (C4), Camphorosma type (C4). The main results and conclusions were: (1) Two unusual new C3 leaf types: Chenolea with microfenestrate chlorenchyma, Eokochia with unique complex vascular bundles; (2) Sedobassia interpreted as anatomically C3/C4 intermediate by kranz-like bundle sheath cells is the first C3/C4 intermediate in Camphorosmeae and found in a derived position; (3) Neokochia type detected as the likely starting point for all four C4 leaf types and for the C3/C4 intermediate; (4) hypodermis of C4 types originated from outermost chlorenchyma layer of C3 types and lost multiple times during further evolution; (5) atriplicoid Bassia. lasiantha type without water storage tissue evolved from kochioid B. muricata type; (6) two independent gains of C4 photosynthesis, one in Bassia and one in Camphorosma; (7) depending on the lineage, leaf architecture remains comparatively stable (Australian Camphorosmeae) or shows an unexpected plasticity (Bassia scoparia group).  相似文献   

3.
In order to characterise the sensitivity of antioxidative systems to temperature-induced oxidative stress, two species (Coleus blumei and Fagus sylvatica, L.) representative of environments with contrasting temperature characteristics have been exposed to low or high temperatures of 10 or 35 °C, respectively. Beech leaves were harvested in light and darkness. Coleus leaves were separated into green and white leaf tissue. The thermal dependencies of the activities of protective enzymes and chlorophyll fluorescence over a temperature range from 10 to 35 °C were determined. Ascorbate peroxidase activities were activated at low temperatures in vitro and, thereby, may provide an instantaneous protection against H2O2 accumulation which is faster than de novo synthesis. Monodehydroascorbate radical reductase was apparently not involved in short-term acclimation to low or high temperature. After short-term acclimation to low temperature, glutathione reductase and glutathione were more diminished in Coleus than in beech. Both species contained higher concentrations of ascorbate and glutathione at high temperatures than at low temperatures whereas glutathione reductase activity increased. Ascorbate peroxidase activity from Coleus leaves, though detectable under standard assay conditions (25 °C), failed at 35 °C in vitro. The results suggest that the higher temperature susceptibility of Coleus than that of beech was associated with a differential loss in glutathione reductase/glutathione at low temperature and an inhibition of ascorbate peroxidase at high temperature. Since the thermal dependencies of antioxidative enzymes were significantly affected by the preceding environmental conditions, the relative enzymatic activities determined under standard assay conditions may not be representative of enzymatic activities in foliage exposed to varying environmental temperatures.  相似文献   

4.
Rhynchospora rubra was found to have a low CO2 compensation point, high δ13C value, Kranz leaf anatomy, starch present in the bundle sheath cells and narrow interveinal distance. These observations suggest thatR. rubra is a C4 plant. A further anatomical survey revealed seven otherRhynchospora species presumably having the C4 photosynthetic pathway. In the family Cypraceae C4 plants therefore occur in the tribe Rhynchosporeae as well as in the Scirpeae and Cypereae. The C4 species ofRhynchospora have a normal Kranz type of leaf anatomy, although the C4 species ofCyperus andFimbristylis presently known have an abnormal one in which the mestome sheath without chloroplasts is interposed between the Kranz tissue and the rest of the chlorenchyma. Thus inRhynchospora the Kranz tissue is in direct contact with the rest of the chlorenchyma, and it is suggested that the Kranz tissue may be homologous with the mestome sheath.  相似文献   

5.
The changes in accumulation of two potential osmoprotectants (proline and glycine betaine), lipid peroxidation appraised as malondialdehyde (MDA) level, activities of key antioxidant enzymes such as superoxide dismutase (SOD: EC 1.15.1.1), catalase (CAT: EC 1.11.1.6), peroxidase (POD: EC 1.11.1.7), and glutathione reductase (GR: EC 1.6.4.2), and soluble protein profile in two cultivars of mulberry (S146 and Sujanpuri) differing in alkalinity (NaHCO3) tolerance were investigated at 2-month intervals up to 6-month growth under stress conditions. Varying levels of salinity–alkalinity developed in soil were 0, 30, 40, and 50 g of NaHCO3 kg?1 soil with pH 7.8, 9.1, 9.8, and 10.3, respectively. Alkali stress led to a consistent accumulation of proline and glycine betaine in mulberry leaves with time. The activities of leaf SOD, CAT, POD, and GR increased with increase in external salt concentration and pH. The increase in antioxidant enzyme activities was higher in cv. S146 than cv. Sujanpuri, whereas rate of lipid peroxidation measured in terms of MDA was higher in cv. Sujanpuri as compared to cv. S146. Protein profile revealed that some unknown proteins of low molecular mass (10–32.5 kDa) were induced by NaHCO3 stress, but differently in two cultivars.  相似文献   

