首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Our aim was to assess the magnitude of peripheral insulin resistance and whether changes in hepatic insulin action were evident in a canine model of late (3rd trimester) pregnancy. A 3-h hyperinsulinemic (5 mU.kg(-1).min(-1)) euglycemic clamp was conducted using conscious, 18-h-fasted pregnant (P; n = 6) and nonpregnant (NP; n = 6) female dogs in which catheters for intraportal insulin infusion and assessment of hepatic substrate balances were implanted approximately 17 days before experimentation. Arterial plasma insulin rose from 11 +/- 2 to 192 +/- 24 and 4 +/- 2 to 178 +/- 5 microU/ml in the 3rd h in NP and P, respectively. Glucagon fell equivalently in both groups. Basal net hepatic glucose output was lower in NP (1.9 +/- 0.1 vs. 2.4 +/- 0.2 mg.kg(-1).min(-1), P < 0.05). Hyperinsulinemia completely suppressed hepatic glucose release in both groups (-0.4 +/- 0.2 and -0.1 +/- 0.2 mg.kg(-1).min(-1) in NP and P, respectively). More exogenous glucose was required to maintain euglycemia in NP (15.2 +/- 1.3 vs. 11.5 +/- 1.1 mg.kg(-1).min(-1), P < 0.05). Nonesterified fatty acids fell similarly in both groups. Net hepatic gluconeogenic amino acid uptake with high insulin did not differ in NP and P. Peripheral insulin action is markedly impaired in this canine model of pregnancy, whereas hepatic glucose production is completely suppressed by high circulating insulin levels.  相似文献   

2.
Portal infusion of glucose in the mouse at a rate equivalent to basal endogenous glucose production causes hypoglycemia, whereas peripheral infusion at the same rate causes significant hyperglycemia. We used tracer and arteriovenous difference techniques in conscious 42-h-fasted dogs to determine their response to the same treatments. The studies consisted of three periods: equilibration (100 min), basal (40 min), and experimental (180 min), during which glucose was infused at 13.7 micromol.kg(-1).min(-1) into a peripheral vein (p.e., n = 5) or the hepatic portal (p.o., n = 5) vein. Arterial blood glucose increased approximately 0.8 mmol/l in both groups. Arterial and hepatic sinusoidal insulin concentrations were not significantly different between groups. p.e. exhibited an increase in nonhepatic glucose uptake (non-HGU; Delta8.6 +/- 1.2 micromol.kg(-1).min(-1)) within 30 min, whereas p.o. showed a slight suppression (Delta-3.7 +/- 3.1 micromol.kg(-1).min(-1)). p.o. shifted from net hepatic glucose output (NHGO) to uptake (NHGU; 2.5 +/- 2.8 micromol.kg-1.min-1) within 30 min, but p.e. still exhibited NHGO (6.0 +/- 1.9 micromol.kg(-1).min(-1)) at that time and did not initiate NHGU until after 90 min. Glucose rates of appearance and disappearance did not differ between groups. The response to the two infusion routes was markedly different. Peripheral infusion caused a rapid enhancement of non-HGU, whereas portal delivery quickly activated NHGU. As a result, both groups maintained near-euglycemia. The dog glucoregulates more rigorously than the mouse in response to both portal and peripheral glucose delivery.  相似文献   

3.
The effect of small amounts of fructose on net hepatic glucose uptake (NHGU) during hyperglycemia was examined in the presence of insulinopenia in conscious 42-h fasted dogs. During the study, somatostatin (0.8 microg.kg(-1).min(-1)) was given along with basal insulin (1.8 pmol.kg(-1).min(-1)) and glucagon (0.5 ng.kg(-1).min(-1)). After a control period, glucose (36.1 micromol.kg(-1).min(-1)) was continuously given intraportally for 4 h with (2.2 micromol.kg(-1).min(-1)) or without fructose. In the fructose group, the sinusoidal blood fructose level (nmol/ml) rose from <16 to 176 +/- 11. The infusion of glucose alone (the control group) elevated arterial blood glucose (micromol/ml) from 4.3 +/- 0.3 to 11.2 +/- 0.6 during the first 2 h after which it remained at 11.6 +/- 0.8. In the presence of fructose, glucose infusion elevated arterial blood glucose (micromol/ml) from 4.3 +/- 0.2 to 7.4 +/- 0.6 during the first 1 h after which it decreased to 6.1 +/- 0.4 by 180 min. With glucose infusion, net hepatic glucose balance (micromol.kg(-1).min(-1)) switched from output (8.9 +/- 1.7 and 13.3 +/- 2.8) to uptake (12.2 +/- 4.4 and 29.4 +/- 6.7) in the control and fructose groups, respectively. Average NHGU (micromol.kg(-1).min(-1)) and fractional glucose extraction (%) during last 3 h of the test period were higher in the fructose group (30.6 +/- 3.3 and 14.5 +/- 1.4) than in the control group (15.0 +/- 4.4 and 5.9 +/- 1.8). Glucose 6-phosphate and glycogen content (micromol glucose/g) in the liver and glucose incorporation into hepatic glycogen (micromol glucose/g) were higher in the fructose (218 +/- 2, 283 +/- 25, and 109 +/- 26, respectively) than in the control group (80 +/- 8, 220 +/- 31, and 41 +/- 5, respectively). In conclusion, small amounts of fructose can markedly reduce hyperglycemia during intraportal glucose infusion by increasing NHGU even when insulin secretion is compromised.  相似文献   

