首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The neurotoxin 1-methy-4-phenylpyridinium (MPP+) is used for its’ capacity to induce Parkinsonism through its inhibitory effects on mitochondrial complex I. This inhibition disrupts cellular energy formation and aerobic glycolysis. The objective of this study was to demonstrate that the toxic effect of mitochondrial aerobic pathway inhibition with MPP+ can be reduced by stimulating anaerobic glycolysis using glucose supplementation. In this study, C6 Glioma cell viability was examined in the presence of different concentrations of MPP alone and with the addition of glucose. The results obtained indicate that there was a significant increase (P < 0.001) in cell viability in cells treated with glucose and MPP+ verses cells treated with MPP+ alone. Fluorometric analysis using 100 uM Rhodamine 123 indicated mitochondrial membrane potential was not restored in MPP+ treated cells with glucose; however, normal cell viability was confirmed using 2 ug/ml Fluorescein diacetate. This dual fluorescence indicated mitochondrial damage from MPP+ while glucose augmented cell survival. Further confirmation of cell survival upon damage to the mitochondria was evident in TUNEL staining. Positive staining was prominent only in MPP+ treatment groups alone, while control and co-treated groups exhibited little to no TUNEL staining. ATP measurements of all MPP+ treated groups exhibited a significant (P < 0.001) decrease verses control. Groups co-treated with MPP+ and glucose revealed a significant increase (250 μM group: P < 0.001) in ATP. It was concluded from this study that glucose supplementation was able to sustain cellular viability and ATP production through anaerobic glycolysis despite the inhibitory effect of MPP+ on aerobic glycolysis.  相似文献   

2.
Diabetic nephropathy is the leading cause of end-stage renal disease in the United States. Despite several studies indicating a role for mitochondrial oxidative stress and mitochondrial dysfunction in the development of diabetic complications, the precise mechanisms underlying renal mitochondrial dysfunction and renal cell injury remain unclear. The hypothesis of the current study was that high-glucose-mediated generation of mitochondrial superoxide is a key early event that leads to mitochondrial injury in renal proximal tubular cells. To ascertain the role of mitochondrial superoxide we have tested whether overexpression of the primary mitochondrial antioxidant, manganese superoxide dismutase (MnSOD), protects against hyperglycemia-induced renal injury using normal rat renal proximal tubular cells (NRK). NRK cells were exposed to high glucose (25 mM) and the changes in the mitochondrial membrane potential, ATP levels, and superoxide generation and the loss of cell viability were measured at 24 and 48 h after high glucose exposure. Our results indicate that high glucose first induced superoxide generation and hyperpolarization in the mitochondria, followed by a secondary event, which involved a decline in ATP levels, partial Complex III inactivation, and loss of cell viability. These high-glucose-induced changes were completely prevented by overexpression of MnSOD in NRK cells. However, MnSOD activity was not changed after high glucose exposure in vitro or during the early stages of diabetes using the streptozotocin rat model. These findings show for the first time that hyperglycemic induction of superoxide production within the mitochondria initiates specific mitochondrial injury (i.e., Complex III) via a mechanism independent of MnSOD inactivation.  相似文献   

