首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In previous studies, we have shown that Th2 cell differentiation is diminished but Th1 cell differentiation is increased in Stat5a-deficient (Stat5a(-/-)) CD4(+) T cells. In the present study, we clarified the molecular mechanisms of Stat5a-mediated Th cell differentiation. We found that enhanced Th1 cell differentiation and the resultant IFN-gamma production played a dominant inhibitory role in the down-regulation of IL-4-induced Th2 cell differentiation of Stat5a(-/-) CD4(+) T cells. We also found that IL-12-induced Stat4 phosphorylation and Th1 cell differentiation were augmented in Stat5a(-/-) CD4(+) T cells. Importantly, the expression of suppressor of cytokine signaling (SOCS)3, a potent inhibitor of IL-12-induced Stat4 activation, was decreased in Stat5a(-/-) CD4(+) T cells. Moreover, a reporter assay showed that a constitutively active form of Stat5a but not Stat6 activated the SOCS3 promoter. Furthermore, chromatin immunoprecipitation assays revealed that Stat5a binds to the SOCS3 promoter in CD4(+) T cells. Finally, the retrovirus-mediated expression of SOCS3 restored the impaired Th cell differentiation of Stat5a(-/-) CD4(+) T cells. These results suggest that Stat5a forces the Th1/Th2 balance toward a Th2-type by preventing IL-12-induced Th1 cell differentiation through the induction of SOCS3.  相似文献   

3.
NKT cells from C57Bl/6 mice are known to be the initial cellular source of IL-4 that acts as a trigger for Th2 cell differentiation. CC-chemokine ligand 2 (CCL2) has been described as an initial stimulator of IL-4 production by these cells; however, IL-4 was not produced by NKT cells from BALB/c mice even when Th2 cell responses were established in these mice. In this study, we found a new pathway for CCL2-associated Th2 cell generation in BALB/c mice. Splenic T cells from BALB/c mice produced IL-4 in response to CCL2 stimulation. However, IL-4 production was not seen in cultures of splenic T cells from CD1-/- mice (BALB/c origin), whereas, in the presence of CCL2, splenic T cells from CD1-/- mice produced IL-4 when NKT cells from wild-type mice were added. CCL2 induced IL-4 in cultures of NKT cells cocultured with naive T cells, but IL-4 was not produced by these cells cultured separately with CCL2. Interestingly, IL-4 was produced by naive T cells cocultured with NKT cells that were previously treated with CCL2 (CCL2-NKT cells). In addition, IL-4 was produced by naive T cells supplemented with a culture supernatant of CCL2-NKT cells. These results indicate that, through the production of a soluble factor(s) other than IL-4, NKT cells play a role in the CCL2-associated generation of Th2 cells.  相似文献   

4.
5.
6.
IL-4 plays a critical role in the differentiation of TCR-stimulated naive CD4 T cells to the Th2 phenotype. In response to IL-4, the IL-4R activates a set of phosphotyrosine binding domain-containing proteins, including insulin receptor substrate 1/2, Shc, and IL-4R interacting protein, as well as Stat6. Stat6 has been shown to be required for Th2 differentiation. To determine the roles of the phosphotyrosine binding adaptors in Th2 differentiation, we prepared a retrovirus containing a mutant of the human (h)IL-4R alpha-chain, Y497F, which is unable to recruit these adaptors. The mutant hIL-4Ralpha, as well as the wild-type (WT) hIL-4Ralpha, was introduced into naive CD4 T cells. Upon hIL-4 stimulation, Y497F worked as well as the WT hIL-4Ralpha in driving Th2 differentiation, as measured by Gata3 up-regulation and IL-4 production. Furthermore, IL-4-driven cell expansion was also normal in the cells infected with Y497F, although cells infected with Y497F were not capable of phosphorylating insulin receptor substrate 2. These results suggest that the signal pathway mediated by Y497 is dispensable for both IL-4-driven Th2 differentiation and cell expansion. Both WT and Y497F hIL-4Ralpha lose the ability to drive Th2 differentiation and cell expansion in Stat6-knockout CD4 T cells. A constitutively activated form of Stat6 introduced into CD4 T cells resulted in both Th2 differentiation and enhanced cell expansion. Thus, activated Stat6 is necessary and sufficient to mediate both IL-4-driven Th2 differentiation and cell expansion in CD4 T cells.  相似文献   