4.
We evaluated the effects of physiologic increases in insulin on hepatic and peripheral glucose metabolism in nonpregnant (NP) and pregnant (P; 3rd trimester) conscious dogs (n = 9 each) using tracer and arteriovenous difference techniques during a hyperinsulinemic euglycemic clamp. Insulin was initially (-150 to 0 min) infused intraportally at a basal rate. During 0-120 min (Low Insulin), the rate was increased by 0.2 mU x kg(-1) x min(-1), and from 120 to 240 min (High Insulin) insulin was infused at 1.5 mU x kg(-1) x min(-1). Insulin concentrations were significantly higher in NP than P during all periods. Matched subsets (n = 5 NP and 6 P) were identified. In the subsets, insulin was 7 +/- 1, 9 +/- 1, and 28 +/- 3 microU/ml (basal, Low Insulin, and High Insulin, respectively) in NP, and 5 +/- 1, 7 +/- 1, and 27 +/- 3 microU/ml in P. Net hepatic glucose output was suppressed similarly in both subsets (> or =50% with Low Insulin, 100% with High Insulin), as was endogenous glucose rate of appearance. During High Insulin, NP dogs required more glucose (10.8 +/- 1.5 vs. 6.2 +/- 1.0 mg x kg(-1) x min(-1), P < 0.05), and hindlimb (primarily skeletal muscle) glucose uptake tended to be greater in NP than P (18.6 +/- 2.5 mg/min vs. 13.6 +/- 2.0 mg/min, P = 0.06). The normal canine liver remains insulin sensitive during late pregnancy. Differing insulin concentrations in pregnant and nonpregnant women and excessive insulin infusion rates may explain previous findings of hepatic insulin resistance in healthy pregnant women.  相似文献   

5.
We studied the effect of acute hyperinsulinemia on amino acid (AA) utilization and oxidation rates independent of insulin-enhanced glucose metabolism in fetal sheep. Metabolic studies were conducted in each fetus (n = 11) under three experimental periods. After control period (C) study, a fetal hyperinsulinemic-euglycemic-euaminoacidemic (HI-euG-euAA) clamp was established, followed by a hyperinsulinemic-hypoglycemic-euaminoacidemic (HI-hypoG-euAA) clamp to decrease glucose metabolic rates toward C values. Infusions of (3)H(2)0, L-[1-(13)C]leucine, and [(14)C(U)]glucose were administered to measure blood flow, leucine oxidation, and fetal glucose uptake, utilization, and oxidation in each period. Fetal glucose utilization rate increased 1.7-fold with hyperinsulinemia (C 5.8 +/- 0.8 mg.kg(-1).min(-1), HI-euG-euAA 10 +/- 1.3 mg.kg(-1).min(-1), P < 0.0001), returning to rates not different from C with hypoglycemia (HI-hypoG-euAA 7.1 +/- 0.9 mg.kg(-1).min(-1) vs. C value, P = 0.15). Fetal glucose oxidation rate increased 1.7-fold with hyperinsulinemia (C 3.1 +/- 0.2 mg.kg(-1).min(-1), HI-euG-euAA 5.4 +/- 0.4 mg.kg(-1).min(-1), P < 0.0001) and decreased to near control rates with hypoglycemia (4.0 +/- 0.3 HI-hypoG-euAA vs. C value, P = 0.006). AA utilization rates increased with hyperinsulinemia for all essential and most nonessential AAs (P < 0.001) and did not change when insulin-induced increases in glucose utilization returned to control rates. Leucine oxidation rate increased 1.7-fold with hyperinsulinemia (C 1.0 +/- 0.3 micromol.min(-1).kg(-1), HI-euG-euAA 1.7 +/- 0.3 micromol.min(-1).kg(-1), P < 0.002) and did not change when glucose oxidation rate was decreased with hypoglycemia. These results demonstrate that, in fetal sheep, insulin promotes AA utilization and oxidation independent of its simultaneous effects on glucose metabolism. In acute hyperinsulinemic conditions, AA oxidation does not change when insulin-induced glucose utilization is prevented.  相似文献   