6.
Light microscopic examination of leaf cross-sections showed that Flaveria brownii A. M. Powell exhibits Kranz anatomy, in which distinct, chloroplast-containing bundle sheath cells are surrounded by two types of mesophyll cells. Smaller mesophyll cells containing many chloroplasts are arranged around the bundle sheath cells. Larger, spongy mesophyll cells, having fewer chloroplasts, are located between the smaller mesophyll cells and the epidermis. F. brownii has very low CO2 compensation points at different O2 levels, which is typical of C4 plants, yet it does show about 4% inhibition of net photosynthesis by 21% O2 at 30°C. Protoplasts of the three photosynthetic leaf cell types were isolated according to relative differences in their buoyant densities. On a chlorophyll basis, the activities of phosphoenolpyruvate carboxylase and pyruvate, Pi dikinase (carboxylation phase of C4 pathway) were highest in the larger mesophyll protoplasts, intermediate in the smaller mesophyll protoplasts, and lowest, but still present, in the bundle sheath protoplasts. In contrast, activities of ribulose 1,5-bisphosphate carboxylase, other C3 cycle enzymes, and NADP-malic enzyme showed a reverse gradation, although there were significant activities of these enzymes in mesophyll cells. As indicated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the banding pattern of certain polypeptides of the total soluble proteins from the three cell types also supported the distribution pattern obtained by activity assays of these enzymes. Analysis of initial 14C products in whole leaves and extrapolation of pulse-labeling curves to zero time indicated that about 80% of the CO2 is fixed into C4 acids (malate and aspartate), whereas about 20% of the CO2 directly enters the C3 cycle. This is consistent with the high activity of enzymes for CO2 fixation by the C4 pathway and the substantial activity of enzymes of the C3 cycle in the mesophyll cells. Therefore, F. brownii appears to have some capacity for C3 photosynthesis in the mesophyll cells and should be considered a C4-like species.  相似文献   

7.
We compared C3 and CAM (crassulacean acid metabolism) states in Mesembryanthemum crystallinum, a facultative CAM species, with respect to the involvement of phosphoenolpyruvate carboxylase (PEPC) and nitrogen metabolismrelated enzymes in plant response to Botrytis cinerea infection. The enzyme activities were monitored both in pathogeninoculated 2nd leaf pair and non-inoculated 3rd leaf pair. The control activities of most studied enzymes were dependent on the mode of photosynthesis. Compared to C3 plants, those performing CAM exhibited higher PEPC, nitrate reductase (NR), and deaminating glutamate dehydrogenase (NAD-GDH) activities but lower glutamine synthetase (GS) and alanine aminotransferase (ALT) activities. Regardless of the mode of photosynthetic carbon assimilation, the plants responded to infection with enhancement of PEPC and inhibition of NR activities in the inoculated leaves. Whereas the activity of GS remained unaffected, those of all glutamate-yielding enzymes, namely ferredoxin-dependent glutamate synthase (Fd-GOGAT), aspartate aminotransferase (AST), ALT, and aminating glutamate dehydrogenase (NADHGDH) were altered after infection. However, the time-course and extent of the observed changes differed in C3 and CAM plants. In general, CAM plants responded to infection with an earlier increase in PEPC and Fd-GOGAT activities as well as later inhibition of NR activity. Contrary to C3 plants, in those performing CAM the activities of PEPC, Fd-GOGAT, NADH-GDH, and AST in the non-inoculated 3rd leaf pair were similarly influenced by infection as in leaves directly inoculated with the pathogen. This implies that the local infection induced an alteration of carbon/nitrogen status in healthy upper leaves. This reprogramming resulting from changes in PEPC and nitrogen metabolism-related enzymes was C3- and CAM-specific.  相似文献   