3.
Excess glucose and free fatty acids delivered to adipose tissue causes local inflammation, which contributes to insulin resistance. Glucose and palmitate generate reactive oxygen species (ROS) in adipocytes, leading to monocyte chemotactic factor gene expression. Docosahexaenoate (DHA) has the opposite effect. In this study, we evaluated the potential sources of ROS in the presence of excess nutrients. Differentiated 3T3-L1 adipocytes were exposed to palmitate and DHA (250 μM) in either 5 or 25 mM glucose to evaluate the relative roles of mitochondrial electron transport and NADPH oxidases (NOX) as sources of ROS. Excess glucose and palmitate did not increase mitochondrial oxidative phosphorylation. However, glucose exposure increased glycolysis. Of the NOX family members, only NOX4 was expressed in adipocytes. Moreover, its activity was increased by excess glucose and palmitate and decreased by DHA. Silencing NOX4 inhibited palmitate- and glucose-stimulated ROS generation and monocyte chemotactic factor gene expression. NADPH, a substrate for NOX, and pentose phosphate pathway activity increased with glucose but not palmitate and decreased with DHA exposure. Inhibition of the pentose phosphate pathway by glucose-6-phosphate dehydrogenase inhibitors and siRNA suppressed ROS generation and monocyte chemotactic factor gene expression induced by both glucose and palmitate. Finally, both high glucose and palmitate induced NOX4 translocation into lipid rafts, effects that were blocked by DHA. Excess glucose and palmitate generate ROS via NOX4 rather than by mitochondrial oxidation in cultured adipocytes. NOX4 is regulated by both NADPH generated in the PPP and translocation of NOX4 into lipid rafts, leading to expression of monocyte chemotactic factors.  相似文献   

4.
Instead of relying on mitochondrial oxidative phosphorylation, most cancer cells rely heavily on aerobic glycolysis, a phenomenon termed as “the Warburg effect”. We considered that this effect is a direct consequence of damage which persists in cancer cells that recover from damage. To this end, we studied glycolysis and rate of cell proliferation in cancer cells that recovered from severe damage. We show that in vitro Damage-Recovered (DR) cells exhibit mitochondrial structural remodeling, display Warburg effect, and show increased in vitro and in vivo proliferation and tolerance to damage. To test whether cancer cells derived from tumor microenvironment can show similar properties, we isolated Damage-Recovered (TDR) cells from tumors. We demonstrate that TDR cells also show increased aerobic glycolysis and a high proliferation rate. These findings show that Warburg effect and its consequences are induced in cancer cells that survive severe damage.  相似文献   

5.
Astrocytes play a key role in removing the synaptically released glutamate from the extracellular space and maintaining the glutamate below neurotoxic level in the brain. However, high concentration of glutamate leads to toxicity in astrocytes, and the underlying mechanisms are unclear. The purpose of this study was to investigate whether energy metabolism disorder, especially impairment of mitochondrial respiration, is involved in the glutamate‐induced gliotoxicity. Exposure to 10‐mM glutamate for 48 h stimulated glycolysis and respiration in astrocytes. However, the increased oxygen consumption was used for proton leak and non‐mitochondrial respiration, but not for oxidative phosphorylation and ATP generation. When the exposure time extended to 72 h, glycolysis was still activated for ATP generation, but the mitochondrial ATP‐linked respiration of astrocytes was reduced. The glutamate‐induced astrocyte damage can be mimicked by the non‐metabolized substrate d ‐aspartate but reversed by the non‐selective glutamate transporter inhibitor TBOA. In addition, the glutamate toxicity can be partially reversed by vitamin E. These findings demonstrate that changes of bioenergetic profile occur in cultured cortical astrocytes exposed to high concentration of glutamate and highlight the role of mitochondria respiration in glutamate‐induced gliotoxicity in cortical astrocytes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
Maintenance and adaptation of energy metabolism could play an important role in the cellular ability to respond to DNA damage. A large number of studies suggest that the sensitivity of cells to oxidants and oxidative stress depends on the activity of cellular metabolism and is dependent on the glucose concentration. In fact, yeast cells that utilize fermentative carbon sources and hence rely mainly on glycolysis for energy appear to be more sensitive to oxidative stress. Here we show that treatment of the yeast Saccharomyces cerevisiae growing on a glucose-rich medium with the DNA alkylating agent methyl methanesulphonate (MMS) triggers a rapid inhibition of respiration and enhances reactive oxygen species (ROS) production, which is accompanied by a strong suppression of glycolysis. Further, diminished activity of pyruvate kinase and glyceraldehyde-3-phosphate dehydrogenase upon MMS treatment leads to a diversion of glucose carbon to glycerol, trehalose and glycogen accumulation and an increased flux through the pentose-phosphate pathway. Such conditions finally result in a significant decline in the ATP level and energy charge. These effects are dependent on the glucose concentration in the medium. Our results clearly demonstrate that calorie restriction reduces MMS toxicity through increased respiration and reduced ROS accumulation, enhancing the survival and recovery of cells.  相似文献   