6.
To test the hypothesis that intrahepatic availability of fatty acid could modify the rate of suppression of endogenous glucose production (EGP), acipimox or placebo was administered before and during a test meal. We used a modified isotopic methodology to measure EGP in 11 healthy subjects, and (1)H magnetic resonance spectroscopic measurement of hepatic triglyceride stores was also undertaken. Acipimox suppressed plasma free fatty acids markedly before the meal (0.05 +/- 0.01 mmol/l at -10 min, P = 0) and throughout the postprandial period (0.03 +/- 0.01 mmol/l at 150 min). Mean peak plasma glucose was significantly lower after the meal on acipimox days (8.9 +/- 0.4 vs. 10.1 +/- 0.5 mmol/l, P < 0.01), as was mean peak serum insulin (653.1 +/- 99.9 vs. 909 +/- 118 pmol/l, P < 0.01). Fasting EGP was similar (11.15 +/- 0.58 micromol.kg(-1).min(-1) placebo vs. 11.17 +/- 0.89 mg.kg(-1).min(-1) acipimox). The rate of suppression of EGP after the meal was almost identical on the 2 test days (4.36 +/- 1.52 vs. 3.69 +/- 1.21 micromol.kg(-1).min(-1) at 40 min). There was a significant negative correlation between the acipimox-induced decrease in peak plasma glucose and liver triglyceride content (r = -0.827, P = 0.002), suggesting that, when levels of liver fat were low, inhibition of lipolysis was able to affect glucose homeostasis. Acute pharmacological sequestration of fatty acids in triglyceride stores improves postprandial glucose homeostasis without effect on the immediate postprandial suppression of EGP.  相似文献   

7.
It has been suggested that insulin-induced suppression of endogenous glucose production (EGP) may be counteracted independently of increased epinephrine (Epi) or glucagon during moderate hypoglycemia. We examined EGP in nondiabetic (n = 12) and type 1 diabetic (DM1, n = 8) subjects while lowering plasma glucose (PG) from clamped euglycemia (5.6 mmol/l) to values just above the threshold for Epi and glucagon secretion (3.9 mmol/l). Individualized doses of insulin were infused to maintain euglycemia during pancreatic clamps by use of somatostatin (250 microg/h), glucagon (1.0 ng. kg(-1). min(-1)), and growth hormone (GH) (3.0 ng. kg(-1). min(-1)) infusions without need for exogenous glucose. Then, to achieve physiological hyperinsulinemia (HIns), insulin infusions were fixed at 20% above the rate previously determined for each subject. In nondiabetic subjects, PG was reduced from 5.4 +/- 0.1 mmol/l to 3.9 +/- 0.1 mmol/l in the experimental protocol, whereas it was held constant (5. 3 +/- 0.2 mmol/l and 5.5 mmol/l) in control studies. In the latter, EGP (estimated by [3-(3)H]glucose) fell to values 40% of basal (P < 0.01). In contrast, in the experimental protocol, at comparable HIns but with PG at 3.9 +/- 0.1 mmol/l, EGP was activated to values about twofold higher than in the euglycemic control (P < 0.01). In DM1 subjects, EGP failed to increase in the face of HIns and PG = 3.9 +/- 0.1 mmol/l. The decrease from basal EGP in DM1 subjects (4.4 +/- 1.0 micromol. kg(-1). min(-1)) was nearly twofold that in nondiabetics (2.5 +/- 0.8 micromol. kg(-1). min(-1), P < 0.02). When PG was lowered further to frank hypoglycemia ( approximately 3.1 mmol/l), the failure of EGP activation in DM1 subjects was even more profound but associated with a 50% lower plasma Epi response (P < 0. 02) compared with nondiabetics. We conclude that glucagon- or epinephrine-independent activation of EGP may accompany other counterregulatory mechanisms during mild hypoglycemia in humans and is impaired or absent in DM1.  相似文献   