8.
Abiotic stresses, including nitrogen stress (NS), can hamper photosynthesis and cause oxidative damage to plants. Upregulation of the antioxidative defense system and photosynthesis induced by exogenous glycinebetaine (GB) and humic acid (HA) can mitigate the inhibitory effects of NS on plants. In the present investigation, the beneficial effects of exogenously applied GB and HA were examined on growth, leaf N status, photosynthesis, lipid peroxidation, and activities of some key antioxidant enzymes in the seedlings of maize cv. Zhengdan 958 (ZD958) exposed to NS. NS caused a significant reduction in total dry matter of seedlings of ZD958, but both GB and HA proved effective in mitigating this inhibition, hence, the beneficial effects of GB being more pronounced than those of HA. NS led to a considerable decrease in leaf total N and endogenous GB contents, stomatal conductance (g s), net photosynthetic rate (P n), intercellular CO2 concentration (C i), and activities of two key C4 photosynthesis enzymes phosphoenolpyruvate carboxylase (PEPCase) and ribulose-1,5-bisphosphate carboxylase (RuBPCase) as well as of superoxide dismutase (SOD) and peroxidase (POD). This treatment caused an increase in lipid peroxidation, but showed no effect on POD activity. Exogenous application of varying doses of GB resulted in a decrease in lipid peroxidation and C i, and an increase in leaf total N and endogenous glycinebetaine (EGB) content, P n, and activities of RuBPCase, PEPCase, SOD, and catalase (CAT) under NS. In contrast, application of different doses of HA resulted in a decrease in lipid peroxidation, an increase in P n, g s, and C i as well as SOD, CAT, and POD activities without increasing leaf total N and EGB content, and enhanced RuBPCase and PEPCase activities. The present study suggests that exogenous application of GB and HA can induce tolerance in maize plants to NS, but through the regulation of different mechanisms.  相似文献   

9.
Activities of key enzymes of the Calvin cycle and C4 metabolism, rates of CO2 fixation, and the initial products of photosynthetic 14CO2 fixation were determined in the podwall, seed coat (fruiting structures), and the subtending leaf (leaf below a receme) of Brassica campestris L. cv `Toria.' Compared to activities of ribulose-1,5-bisphosphate carboxylase and other Calvin cycle enzymes, e.g. NADP-glyceraldehyde-3-phosphate-dehydrogenase and ribulose-5-phosphate kinase, the activities of phosphoenol pyruvate carboxylase and other enzymes of C4 metabolism, viz. NADP-malate dehydrogenase, NADP-malic enzyme, glutamate pyruvate transaminase, and glutamate oxaloacetate transaminase, were generally much higher in seed than in podwall and leaf. Podwall and leaf were comparable to each other. Pulse-chase experiments showed that in seed the major product of 14CO2 assimilation was malate (in short time), whereas in podwall and leaf, the label initially appeared in 3-PGA. With time, the label moved to sucrose. In contrast to legumes, Brassica pods were able to fix net CO2 during light. However, respiratory losses were very high during the dark period.  相似文献   

10.
Global atmospheric carbon dioxide concentrations (Ca) are rising. As a consequence, recent climate models have projected that global surface air temperature may increase 1.4–5.8 °C with the doubling of Ca by the end of the century. Because, changes in Ca and temperature are likely to occur concomitantly, it is important to evaluate how the temperature dependence of key physiological processes are affected by rising Ca in major crop plants including maize (Zea mays L.), a globally important grain crop with C4 photosynthetic pathway. We investigated the temperature responses of photosynthesis, growth, and development of maize plants grown at five temperature regimes ranging from 19/13 to 38.5/32.5 °C under current (370 μmol mol−1) and doubled (750 μmol mol−1) Ca throughout the vegetative stages using sunlit controlled environmental chambers in order to test if the temperature dependence of these processes was altered by elevated Ca. Leaf and canopy photosynthetic rates, C4 enzyme activities, leaf appearance rates, above ground biomass accumulation and leaf area were measured. We then applied temperature response functions (e.g., Arrhenius and Beta distribution models) to fit the measured data in order to provide parameter estimates of the temperature dependence for modeling photosynthesis and development at current and elevated Ca in maize. Biomass, leaf area, leaf appearance rate, and photosynthesis measured at growth Ca was not changed in response to CO2 enrichment. Carboxylation efficiency and the activities of C4 enzymes were reduced with CO2 enrichment indicating possible photosynthetic acclimation of the C4 cycle. All measured parameters responded to growth temperatures. Leaf appearance rate and leaf photosynthesis showed curvilinear response with optimal temperatures near 32 and 34 °C, respectively. Total above ground biomass and leaf area were negatively correlated with growth temperature. The dependence of leaf appearance rate, biomass, leaf area, leaf and canopy photosynthesis, and C4 enzyme activities on growth temperatures was comparable between current and elevated Ca. The results of this study suggest that the temperature effects on growth, development, and photosynthesis may remain unchanged in elevated Ca compared with current Ca in maize.  相似文献   