7.
The high glucose consumption of tumor cells even in an oxygen-rich environment, referred to as the Warburg effect, has been noted as a nearly universal biochemical characteristic of cancer cells. Targeting the glycolysis pathway has been explored as an anti-cancer therapeutic strategy to eradicate cancer based on this fundamental biochemical property of cancer cells. Oncoproteins such as Akt and c-Myc regulate cell metabolism. Accumulating studies have uncovered various molecular mechanisms by which oncoproteins affect cellular metabolism, raising a concern as to whether targeting glycolysis will be equally effective in treating cancers arising from different oncogenic activities. Here, we established a dual-regulatable FL5.12 pre-B cell line in which myristoylated Akt is expressed under the control of doxycycline, and c-Myc, fused to the hormone-binding domain of the human estrogen receptor, is activated by 4-hydroxytamoxifen. Using this system, we directly compared the effect of these oncoproteins on cell metabolism in an isogenic background. Activation of either Akt or c-Myc leads to the Warburg effect as indicated by increased cellular glucose uptake, glycolysis, and lactate generation. When cells are treated with glycolysis inhibitors, Akt sensitizes cells to apoptosis, whereas c-Myc does not. In contrast, c-Myc but not Akt sensitizes cells to the inhibition of mitochondrial function. This is correlated with enhanced mitochondrial activities in c-Myc cells. Hence, although both Akt and c-Myc promote aerobic glycolysis, they differentially affect mitochondrial functions and render cells susceptible to the perturbation of cellular metabolic programs.  相似文献   

8.
Mammalian sperm metabolism: oxygen and sugar, friend and foe   总被引:1,自引:0,他引:1  
Mammalian spermatozoa expend energy, generated as intracellular ATP, largely on motility. If the sperm cell cannot swim by use of its flagellar motion, it cannot fertilize the egg. Studies of the means by which this energy is generated span a period of six decades. This review gives an overview of these studies, which demonstrate that both mitochondrial oxidative phosphorylation, for which oxygen is friend, and glycolysis, for which sugar is friend, can provide the energy, independent of one another. In mouse sperm, glycolysis appears to be the dominant pathway; in bull sperm, oxidative phosphorylation is the predominant pathway. In the case of bull sperm, the high activity of the glycolytic pathway would maintain the intracellular pH too low to allow sperm capacitation; here sugar is enemy. The cow's oviduct has very low glucose concentration, thus allowing capacitation to go forward. The choice of the pathway of energy generation in vivo is set by the conditions in the oviduct of the conspecific female. The phospholipids of the sperm plasma membrane have a high content of polyunsaturated fatty acids represented in their acyl moieties, rendering them highly susceptible to lipid peroxidation; in this case oxygen is enemy. But the susceptibility of the sperm membrane to lethal damage by lipid peroxidation allows the female oviduct to dispose of sperm that have overstayed their welcome, and so keep in balance sperm access to the egg and sperm removal once this has occurred.  相似文献   

9.
The naturally occurring triterpenoid betulinic acid (BA) shows pronounced polypharmacology ranging from anti-inflammatory to anti-lipogenic activities. Recent evidence suggests that rather diverse cellular signaling events may be attributed to the same common upstream switch in cellular metabolism. In this study we therefore examined the metabolic changes induced by BA (10 µM) administration, with focus on cellular glucose metabolism. We demonstrate that BA elevates the rates of cellular glucose uptake and aerobic glycolysis in mouse embryonic fibroblasts with concomitant reduction of glucose oxidation. Without eliciting signs of obvious cell death BA leads to compromised mitochondrial function, increased expression of mitochondrial uncoupling proteins (UCP) 1 and 2, and liver kinase B1 (LKB1)-dependent activation AMP-activated protein kinase. AMPK activation accounts for the increased glucose uptake and glycolysis which in turn are indispensable for cell viability upon BA treatment. Overall, we show for the first time a significant impact of BA on cellular bioenergetics which may be a central mediator of the pleiotropic actions of BA.  相似文献   