8.
Hepatic glucose fluxes and intracellular movement of glucokinase (GK) in response to increased plasma glucose and insulin were examined in 10-wk-old, 6-h-fasted, conscious Zucker diabetic fatty (ZDF) rats and lean littermates. Under basal conditions, plasma glucose (mmol/l) and glucose turnover rate (GTR; micromol.kg(-1).min(-1)) were slightly higher in ZDF (8.4 +/- 0.3 and 53 +/- 7, respectively) than in lean rats (6.2 +/- 0.2 and 45 +/- 4, respectively), whereas plasma insulin (pmol/l) was higher in ZDF (1,800 +/- 350) than in lean rats (150 +/- 14). The ratio of hepatic uridine 5'-diphosphate-glucose 3H specific activity to plasma glucose 3H specific activity ([3H]UDP-G/[3H]G; %), total hepatic glucose output (micromol.kg(-1).min(-1)), and hepatic glucose cycling (micromol.kg(-1).min(-1)) were higher in ZDF (35 +/- 5, 87 +/- 16, and 33 +/- 10, respectively) compared with lean rats (18 +/- 3, 56 +/- 6, and 11 +/- 2, respectively). [3H]glucose incorporation into glycogen (micromol glucose/g liver) was similar in lean (1.0 +/- 0.7) and ZDF (1.6 +/- 0.8) rats. GK was predominantly located in the nucleus in both rats. With elevated plasma glucose and insulin, GTR (micromol.kg(-1).min(-1)), [3H]UDP-G/[3H]G (%), and [3H]glucose incorporation into glycogen (micromol glucose/g liver) were markedly higher in lean (191 +/- 22, 62 +/- 3, and 5.0 +/- 1.4, respectively) but similar in ZDF rats (100 +/- 6, 37 +/- 3, and 1.4 +/- 0.4, respectively) compared with basal conditions. GK translocation from the nucleus to the cytoplasm occurred in lean but not in ZDF rats. The unresponsiveness of hepatic glucose flux to the rise in plasma glucose and insulin seen in prediabetic ZDF rats was associated with impaired GK translocation.  相似文献   

9.
Arteriovenous difference and tracer ([3-(3)H]glucose) techniques were used in 42-h-fasted conscious dogs to identify any insulin-like effects of intraportally administered glucagon-like peptide 1-(7-36)amide (GLP-1). Each study consisted of an equilibration, a basal, and three 90-min test periods (P1, P2, and P3) during which somatostatin, intraportal insulin (3-fold basal) and glucagon (basal), and peripheral glucose were infused. Saline was infused intraportally in P1. During P2 and P3, GLP-1 was infused intraportally at 0.9 and 5.1 pmol. kg(-1). min(-1) in eight dogs, at 10 and 20 pmol. kg(-1). min(-1) in seven dogs, and at 0 pmol. kg(-1). min(-1) in eight dogs (control group). Net hepatic glucose uptake was significantly enhanced during GLP-1 infusion at 20 pmol. kg(-1). min(-1) [21.8 vs. 13.4 micromol. kg(-1). min(-1) (control), P < 0.05]. Glucose utilization was significantly increased during infusion at 10 and 20 pmol. kg(-1). min(-1) [87.3 +/- 8.3 and 105.3 +/- 12.8, respectively, vs. 62.2 +/- 5.3 and 74.7 +/- 7.4 micromol. kg(-1). min(-1) (control), P < 0.05]. The glucose infusion rate required to maintain hyperglycemia was increased (P < 0.05) during infusion of GLP-1 at 5.1, 10, and 20 pmol. kg(-1). min(-1) (22, 36, and 32%, respectively, greater than control). Nonhepatic glucose uptake increased significantly during delivery of GLP-1 at 5.1 and 10 pmol. kg(-1). min(-1) (25 and 46% greater than control) and tended (P = 0.1) to increase during GLP-1 infusion at 20 pmol. kg(-1). min(-1) (24% greater than control). Intraportal infusion of GLP-1 at high physiological and pharmacological rates increased glucose disposal primarily in nonhepatic tissues.  相似文献   

10.
Effect of stimulation of glucokinase (GK) export from the nucleus by small amounts of sorbitol on hepatic glucose flux in response to elevated plasma glucose was examined in 6-h fasted Zucker diabetic fatty rats at 10 wk of age. Under basal conditions, plasma glucose, insulin, and glucagon were approximately 8 mM, 2,000 pmol/l, and 60 ng/l, respectively. Endogenous glucose production (EGP) was 44 +/- 4 micromol x kg(-1) x min(-1). When plasma glucose was raised to approximately 17 mM, GK was still predominantly localized with its inhibitory protein in the nucleus. EGP was not suppressed. When sorbitol was infused at 5.6 and 16.7 micromol x kg(-1) x min(-1), along with the increase in plasma glucose, GK was exported to the cytoplasm. EGP (23 +/- 19 and 12 +/- 5 micromol x kg(-1) x min(-1)) was suppressed without a decrease in glucose 6-phosphatase flux (145 +/- 23 and 126 +/- 16 vs. 122 +/- 10 micromol x kg(-1) x min(-1) without sorbitol) but increased in glucose phosphorylation as indicated by increases in glucose recycling (122 +/- 17 and 114 +/- 19 vs. 71 +/- 11 microl x kg(-1) x min(-1)), glucose-6-phosphate content (254 +/- 32 and 260 +/- 35 vs. 188 +/- 20 nmol/g liver), fractional contribution of plasma glucose to uridine 5'-diphosphate-glucose flux (43 +/- 8 and 42 +/- 8 vs. 27 +/- 6%), and glycogen synthesis from plasma glucose (20 +/- 4 and 22 +/- 5 vs. 9 +/- 4 mumol glucose/g liver). The decreased glucose effectiveness to suppress EGP and stimulate hepatic glucose uptake may result from failure of the sugar to activate GK by stimulating the translocation of the enzyme.  相似文献   