7.
8.
9.
IL-27, a member of the IL-6/IL-12 family, activates both STAT1 and STAT3 through its receptor, which consists of WSX-1 and gp130 subunits, resulting in augmentation of Th1 differentiation and suppression of proinflammatory cytokine production. In the present study, we investigated the role of STAT3 in the IL-27-mediated immune functions. IL-27 induced phosphorylation of STAT1, -2, -3 and -5 in wild-type naive CD4+ T cells, but failed to induce that of STAT3 and STAT5 in STAT3-deficient cohorts. IL-27 induced not only proinflammatory responses including up-regulation of ICAM-1, T-box expressed in T cells, and IL-12Rbeta2 and Th1 differentiation, but also anti-inflammatory responses including suppression of proinflammatory cytokine production such as IL-2, IL-4, and IL-13 even in STAT3-deficient naive CD4+ T cells. In contrast, IL-27 augmented c-Myc and Pim-1 expression and induced cell proliferation in wild-type naive CD4+ T cells but not in STAT3-deficient cohorts. Moreover, IL-27 failed to activate STAT3, augment c-Myc and Pim-1 expression, and induce cell proliferation in pro-B BaF/3 transfectants expressing mutant gp130, in which the putative STAT3-binding four Tyr residues in the YXXQ motif of the cytoplasmic region was replaced by Phe. These results suggest that STAT3 is activated through gp130 by IL-27 and is indispensable to IL-27-mediated cell proliferation but not to IL-27-induced Th1 differentiation and suppression of proinflammatory cytokine production. Thus, IL-27 may be a cytokine, which activates both STAT1 and STAT3 through distinct receptor subunits, WSX-1 and gp130, respectively, to mediate its individual immune functions.  相似文献   

10.
Treatment of Th cells with compounds that elevate cAMP levels augments Th2-type lymphokine expression, in particular the synthesis of IL-5. Using primary murine CD4(+) T lymphocytes, we show in this study that inhibition of protein kinase A (PKA) activity in Th2 effector cells impairs IL-5 synthesis, whereas the expression of PKA catalytic subunit alpha enhances IL-5 synthesis in Th0 cells. In addition, we observed by coexpression of PKA catalytic subunit and GATA-3 in Th1 cells that the stimulatory effect of PKA is dependent on GATA-3 activity. These data demonstrate that activation of PKA in Th effector cells induces the IL-5 gene expression in a GATA-3-dependent manner.  相似文献   

11.
Akt is a neutral amplifier for Th cell differentiation   总被引:2,自引:0,他引:2  
Both CD28 and its relative, inducible costimulator (ICOS), have a binding motif for phosphatidylinositol 3-kinase (PI3K) in their cytoplasmic tail, and the binding of PI3K leads to activation of a serine/threonine kinase, Akt. The role of Akt in cytokine production and helper T (Th) cell differentiation remains obscure. In this study, we found that enforced expression of the constitutively active form (E40K) of Akt rendered CD4(+) T cells activated. Wild-type of Akt and E40K promoted Th1 cell differentiation in C57BL/6-derived and Th1-polarized BALB/c-derived CD4(+) T cells, while both promoted Th2 cell differentiation in BALB/c-derived and Th2-polarized C57BL/6 CD4(+) T cells. E40K also facilitated Th1 differentiation in CD4(+) T cells from IL-4-deficient mice with the BALB/c background. E40K up-regulated expression of NF-AT and c-Myb, which may be related to the augmentation of cytokine production by E40K. These findings indicate that the mechanism by which Akt augments cytokine production via CD28 and ICOS is Th cell type-specific and reflects the intracellular status affected by the cytokine milieu. We conclude that Akt is a neutral amplifier of T cell activation and Th differentiation.  相似文献   