10.
We recently demonstrated that cancer cells that recover from damage exhibit increased aerobic glycolysis, however, the molecular mechanism by which cancer cells survive the damage and show increased aerobic glycolysis remains unknown. Here, we demonstrate that diverse cancer cells that survive hypoxic or oxidative damage show rapid cell proliferation, and develop tolerance to damage associated with increased production of hydrogen sulfide (H2S) which drives up-regulation of nicotinamide phosphoribosyltransferase (Nampt). Consistent with existence of a H2S-Nampt energetic circuit, in damage recovered cancer cells, H2S, Nampt and ATP production exhibit a significant correlation. Moreover, the treatment of cancer cells with H2S donor, NaHS, coordinately increases Nampt and ATP levels, and protects cells from drug induced damage. Inhibition of cystathionine beta synthase (CBS) or cystathionase (CTH), enzymes which drive generation of H2S, decreases Nampt production while suppression of Nampt pathway by FK866, decreases H2S and ATP levels. Damage recovered cells isolated from tumors grown subcutaneously in athymic mice also show increased production of H2S, Nampt and ATP levels, associated with increased glycolysis and rapid proliferation. Together, these data show that upon recovery from potential lethal damage, H2S-Nampt directs energy expenditure and aerobic glycolysis in cancer cells, leads to their exponential growth, and causes a high degree of tolerance to damage. Identification of H2S-Nampt as a pathway responsible for induction of damage tolerance in cancer cells may underlie resistance to therapy and offers the opportunity to target this pathway as a means in treatment of cancer.  相似文献   

11.
It has recently been reported that the exposure of human spermatozoa to an extremely low frequency (ELF) electromagnetic field (EMF) with a square waveform of 5 mT amplitude and frequency of 50 Hz improves sperm motility. The functional relationship between the energy metabolism and the enhancement of human sperm motility induced by ELF‐EMF was investigated. Sperm exposure to ELF‐EMF resulted in a progressive and significant increase of mitochondrial membrane potential and levels of ATP, ADP and NAD+ that was associated with a progressive and significant increase in the sperm kinematic parameters. No significant effects were detected on other parameters such as ATP/ADP ratio and energy charge. When carbamoyl cyanide m‐chlorophenylhydrazone (CICCP) was applied to inhibit the oxidative phosphorylation in the mitochondria, the values of energy parameters and motility in the sperm incubated in the presence of glucose and exposed to ELF‐EMF did not change, thus indicating that the glycolysis was not involved in mediating ELF‐EMF stimulatory effect on motility. By contrast, when pyruvate and lactate were provided instead of glucose, the energy status and motility increased significantly in ELF‐EMF‐treated sperm. Under these culture conditions, the inhibition of glycolitic metabolism by 2‐deoxy‐D ‐glucose (DOG) again resulted in increased values of energy and kinematic parameters, indicating that gluconeogenesis was not involved in producing glucose for use in glycolysis. We concluded that the key role in mediating the stimulatory effects exerted by ELF‐EMF on human sperm motility is played by mitochondrial oxidative phosphorylation rather than glycolysis. Bioelectromagnetics 32:15–27, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