11.
We assessed basal glucose metabolism in 16 female nonpregnant (NP) and 16 late-pregnant (P) conscious, 18-h-fasted dogs that had catheters inserted into the hepatic and portal veins and femoral artery approximately 17 days before the experiment. Pregnancy resulted in lower arterial plasma insulin (11 +/- 1 and 4 +/- 1 microU/ml in NP and P, respectively, P < 0.05), but plasma glucose (5.9 +/- 0.1 and 5.6 +/- 0.1 mg/dl in NP and P, respectively) and glucagon (39 +/- 3 and 36 +/- 2 pg/ml in NP and P, respectively) were not different. Net hepatic glucose output was greater in pregnancy (42.1 +/- 3.1 and 56.7 +/- 4.0 micromol. 100 g liver(-1).min(-1) in NP and P, respectively, P < 0.05). Total net hepatic gluconeogenic substrate uptake (lactate, alanine, glycerol, and amino acids), a close estimate of the gluconeogenic rate, was not different between the groups (20.6 +/- 2.8 and 21.2 +/- 1.8 micromol. 100 g liver(-1). min(-1) in NP and P, respectively), indicating that the increment in net hepatic glucose output resulted from an increase in the contribution of glycogenolytically derived glucose. However, total glycogenolysis was not altered in pregnancy. Ketogenesis was enhanced nearly threefold by pregnancy (6.9 +/- 1.2 and 18.2 +/- 3.4 micromol. 100 g liver(-1).min(-1) in NP and P, respectively), despite equivalent net hepatic nonesterified fatty acid uptake. Thus late pregnancy in the dog is not accompanied by changes in the absolute rates of gluconeogenesis or glycogenolysis. Rather, repartitioning of the glucose released from glycogen is responsible for the increase in hepatic glucose production.  相似文献   

12.
Aging is associated with insulin resistance, often attributable to obesity and inactivity. Recent evidence suggests that skeletal muscle insulin resistance in aging is associated with mitochondrial alterations. Whether this is true of the senescent myocardium is unknown. Twelve young (Y, 4 years old) and 12 old (O, 11 years old) dogs, matched for body mass, were instrumented with left-ventricular pressure gauges, aortic and coronary sinus catheters, and flow probes on left circumflex artery. Before surgery, all dogs participated in a 6-wk exercise program. Dogs underwent measurements of hemodynamics and plasma substrates before and during a 2-h hyperinsulinemic-euglycemic clamp to measure whole body and myocardial glucose and nonesterified fatty acid uptake. Following the protocol, myocardial and skeletal samples were obtained to measure components of the insulin-signaling cascade and mitochondrial structure. There was no difference in plasma glucose (Y, 90 +/- 4 mg/dl; O, 87 +/- 4 mg/dl), but old dogs had higher (P < 0.02) nonesterified fatty acids (Y, 384 +/- 48 micromol/l; O, 952 +/- 97 micromol/l) and plasma insulin (Y, 39 +/- 11 pmol/l; O, 108 +/- 18 pmol/l). Old dogs had impaired total body glucose disposition (Y, 11.5 +/- 1 mg x kg(-1) x min(-1); O, 8.0 +/- 0.5 mg x kg(-1) x min(-1); P < 0.05) and insulin-stimulated myocardial glucose uptake (Y, 3.5 +/- 0.3 mg x min(-1) x g(-1); O, 1.8 +/- 0.3 mg x min(-1) x g(-1); P < 0.05). The impaired insulin action was associated with altered insulin signaling and glucose transporter (GLUT4) translocation. There were myocardial mitochondrial structural changes observed in association with decreased expression of uncoupling protein-3. Aging is associated with both whole body and myocardial insulin resistance, independent of obesity and inactivity, but involving altered mitochondrial structure and impaired cellular insulin action.  相似文献   