11.
Regenerating maize A188 tissue cultures were examined for the presence of enzymes involved in C4 photosynthesis, for cell morphology, and for 14C labeling kinetics to study the implementation of this pathway during plant development. For comparison, sections of maize seedling leaves were examined. Protein blot analysis using antibodies to leaf enzymes showed a different profile of these enzymes during the early stages of shoot regeneration from callus from the closely-coordinated profile observed in seedling leaves. Pyruvate orthophosphate dikinase (PPDK) (EC 2.7.9.1) and phosphoenolpyruvate carboxylase (PEPC) (EC 4.1.1.31) were found in nonchlorophyllous callus while ribulose 1,5-bisphosphate carboxylase (RuBPC, EC 4.1.1.39) and malic enzyme, NADP-specific (ME-NADP) (EC 1.3.1.37) were not detectable until later.

Enzyme activity assays showed the presence of ME-NADP as well as PEPC and PPDK in nonchlorophyllous callus. However, the activities of ME-NADP and PEPC had properties similar to those of the enzymes from C3 leaves and from etiolated C4 leaf tissues, but differing from the corresponding enzymes in the mature leaf.

Immunoprecipitation of in vitro translation products of poly(A)RNA extracted from embryoid-forming callus showed both the 110 kilodalton precursor to chloroplast PPDK and the 94 kilodalton polypeptide. Therefore, the chloroplast tye of PPDK mRNA is present prior to the appearance of leaf morphology.

Analysis of the labeled products of 14CO2 fixation by nonchlorophyllous calli indicated β-carboxylation to give acids of the tricarboxylic acid cycle, but no incorporation into phosphoglycerate. With greening of the callus, some incorporation into phosphoglycerate and sugar phosphates occurred, and this increased in shoots as they developed, although with older shoots the increase in β-carboxylation products was even greater. Analysis of enzyme levels in young leaf sections by protein blot and of 14C-labeling patterns in the present study are in general agreement with enzyme activity determinations of previous studies, providing additional information about PPDK levels, and supporting the model proposed for developing young leaves.

These results suggest that maize leaves begin to express C4 enzymes during ontogeny through several stages from greening and cell differentiation as seen in the callus and then shoot formation, and finally acquire capacity for full C4 photosynthesis during leaf development concomitant with the development of Kranz anatomy and accumulation of large amounts of enzymes involved in carbon metabolism.

  相似文献   

12.
Characteristics of photosynthetic gas exchange, photoinhibition and C4 pathway enzyme activities in both flag leaves and lemma were compared between a superhigh-yield rice (Oryza sativa L.) hybrid, Liangyoupeijiu and a traditional rice hybrid, Shanyou63. Liangyoupeijiu had a similar light saturated assimilation rate (Asat) to Shanyou63, but a much higher apparent quantum yield (AQY), carboxylation efficiency (CE) and quantum yield of CO2 fixation (ΦCO2). Liangyoupeijiu also showed a higher resistance to photoinhibition and higher non-radiative energy dissipation associated with the xanthophyll cycle than Shanyou63 when subjected to strong light. In addition, Liangyoupeijiu had higher activities of the C4 pathway enzymes in both flag leaves and lemmas than Shanyou63. These results indicate that higher light and CO2 use efficiency, higher resistance to photoinhibition and C4 pathway in both flag leaf and lemma may contribute to the higher yield of the superhigh-yield rice hybrid, Liangyoupeijiu.  相似文献   