12.
13.
14.
Mucus hyperproduction in asthma results from airway inflammation and contributes to clinical symptoms, airway obstruction, and mortality. In human asthmatics and in animal models, excess mucus production correlates with airway eosinophilia. We previously described a system in which TCR transgenic CD4 Th2 cells generated in vitro were transferred into recipient mice and activated in the respiratory tract with inhaled Ag. Th2 cells stimulated airway eosinophilia and a marked increase in mucus production, while mice that received Th1 cells exhibited airway inflammation without eosinophilia or mucus. Mucus could be induced by IL-4-/- Th2 cells at comparable levels to mucus induced by IL-4+/+ Th2 cells. In the current studies we dissect further the mechanisms of Th2-induced mucus production. When IL-4-/- Th2 cells are transferred into IL-4Ralpha-/- mice, mucus is not induced, and BAL eosinophilia is absent. These data suggest that in the absence of IL-4, IL-13 may be critical for Th2-induced mucus production and eosinophilia. To determine whether eosinophils are important in mucus production, IL-5-/- Th2 cells were transferred into IL-5-/- recipients. Eosinophilia was abolished, yet mucus staining in the epithelium persisted. These studies show definitively that IL-5, eosinophils, or mast cells are not essential, but signaling through IL-4Ralpha is critically important in Th2 cell stimulation of mucus production.  相似文献   

15.
16.
17.
Innate effector cells that produce Th2-type cytokines are critical in Th2 cell-mediated immune responses. However, it is not known how these cells acquire the ability to produce Th2 cytokines. IL-4 is a potent inducer that directs differentiation of naive CD4(+) T cells into CD4(+) Th2 effector cells. To determine whether IL-4 can induce differentiation and expansion of Th2 cytokine-producing innate cells, we used mice whose il-4 gene was replaced by a knock-in green fluorescence protein (gfp) gene. We found that, directly ex vivo, IL-4 increased the number of GFP(+) cells in the airway and the lung tissue in an Ag-specific manner. The majority of GFP(+) cells were eosinophils, suggesting that IL-4 plays a pivotal role in expanding IL-4-producing eosinophils in vivo. IL-4-producing eosinophils showed some unique features compared with IL-4-producing CD4(+) T cells. They exhibited biallelic expression of the il-4 gene when stimulated and were more dominant IL-4- and IL-5-producing cells. Furthermore, we show that IL-4 drove bone marrow progenitor cells to differentiate into Th2 cytokine-producing eosinophils in vitro. These results strongly suggest IL-4 is a potent factor in directing bone marrow progenitor cells to differentiate into Th2 cytokine-producing eosinophils.  相似文献   

18.
The development of Th1 and Th2 cells is determined by the type of antigenic stimulation involved in the initial cell activation step. Evidence indicates that costimulatory signals, such as those delivered by CD28, play an important role in Th2 development, but little is known about how CD28 costimulation contributes to Th2 development. In this study, TCR cross-linking was insufficient for Th2 development, while the addition of CD28 costimulation drastically increased Th2 generation through the IL-4-mediated pathway. Th2 generation following CD28 costimulation was not simply explained by the enhancement of IL-4 production in naive T cells. To generate Th2 cells after TCR cross-linking only, it was necessary to add a 20- to 200-fold excess of IL-4 generated after TCR and CD28 stimulation. TCR cross-linking increased the expression level and binding property of the IL-4R, but enhanced the sensitivity to IL-4 only slightly. In contrast, as evidenced by the enhanced phosphorylation of Jak3, the IL-4Ralpha-chain, and STAT6 following IL-4 stimulation, CD28 costimulation increased IL-4R sensitivity without affecting its expression and binding property. This evidence of the enhancement of IL-4R sensitivity increases our understanding of how CD28 costimulation accelerates Th2 development.  相似文献   

19.
The differentiation of naive CD4 T cells into Th2 cells requires the T cell receptor-mediated activation of the ERK MAPK cascade. Little is known, however, in regard to how the ERK MAPK cascade regulates Th2 cell differentiation. We herein identified Gfi1 (growth factor independent-1) as a downstream target of the ERK MAPK cascade for Th2 cell differentiation. In the absence of Gfi1, interleukin-5 production and the change of histone modification at the interleukin-5 gene locus were severely impaired. Furthermore, the interferon gamma gene showed a striking activation in the Gfi1(-/-) Th2 cells. An enhanced ubiquitin/proteasome-dependent degradation of GATA3 protein was observed in Gfi1(-/-) Th2 cells, and the overexpression of GATA3 eliminated the defect of Th2 cell function in Gfi1-deficient Th2 cells. These data suggest that the T cell receptor-mediated induction of Gfi1 controls Th2 cell differentiation through the regulation of GATA3 protein stability.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号