13.
Insulin resistance in acromegaly causes glucose intolerance and diabetes, but it is unknown whether it involves protein metabolism, since both insulin and growth hormone promote protein accretion. The effects of acromegaly and of its surgical cure on the insulin sensitivity of glucose and amino acid/protein metabolism were evaluated by infusing [6,6-(2)H(2)]glucose, [1-(13)C]leucine, and [2-(15)N]glutamine during a euglycemic insulin (1 mU x kg(-1) x min(-1)) clamp in 12 acromegalic patients, six studied again 6 mo after successful adenomectomy, and eight healthy controls. Acromegalic patients, compared with postsurgical and control subjects, had higher postabsorptive glucose concentration (5.5 +/- 0.3 vs. 4.9 +/- 0.2 micromol/l, P < 0.05, and 5.1 +/- 0.1 micromol/l) and flux (2.7 +/- 0.1 vs. 2.0 +/- 0.2 micromol x kg(-1) x min(-1), P < 0.01, and 2.2 +/- 0.1 micromol x kg(-1) x min(-1), P < 0.05) and reduced insulin-stimulated glucose disposal (+15 +/- 9 vs. +151 +/- 18%, P < 0.01, and 219 +/- 58%, P < 0.001 from basal). Postabsorptive leucine metabolism was similar among groups. In acromegalic and postsurgical subjects, insulin suppressed less than in controls the endogenous leucine flux (-9 +/- 1 and -12 +/- 2 vs. -18 +/- 2%, P < 0.001 and P < 0.05), the nonoxidative leucine disposal (-4 +/- 3 and -1 +/- 3 vs. -18 +/- 2%, P < 0.01 and P < 0.05), respectively, indexes of proteolysis and protein synthesis, and leucine oxidation (-17 +/- 6% in postsurgical patients vs. -26 +/- 6% in controls, P < 0.05). Within 6 mo, surgery reverses insulin resistance for glucose but not for protein metabolism. After adenomectomy, more leucine is oxidized during hyperinsulinemia.  相似文献   

14.
We examined the effects of increased glucose availability on glucose kinetics and substrate utilization in horses during exercise. Six conditioned horses ran on a treadmill for 90 min at 34 +/- 1% of maximum oxygen uptake. In one trial [glucose (Glu)], glucose was infused at a mean rate of 34.9 +/- 1.1 micromol. kg(-1). min(-1), whereas in the other trial [control (Con)] an equivalent volume of isotonic saline was infused. Plasma glucose increased during exercise in Glu (90 min: 8.3 +/- 1.7 mM) but was largely unchanged in Con (90 min: 5.1 +/- 0.4 mM). In Con, hepatic glucose production (HGP) increased during exercise, reaching a peak of 38.6 +/- 2.7 micromol. kg(-1). min(-1) after 90 min. Glucose infusion partially suppressed (P < 0.05) the rise in HGP (peak value 25.8 +/- 3.3 micromol. kg(-1). min(-1)). In Con, glucose rate of disappearance (R(d)) rose to a peak of 40.4 +/- 2.9 micromol. kg(-1). min(-1) after 90 min; in Glu, augmented glucose utilization was reflected by values for glucose R(d) that were twofold higher (P < 0.001) than in Con between 30 and 90 min. Total carbohydrate oxidation was higher (P < 0.05) in Glu (187.5 +/- 8.5 micromol. kg(-1). min(-1)) than in Con (159.2 +/- 7.3 micromol. kg(-1).min(-1)), but muscle glycogen utilization was similar between trials. We conclude that an increase in glucose availability in horses during low-intensity exercise 1) only partially suppresses HGP, 2) attenuates the decrease in carbohydrate oxidation during such exercise, but 3) does not affect muscle glycogen utilization.  相似文献   

15.
Dietary carbohydrate restriction (CR) presents a challenge to glucose homeostasis. Despite the popularity of CR diets, little is known regarding the metabolic effects of CR. The purpose of this study was to examine changes in whole body carbohydrate oxidation, glucose availability, endogenous glucose production, and peripheral glucose uptake after dietary CR, without the confounding influence of a negative energy balance. Postabsorptive rates of glucose appearance in plasma (R(a); i.e., endogenous glucose production) and disappearance from plasma (R(d); i.e., glucose uptake) were measured using isotope dilution methods after a conventional diet [60% carbohydrate (CHO), 30% fat, and 10% protein; kcals = 1.3 x resting energy expenditure (REE)] and after 2 days and 7 days of CR (5% CHO, 60% fat, and 35% protein; kcals = 1.3 x REE) in eight subjects (means +/- SE; 29 +/- 4 yr; BMI 24 +/- 1 kg/m(2)) during a 9-day hospital visit. Postabsorptive plasma glucose concentration was reduced (P = 0.01) after 2 days but returned to prediet levels the next day and remained at euglycemic levels throughout the diet (5.1 +/- 0.2, 4.3 +/- 0.3, and 4.8 +/- 0.4 mmol/l for prediet, 2 days and 7 days, respectively). Glucose R(a) and glucose R(d) were reduced to below prediet levels (9.8 +/- 0.6 micromol x kg(-1) x min(-1)) after 2 days of CR (7.9 +/- 0.3 micromol x kg(-1) x min(-1)) and remained suppressed after 7 days (8.3 +/- 0.4 micromol x kg(-1) x min(-1); both P < 0.001). A greater suppression in carbohydrate oxidation, compared with the reduction in glucose R(d), led to an increased (all P 相似文献   