12.
Increased conversion of glucose to lactic acid associated with decreased mitochondrial respiration is a unique feature of tumors first described by Otto Warburg in the 1920s. Recent evidence suggests that the Warburg effect is caused by oncogenes and is an underlying mechanism of malignant transformation. Using a novel approach to measure cellular metabolic rates in vitro, the bioenergetic basis of this increased glycolysis and reduced mitochondrial respiration was investigated in two human cancer cell lines, H460 and A549. The bioenergetic phenotype was analyzed by measuring cellular respiration, glycolysis rate, and ATP turnover of the cells in response to various pharmacological modulators. H460 and A549 cells displayed a dependency on glycolysis and an ability to significantly upregulate this pathway when their respiration was inhibited. The converse, however, was not true. The cell lines were attenuated in oxidative phosphorylation (OXPHOS) capacity and were unable to sufficiently upregulate mitochondrial OXPHOS when glycolysis was disabled. This observed mitochondrial impairment was intimately linked to the increased dependency on glycolysis. Furthermore, it was demonstrated that H460 cells were more glycolytic, having a greater impairment of mitochondrial respiration, compared with A549 cells. Finally, the upregulation of glycolysis in response to mitochondrial ATP synthesis inhibition was dependent on AMP-activated protein kinase activity. In summary, our results demonstrate a bioenergetic phenotype of these two cancer cell lines characterized by increased rate of glycolysis and a linked attenuation in their OXPHOS capacity. These metabolic alterations provide a mechanistic explanation for the growth advantage and apoptotic resistance of tumor cells. oxygen consumption; oxidative phosphorylation; Warburg effect; real time  相似文献   

13.
14.
We examined brain mitochondrial function in normo- (5 mM) and hyperglycemic (50 mM) cats after 8 min of anoxia. In anoxic normoglycemic cats, mitochondrial state 3 respiration with NAD-linked substrates glutamate or pyruvate (both plus malate) was inhibited 30-50%. The uncoupler carbonylcyanide p-trifluoromethoxyphenylhydrazone (FCCP) maximally stimulated respiration, indicating that inhibition of phosphorylation, not impairment of electron transport, substrate transport, or oxidation was present. State 3 respiration with succinate (plus rotenone) was unaffected. Mitochondrial respiratory control ratios trended toward reductions whereas ADP/O ratios remained unchanged. In contrast, brain mitochondria from anoxic hyperglycemic cats showed no such inhibition of state 3 respiration and no differences in function from normo- and hyperglycemic control animals except for trends toward loose coupling. Significantly higher brain tissue glucose concentrations were present in hyperglycemic controls as the only metabolite difference compared to normoglycemic controls. At the end of anoxia, hyperglycemic cats exhibited significantly higher cortical lactate and glucose levels but similarly reduced high-energy phosphate concentrations compared to normoglycemic cats. These results demonstrate that increased availability of glucose to gray matter as a consequence of hyperglycemia maintains normal mitochondrial state 3 respiration during exposure to anoxia. Previous survival studies have shown that lower serum glucose concentrations during anoxia are relatively brain protective. This result indicates that the presently described alterations in mitochondrial respiration must be fully reversible.  相似文献   

15.
Aerobic glycolysis is the process of oxidation of glucose into pyruvate followed by lactate production under normoxic condition. Distinctive from its anaerobic counterpart (i.e. glycolysis that occurs under hypoxia), aerobic glycolysis is frequently witnessed in cancers, popularly known as the “Warburg effect”, and it is one of the earliest known evidences of metabolic alteration in neoplasms. Intracellularly, aerobic glycolysis circumvents mitochondrial oxidative phosphorylation (OxPhos), facilitating an increased rate of glucose hydrolysis. This in turn enables cancer cells to successfully compete with normal cells for glucose uptake in order to maintain uninterrupted growth. In addition, evading OxPhos mitigates excessive generation/accumulation of reactive oxygen species that otherwise may be deleterious to cells. Emerging data indicate that aerobic glycolysis in cancer also promotes glutaminolysis to satisfy the precursor requirements of certain biosynthetic processes (e.g. nucleic acids). Next, the metabolic intermediates of aerobic glycolysis also feed the pentose phosphate pathway (PPP) to facilitate macromolecular biosynthesis necessary for cancer cell growth and proliferation. Extracellularly, the extrusion of the end-product of aerobic glycolysis, i.e. lactate, alters the tumor microenvironment, and impacts cancer-associated cells. Collectively, accumulating data unequivocally demonstrate that aerobic glycolysis implicates myriad of molecular and functional processes to support cancer progression. This review, in the light of recent research, dissects the molecular intricacies of its regulation, and also deliberates the emerging paradigms to target aerobic glycolysis in cancer therapy.  相似文献   