13.
Nitric oxide (NO) is a plant signaling compound known to mitigate key physiological processes and salicylic acid (SA) is considered to be a signaling molecule that plays a key role in growth, development, and defense responses in plants under stress conditions. This work investigated the effects of sodium nitroprusside (SNP, a donor of NO) and SA on salt-tolerance of cotton (Gossypium hirsutum L.) seedlings by examining growth, photosynthetic performance, total osmoregulation substance content, antioxidative enzymes and H+-ATPase enzyme subjected to 100 mM NaCl. Addition of 100 mM NaCl inhibited the growth and photosynthetic parameters of cotton seedlings, and dramatically increased the electrolyte leakage, the plant contents of proline, lipid peroxidation (malondialdehyde), hydrogen peroxide (H2O2) and Na. Furthermore, antioxidant enzyme activities were restrained. Foliar applications of 0.1 mM SNP or/and 0.1 mM SA led to increase in the growth rate and photosynthesis, including photosystem II, net photosynthetic rate and transpiration rate, improvement of reactive oxygen species-scavenging enzymes activities and reduction of H2O2 accumulation in cotton seedlings induced by NaCl. In addition, membrane transport and function were facilitated by decreasing leaf electrolyte leakage, improving ion absorption and activating the osmotic-regulated substances metabolic. Further investigation also showed that SNP and SA alleviated the inhibition of H+-ATPase in plasma membrane induced by NaCl. The present study showed that foliar application of SNP and SA alone mitigated the adverse effect of salinity, while the combined application proved to be even more effective in alleviating the adverse effects of NaCl stress.  相似文献   

14.
Two-month-old healthy seedlings of a true mangrove, Bruguiera parviflora, raised from propagules in normal nursery conditions were subjected to varying concentrations of NaCl for 45 d under hydroponic culture conditions to investigate the defence potentials of antioxidative enzymes against NaCl stress imposed oxidative stress. Changes in the activities of the antioxidative enzymes catalase (CAT), ascorbate peroxidase (APX), guaiacol peroxidase (POX), glutathione reductase (GR) and superoxide dismutase (SOD) were assayed in leaves to monitor the temporal regulation. Among the oxidative stress triggered chemicals, the level of H2O2 was significantly increased while total ascorbate and total glutathione content decreased. The ratio of reduced to oxidized glutathiones, however, increased due to decreased levels of oxidized glutathione in the leaf tissue. Among the five antioxidative enzymes monitored, the APX, POX, GR and SOD specific activities were significantly enhanced at high concentration (400 mM NaCl), while the catalase activities declined, suggesting both up and downregulations of antioxidative enzymes occurred due to NaCl imposed osmotic and ionic stress. Analysis of the stress induced alterations in the isoforms of CAT, APX, POX, GR and SOD revealed differential regulations of the isoforms of these enzymes. In B. parviflora one isoform of each of Mn-SOD and Cu/Zn-SOD while three isoforms of Fe-SOD were observed by activity staining gel. Of these, only Mn-SOD and Fe-SOD2 content was preferentially elevated by NaCl treatment, whereas isoforms of Cu/Zn-SOD, Fe-SOD1 and Fe-SOD3 remained unchanged. Similarly, out of the six isoforms of POX, the POX-1,-2,-3 and -6 were enhanced due to salt stress but the levels of POX-4 and -5 remained same as in control plants suggesting preferential upregulation of selective POX isoforms. Activity staining gel revealed only one prominent band of APX and this band increased with increased salt concentration. Similarly, two isoforms of GR (GR1 and GR2) were visualized on activity staining gel and both these isoforms increased upon salt stress. In this mangrove four CAT-isoforms were identified, among which the prominent CAT-2 isoform level was maximally reduced again suggesting differential downregulation of CAT isoforms by NaCl stress. The results presented in this communication are the first report on the resolutions of isoforms APX, POX and GR out of five antioxidative enzymes studied in the leaf tissue of a true mangrove. The differential changes in the levels of the isoforms due to NaCl stress may be useful as markers for recognizing salt tolerance in mangroves. Further, detailed analysis of the isoforms of these antioxidative enzymes is required for using the various isoforms as salt stress markers. Our results indicate that the overproduction of H2O2 by NaCl treatment functions as a signal of salt stress and causes upregulation of APX, POX, GR and deactivations of CAT in B. parviflora. The concentrations of malondialdehyde, a product of lipid peroxidation and lipoxygenase activity remained unchanged in leaves treated with different concentrations of NaCl, which again suggests that the elevated levels of the antioxidant enzymes protect the plants against the activated oxygen species thus avoiding lipid peroxidation during salt stress.  相似文献   