16.
This study aimed to test whether stimulation of net hepatic glucose output (NHGO) by increased concentrations of the AMP analog, 5-aminoimidazole-4-carboxamide-1-beta-d-ribosyl-5-monophosphate, can be suppressed by pharmacological insulin levels. Dogs had sampling (artery, portal vein, hepatic vein) and infusion (vena cava, portal vein) catheters and flow probes (hepatic artery, portal vein) implanted >16 days before study. Protocols consisted of equilibration (-130 to -30 min), basal (-30 to 0 min), and hyperinsulinemic-euglycemic (0-150 min) periods. At time (t) = 0 min, somatostatin was infused, and basal glucagon was replaced via the portal vein. Insulin was infused in the portal vein at either 2 (INS2) or 5 (INS5) mU.kg(-1).min(-1). At t = 60 min, 1 mg.kg(-1).min(-1) portal venous 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR) infusion was initiated. Arterial insulin rose approximately 9- and approximately 27-fold in INS2 and INS5, respectively. Glucagon, catecholamines, and cortisol did not change throughout the study. NHGO was completely suppressed before t = 60 min. Intraportal AICAR stimulated NHGO by 1.9 +/- 0.5 and 2.0 +/- 0.5 mg.kg(-1).min(-1) in INS2 and INS5, respectively. AICAR stimulated tracer-determined endogenous glucose production similarly in both groups. Intraportal AICAR infusion significantly increased hepatic acetyl-CoA carboxylase (ACC, Ser(79)) phosphorylation in INS2. Hepatic ACC (Ser(79)) phosphorylation, however, was not increased in INS5. Thus intraportal AICAR infusion renders hepatic glucose output insensitive to pharmacological insulin. The effectiveness of AICAR in countering the suppressive effect of pharmacological insulin on NHGO occurs even though AICAR-stimulated ACC phosphorylation is completely blocked.  相似文献   

17.
Apelin is the endogenous ligand of the G-protein coupled apj receptor. Apelin is expressed in the brain, the hypothalamus and the stomach and was recently shown also to be an adipokine secreted from the adipocytes. Although apelin has been suggested to be involved in the regulation of food intake, it is not known whether the peptide affects islet function and glucose homeostasis. We show here that the apj receptor is expressed in pancreatic islets and that intravenous administration of full-length apelin-36 (2 nmol/kg) inhibits the rapid insulin response to intravenous glucose (1 g/kg) by 35% in C57BL/6J mice. Thus, the acute (1-5 min) insulin response to intravenous glucose was 682+/-23 pmol/l after glucose alone (n=17) and 445+/-58 pmol/l after glucose plus apelin-36 (n=18; P=0.017). This was associated with impaired glucose elimination (the 5-20 min glucose elimination was 2.9+/-0.1%/min after glucose alone versus 2.3+/-0.2%/min after glucose plus apelin-36, P=0.008). Apelin (2 nmol/kg) also inhibited the insulin response to intravenous glucose in obese insulin resistant high-fat fed C57BL/6J mice (P=0.041). After 60 min incubation of isolated islets from normal mice, insulin secretion in the presence of 16.7 mmol/l glucose was inhibited by apelin-36 at 1 mumol/l, whereas apelin-36 did not significantly affect insulin secretion at 2.8 or 8.3 mmol/l glucose or after stimulation of insulin secretion by KCl. Islet glucose oxidation at 16.7 mmol/l was not affected by apelin-36. We conclude that the apj receptor is expressed in pancreatic islets and that apelin-36 inhibits glucose-stimulated insulin secretion both in vivo and in vitro. This may suggest that the islet beta-cells are targets for apelin-36.  相似文献   