16.
《BBA》2014,1837(2):270-276
Insulin is essential for the regulation of fuel metabolism and triggers the uptake of glucose by skeletal muscle. The imported glucose is either stored or broken down, as insulin stimulates glycogenesis and ATP synthesis. The mechanism by which ATP production is increased is incompletely understood at present and, generally, relatively little functional information is available on the effect of insulin on mitochondrial function. In this paper we have exploited extracellular flux technology to investigate insulin effects on the bioenergetics of rat (L6) and human skeletal muscle myoblasts and myotubes. We demonstrate that a 20-min insulin exposure significantly increases (i) the cell respiratory control ratio, (ii) the coupling efficiency of oxidative phosphorylation, and (iii) the glucose sensitivity of anaerobic glycolysis. The improvement of mitochondrial function is explained by an insulin-induced immediate decrease of mitochondrial proton leak. Palmitate exposure annuls the beneficial mitochondrial effects of insulin. Our data improve the mechanistic understanding of insulin-stimulated ATP synthesis, and reveal a hitherto undisclosed insulin sensitivity of cellular bioenergetics that suggests a novel way of detecting insulin responsiveness of cells.  相似文献   

17.
A unique feature of cancer cells is to convert glucose into lactate to produce cellular energy, even under the presence of oxygen. Called aerobic glycolysis [The Warburg Effect] it has been extensively studied and the concept of aerobic glycolysis in tumor cells is generally accepted. However, it is not clear if aerobic glycolysis in tumor cells is fixed, or can be reversed, especially under therapeutic stress conditions. Here, we report that mTOR, a critical regulator in cell proliferation, can be relocated to mitochondria, and as a result, enhances oxidative phosphorylation and reduces glycolysis. Three tumor cell lines (breast cancer MCF-7, colon cancer HCT116 and glioblastoma U87) showed a quick relocation of mTOR to mitochondria after irradiation with a single dose 5 Gy, which was companied with decreased lactate production, increased mitochondrial ATP generation and oxygen consumption. Inhibition of mTOR by rapamycin blocked radiation-induced mTOR mitochondrial relocation and the shift of glycolysis to mitochondrial respiration, and reduced the clonogenic survival. In irradiated cells, mTOR formed a complex with Hexokinase II [HK II], a key mitochondrial protein in regulation of glycolysis, causing reduced HK II enzymatic activity. These results support a novel mechanism by which tumor cells can quickly adapt to genotoxic conditions via mTOR-mediated reprogramming of bioenergetics from predominantly aerobic glycolysis to mitochondrial oxidative phosphorylation. Such a “waking-up” pathway for mitochondrial bioenergetics demonstrates a flexible feature in the energy metabolism of cancer cells, and may be required for additional cellular energy consumption for damage repair and survival. Thus, the reversible cellular energy metabolisms should be considered in blocking tumor metabolism and may be targeted to sensitize them in anti-cancer therapy.  相似文献   