15.
A seven-step sequential grinding procedure was applied to leaves of Atriplex rosea, Sorghum sudanense, and Spinacia oleracea to study the distribution of carboxylases and microbody enzymes. In the extracts from C4 species there were 7- to 10-fold reciprocal changes in specific activities of ribulose-1, 5-diphosphate carboxylase and phosphoenolpyruvate carboxylase. No such changes occurred in sequential extracts from spinach. No inhibitors of ribulose-1, 5-diphosphate carboxylase were detected when the mesophyll extracts of Sorghum were assayed together with spinach extracts. These results reaffirm the conclusion of others that phosphoenolpyruvate carboxylase is largely confined to the mesophyll in these species and ribulose-1, 5-diphosphate carboxylase to the bundle sheath. The specific activities of glycolate oxidase and hydroxypyruvate reductase in bundle sheath extracts were two to three times those in mesophyll fractions. Catalase behaved similarly in Atriplex rosea but in Sorghum the specific activity was virtually the same in all fractions. From the relative amounts of these enzymes present, and comparison with the data obtained from spinach, it is concluded that typical leaf peroxisomes are present in the bundle sheaths of both C4 species and in the mesophyll of Atriplex rosea. The relative enzyme activities in the mesophyll of Sorghum suggest that the microbodies there are of the non-specialized type found in many nongreen tissues. The activities of the microbody enzymes in the bundle sheath of Sorghum seem quite inadequate to support photorespiration.  相似文献   

16.

The objective of the present study was to investigate the effectiveness of the post-harvest treatments of abiotic elicitors, that is, calcium chloride (CaCl2) and salicylic acid (SA) on physicochemical and biochemical parameters in relation to activities of antioxidative enzymes in carrot to enhance shelf life. Carrot of variety Punjab Carrot Red was harvested, washed, surface dried and treated with CaCl2 (1, 1.5 and 2%) or SA (1, 1.5 and 2 mM) for 5 min, while distilled water was used as the control. Treated as well as untreated carrots were placed in open trays and stored under refrigerated (5 ± 1 °C, 90% RH) conditions for 63 days. Treatment of carrots with CaCl2 and SA showed a reduction in changes in physiological weight, color, total soluble solids, ascorbic acid, titratable acidity, total phenolics, carotenoids, antioxidant activity and TBA reactive compound as compared to untreated samples. Higher activities of antioxidative enzymes, that is, catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR), peroxidase (POD), dehydro-ascorbate-reductase (DHAR) and monodehydro-ascorbate-reductase (MDHAR), were found in treated carrots as compared to untreated carrots during the whole storage period. SA treatment exhibited more usefulness in maintaining the quality of carrot than CaCl2 treatment. Among all the treatments, 1.5 mM SA exhibited the highest antioxidative enzyme activities and slowest changes in biochemical quality of carrot during storage. Thus, 1.5 mM SA can be used to extend the shelf life of carrot during refrigerated storage.

  相似文献   

17.
Four species of the genus Flaveria, namely F. anomala, F. linearis, F. pubescens, and F. ramosissima, were identified as intermediate C3-C4 plants based on leaf anatomy, photosynthetic CO2 compensation point, O2 inhibition of photosynthesis, and activities of C4 enzymes. F. anomala and F. ramosissima exhibit a distinct Kranz-like leaf anatomy, similar to that of the C4 species F. trinervia, while the other C3-C4 intermediate Flaveria species possess a less differentiated Kranz-like leaf anatomy. Photosynthetic CO2 compensation points of these intermediates at 30°C were very low relative to those of C3 plants, ranging from 7 to 14 microliters per liter. In contrast to C3 plants, net photosynthesis by the intermediates was not sensitive to O2 concentrations below 5% and decreased relatively slowly with increasing O2 concentration. Under similar conditions, the percentage inhibition of photosynthesis by 21% O2 varied from 20% to 25% in the intermediates compared with 28% in Lycopersicon esculentum, a typical C3 species. The inhibition of carboxylation efficiency by 21% O2 varied from 17% for F. ramosissima to 46% for F. anomala and were intermediate between the C4 (2% for F. trinervia) and C3 (53% for L. esculentum) values. The intermediate Flaveria species, especially F. ramosissima, have substantial activities of the C4 enzymes, phosphoenolpyruvate carboxylase, pyruvate, orthophosphate dikinase, NADP-malic enzyme, and NADP-malate dehydrogenase, indicating potential for C4 photosynthesis. It appears that these Flaveria species may be true biochemical C3-C4 intermediates.  相似文献   