18.
We examined whether intraportal delivery of neuropeptide Y (NPY) affects glucose metabolism in 42-h-fasted conscious dogs using arteriovenous difference methodology. The experimental period was divided into three subperiods (P1, P2, and P3). During all subperiods, the dogs received infusions of somatostatin, intraportal insulin (threefold basal), intraportal glucagon (basal), and peripheral intravenous glucose to increase the hepatic glucose load twofold basal. Following P1, in the NPY group (n = 7), NPY was infused intraportally at 0.2 and 5.1 pmol.kg(-1).min(-1) during P2 and P3, respectively. The control group (n = 7) received intraportal saline infusion without NPY. There were no significant changes in hepatic blood flow in NPY vs. control. The lower infusion rate of NPY (P2) did not enhance net hepatic glucose uptake. During P3, the increment in net hepatic glucose uptake (compared with P1) was 4 +/- 1 and 10 +/- 2 micromol.kg(-1).min(-1) in control and NPY, respectively (P < 0.05). The increment in net hepatic fractional glucose extraction during P3 was 0.015 +/- 0.005 and 0.039 +/- 0.008 in control and NPY, respectively (P < 0.05). Net hepatic carbon retention was enhanced in NPY vs. control (22 +/- 2 vs. 14 +/- 2 micromol.kg(-1).min(-1), P < 0.05). There were no significant differences between groups in the total glucose infusion rate. Thus, intraportal NPY stimulates net hepatic glucose uptake without significantly altering whole body glucose disposal in dogs.  相似文献   

19.
The aim of this study was to determine the effects of a short-term high-intensity exercise program on diastolic function and glucose tolerance in obese individuals with and without metabolic syndrome (MetSyn). Obese men and women (BMI > 30 kg/m(2); 39-60 years) with and without the MetSyn (MetSyn 13; non-MetSyn 18) underwent exercise training consisting of 10 consecutive days of treadmill walking for 1 h/day at 70-75% of peak aerobic capacity. Subjects performed pre- and post-training testing for aerobic capacity, glucose tolerance (2-h meal test), and standard echocardiography. Aerobic capacity improved for both groups (non-MetSyn 24.0 +/- 1.6 ml/kg/min vs. 25.1 +/- 1.5 ml/kg/min; MetSyn 25.2 +/- 1.8 ml/kg/min vs. 26.2 +/- 1.7 ml/kg/min, P < 0.05). Glucose area under the curve (AUC) improved in the MetSyn group (1,017 +/- 58 pmol/l/min vs. 883 +/- 75 pmol/l/min, P < 0.05) with no change for the non-MetSyn group (685 +/- 54 pmol/l/min vs. 695 +/- 70 pmol/l/min). Isovolumic relaxation time (IVRT) improved in the MetSyn group (97 +/- 6 ms vs. 80 +/- 5 ms, P < 0.05), and remained normal in the non-MetSyn group (82 +/- 6 ms vs. 86 +/- 5 ms). No changes in other diastolic parameters were observed. The overall reduction in IVRT was correlated with a decrease in diastolic blood pressure (DBP) (r = 0.45, P < 0.05), but not with changes in glucose tolerance. Body weight did not change with training in either group. A 10-day high-intensity exercise program improved diastolic function and glucose tolerance in the group with MetSyn. The reduction in IVRT in MetSyn was associated with a fall in blood pressure. These data suggest that it may be possible to reverse early parameters of diastolic dysfunction in MetSyn with a high-intensity exercise program.  相似文献   

20.
We measured splanchnic and leg glucose uptake during prolonged (i.e., 15 hours), moderate hyperglycemia-hyperinsulinemia (clamp). Plasma free fatty acid (FFA) concentration was maintained at basal concentration during the clamp via infusion of exogenous lipids and heparin in healthy volunteers to create a metabolic profile similar to glucose intolerance (i.e., hyperglycemia-hyperinsulinemia with elevated FFA concentration). During the clamp, glucose was infused at an average rate of 49 +/- 4 micromol/kg/min, which resulted in a plasma glucose concentration of 8.8 +/- 0.5 mmol/L compared with a concentration of 4.4 +/- 0.2 mmol/L in the basal state (P < 0.05). Insulin concentration increased from 5.5 +/- 1.1 microU/mL (basal) to 31.3 +/- 12.7 microU/mL (clamp; P < 0.05), whereas plasma FFA concentration was similar in the two conditions (3.9 +/- 0.5 mmol/L and 4.1 +/- 0.5 mmol/L, basal and clamp, respectively). Glucose balance across the splanchnic region switched from net release (-5.8 +/- 0.7 micromol/kg/min) in the basal state to net uptake in the clamp (19.8 +/- 3.7 micromol/kg/min; P < 0.05) and accounted for approximately 40% of the infused glucose. Glucose uptake across the leg was 0.7 +/- 0.2 micromol/kg/min (basal) and 5.5 +/- 2.2 micromol/kg/min (clamp; P < 0.05). In summary, tissues in the splanchnic region (i.e., liver) are important for disposal of intravenously infused glucose during prolonged, moderate hyperglycemia-hyperinsulinemia. Accelerated hepatic glucose uptake may disrupt normal liver metabolism, with potentially dangerous consequences for the patient. Measures to control systemic glucose concentration may be necessary to prevent excessive glucose disposal in the liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号