18.
Continuous exposure of Chinese hamster ovary (CHO) cells to an atmosphere of 98% O2, 2% CO2 (normobaric hyperoxia) leads within a period of several days to cytostasis and clonogenic cell death. Here we report respiratory failure as an important early symptom of oxygen intoxication in CHO cells, resulting in a more than 80% inhibition of oxygen consumption within 3 days of hyperoxic exposure. This inhibition appeared to be correlated with selective inactivation of three mitochondrial key enzymes, NADH dehydrogenase, succinate dehydrogenase, and alpha-ketoglutarate dehydrogenase. The latter enzyme controls the influx of glutamate into the Krebs cycle and is particularly critical for oxidative ATP generation in most cultured cells, which depends on exogenous glutamine rather than glucose as a carbon source. As expected, the inactivation of alpha-ketoglutarate dehydrogenase was correlated with a fall in cellular glutamine utilization, which became apparent from the first day of hyperoxic exposure. Thereafter, glucose utilization and lactate excretion started to increase, up to 3-fold, indicating a cellular response to respiratory failure aimed at increased ATP generation from glycolysis. However, in spite of this response, the cellular ATP level progressively decreased, up to 2.5-fold. Thus, killing of CHO cells by normobaric hyperoxia seems to be due to a severe disturbance of mitochondrial metabolism eventually leading to a depletion of cellular ATP pools.  相似文献   

19.
It has been assumed, based largely on morphologic evidence, that human pluripotent stem cells (hPSCs) contain underdeveloped, bioenergetically inactive mitochondria. In contrast, differentiated cells harbour a branched mitochondrial network with oxidative phosphorylation as the main energy source. A role for mitochondria in hPSC bioenergetics and in cell differentiation therefore remains uncertain. Here, we show that hPSCs have functional respiratory complexes that are able to consume O(2) at maximal capacity. Despite this, ATP generation in hPSCs is mainly by glycolysis and ATP is consumed by the F(1)F(0) ATP synthase to partially maintain hPSC mitochondrial membrane potential and cell viability. Uncoupling protein 2 (UCP2) plays a regulating role in hPSC energy metabolism by preventing mitochondrial glucose oxidation and facilitating glycolysis via a substrate shunting mechanism. With early differentiation, hPSC proliferation slows, energy metabolism decreases, and UCP2 is repressed, resulting in decreased glycolysis and maintained or increased mitochondrial glucose oxidation. Ectopic UCP2 expression perturbs this metabolic transition and impairs hPSC differentiation. Overall, hPSCs contain active mitochondria and require UCP2 repression for full differentiation potential.  相似文献   

20.
Parkinson disease is associated with decreased activity of the mitochondrial electron transport chain. This defect can be recapitulated in vitro by challenging dopaminergic cells with 1-methyl-4-phenylpyridinium (MPP+), a neurotoxin that inhibits complex I of electron transport chain. Consequently, oxidative phosphorylation is blocked, and cells become dependent on glycolysis for ATP production. Therefore, increasing the rate of glycolysis might help cells to produce more ATP to meet their energy demands. In the present study, we show that microRNA-7, a non-coding RNA that protects dopaminergic neuronal cells against MPP+-induced cell death, promotes glycolysis in dopaminergic SH-SY5Y and differentiated human neural progenitor ReNcell VM cells, as evidenced by increased ATP production, glucose consumption, and lactic acid production. Through a series of experiments, we demonstrate that targeted repression of RelA by microRNA-7, as well as subsequent increase in the neuronal glucose transporter 3 (Glut3), underlies this glycolysis-promoting effect. Consistently, silencing Glut3 expression diminishes the protective effect of microRNA-7 against MPP+. Further, microRNA-7 fails to prevent MPP+-induced cell death when SH-SY5Y cells are cultured in a low glucose medium, as well as when differentiated ReNcell VM cells or primary mouse neurons are treated with the hexokinase inhibitor, 2-deoxy-d-glucose, indicating that a functional glycolytic pathway is required for this protective effect. In conclusion, microRNA-7, by down-regulating RelA, augments Glut3 expression, promotes glycolysis, and subsequently prevents MPP+-induced cell death. This protective effect of microRNA-7 could be exploited to correct the defects in oxidative phosphorylation in Parkinson disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号