18.
Crop yield is severely affected by soil salinity, as salt levels that are harmful to plant growth occur in large terrestrial areas of the world. The present investigation describes the studies of enzymatic activities, in-gel assays, gene expression of some of the major antioxidative enzymes, tocopherol accumulation, lipid peroxidation, ascorbate and dehydroascorbate contents in a salt-sensitive rice genotype PB1, and a relatively salt-tolerant cultivar CSR10 in response to 200 mM NaCl. Salt solution was added to the roots of hydroponically grown 5-day-old etiolated rice seedlings, 12 h prior to transfer to cool white fluorescent?+?incandescent light (100 μmol photons m?2 s?1). Total tocopherol and ascorbate contents declined in salt-stressed rice seedlings. Among antioxidative enzymes, an increase in the activities of superoxide dismutase (EC 1.15.1.1), catalase (EC 1.11.1.6), ascorbate peroxidase (EC 1.11.1.11), glutathione reductase (EC 1.6.4.2), and their gene expression was observed in both cultivars in response to salt stress. The salt-tolerant cultivar CSR10 resisted stress due to its early preparedness to combat oxidative stress via upregulation of gene expression and enzymatic activities of antioxidative enzymes and a higher redox status of the antioxidant ascorbate even in a non-stressed environment.  相似文献   

19.
The regeneration potential, antioxidative enzyme activities, and genetic stability among micropropagated plantlets of Dianthus caryophyllus L. were evaluated. Multiple adventitious shoots were induced from leaf explants on Murashige and Skoog medium incorporated with various combinations and concentrations of plant growth regulators (PGRs). The highest leaf explant response (90%), number of shoots per explant (15.30?±?1.19), and shoot length (6.75?±?0.63 cm) was recorded in response to a combination of 2.5 μM 6-benzyladenine and 0.5 μM α-naphthaleneacetic acid (NAA) after 8 wks culture. Subsequent subculturing for five passages, on a medium with the same composition of PGRs, induced the highest shoot number (42.50?±?1.44), with an average shoot length of 8.06 cm after the fourth subculture. Different concentrations of indole-3-butyric acid (IBA) were tested to determine the optimum conditions for ex vitro rooting of microshoots. The best result was accomplished with a pulse treatment of IBA (100 μM) applied to the basal end of the microshoot for 30 min, followed by transfer to plastic cups containing soilrite, and eventually established in natural soil with an 85% survival rate. The determination of activities of antioxidative enzymes (superoxide dismutase, ascorbate peroxidase, catalase, and glutathione reductase) revealed involvement of these enzymes in shoot differentiation and development. All of these activities were interlinked with each other and played significant roles in the scavenging of toxic free radicals. Intersimple sequence repeat DNA analysis was carried out using five primers. The amplification products were monomorphic in micropropagated plants, similar to those of the mother plant. No polymorphisms were detected revealing the genetic integrity of the micropropagated plants.  相似文献   

20.
The effects of EDTA application to heavy metal-polluted soil on phytoextraction of heavy metals, leaf anatomy, gas exchange parameters, enzyme activities of C4 carbon cycle, antioxidant defense, and active compounds of Tribulus terrestris L. were evaluated. The addition of EDTA to the soil polluted with Cd and Pb markedly increased dry weight and Pb, Zn, and Cd contents in shoots. Plants responded to the action of EDTA by an increased stomatal conductance, photosynthetic and transpiration rates, water use efficiency, chlorophyll and carotenoid contents. The activities of C4 carbon cycle enzymes simultaneously increased, thus concentrating CO2 for enhanced CO2 assimilation and providing NADPH for the antioxidant system. Antioxidants, such as ascorbate, reduced glutathione, and flavonoids, increased more in the shoots of T. terrestris after the addition of EDTA. The activities of guaiacol peroxidase, catalase, and the enzymes of the ascorbate-glutathione cycle enhanced significantly in the presence of EDTA. Increased activities of antioxidant enzymes suggest that they have some additive functions in the mechanism of metal tolerance. EDTA application lowered the activity of phenylalanine ammonia-lyase and the content of total phenols, MDA, hydrogen peroxide, dehydroascorbate, and lipid-soluble antioxidant capacity expressed as α-tocopherol. Increased levels of total radical-scavenging activity are in correspondence with the activity of water-soluble antioxidant compounds in T. terrestris tissues. The content of furostanol saponins protodioscin, prototribestin, and rutin increased as a result of EDTA addition. The results obtained allowed us to assume that applied EDTA reduced a negative heavy metal impact on puncture vine photosynthesis and antioxidant potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号