共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Rizhsky L Hallak-Herr E Van Breusegem F Rachmilevitch S Barr JE Rodermel S Inzé D Mittler R 《The Plant journal : for cell and molecular biology》2002,32(3):329-342
The plant genome is a highly redundant and dynamic genome. Here, we show that double antisense plants lacking the two major hydrogen peroxide-detoxifying enzymes, ascorbate peroxidase (APX) and catalase (CAT), activate an alternative/redundant defense mechanism that compensates for the lack of APX and CAT. A similar mechanism was not activated in single antisense plants that lacked APX or CAT, paradoxically rendering these plants more sensitive to oxidative stress compared to double antisense plants. The reduced susceptibility of double antisense plants to oxidative stress correlated with suppressed photosynthetic activity, the induction of metabolic genes belonging to the pentose phosphate pathway, the induction of monodehydroascorbate reductase, and the induction of IMMUTANS, a chloroplastic homologue of mitochondrial alternative oxidase. Our results suggest that a co-ordinated induction of metabolic and defense genes, coupled with the suppression of photosynthetic activity, can compensate for the lack of APX and CAT. In addition, our findings demonstrate that the plant genome has a high degree of plasticity and will respond differently to different stressful conditions, namely, lack of APX, lack of CAT, or lack of both APX and CAT. 相似文献
3.
Zavaleta-Mancera HA López-Delgado H Loza-Tavera H Mora-Herrera M Trevilla-García C Vargas-Suárez M Ougham H 《Journal of plant physiology》2007,164(12):1572-1582
Increased oxidative stress displayed during dark-senescence of wheat leaves (Triticum aestivum L.) is caused not only by the increased levels of radicals but also by a loss of antioxidant capacity. Mature leaves were incubated in 6-benzylaminopurine (BAP 10−4 M) or water (control) during 6 d in the dark. The senescence-delaying effect of BAP was associated with the retention of the chloroplast structure, 60% of the initial content of chlorophyll (Chl) and 77% of the initial content of protein. BAP reduced the degradation of the light-harvesting chlorophyll a/b binding protein (LHCP-2), and the large (LSU) and small subunits (SSU) of Rubisco. Our results indicated that the presence of the NADPH:protochlorophyllide oxidoreductase (POR, EC.1.6.99.1) was not promoted by the cytokinin, leading to the conclusion that BAP maintains the level of Chl, preventing its degradation, rather than inducing Chl biosynthesis. The internal structure of chloroplasts was maintained in BAP-treated leaves for up to 6 d, with well-organized grana thylakoids and small plastoglobuli; in contrast, chloroplasts of control leaves deteriorated rapidly from day 4 with disorganized internal membranes, and more and larger plastoglobuli. BAP increased the activities of catalase (CAT, EC 1.11.1.6) and ascorbate peroxidase (APX, EC 1.11.1.11) and reduced the level of H2O2 in the delayed-senescence tissue. The present research indicates that BAP reduces levels of reactive oxygen species (ROS), and enhances the activity of antioxidant enzymes (CAT, APX). Our results suggest that BAP protects the cell membranes and the photosynthetic machinery from oxidative damage during delay of senescence in the dark. 相似文献
4.
Plants of spring wheat (Triticum aestivum L. cv. Saxana) were grown during the autumn. Over the growth phase of three leaves (37 d after sowing), some of the plants
were shaded and the plants were grown at 100 (control without shading), 70, and 40 % photosynthetically active radiation.
Over 12 d, chlorophyll (Chl) and total protein (TP) contents, rate of CO2 assimilation (P
N), maximal efficiency of photosystem 2 photochemistry (FV/FP), level of lipid peroxidation, and activities of antioxidative enzymes ascorbate peroxidase (APX) and glutathione reductase
(GR) were followed in the 1st, 2nd, and 3rd leaves (counted according to their emergence). In un-shaded plants, the Chl and TP contents, P
N, and FV/FP decreased during plant ageing. Further, lipid peroxidation increased, while the APX and GR activities related to the fresh
mass (FM) decreased. The APX activity related to the TP content increased in the 3rd leaves. The plant shading accelerated senescence including the increase in lipid peroxidation especially in the 1st leaves and intensified the changes in APX and GR activities. We suggest that in the 2nd and 3rd leaves a degradation of APX was slowed down, which could reflect a tendency to maintain the antioxidant protection in chloroplasts
of these leaves. 相似文献
5.
6.
7.
Y. L. Yang Y. Y. Zhang J. Lu H. Zhang Y. Liu Y. Jiang R. X. Shi 《Biologia Plantarum》2012,56(2):330-336
Antioxidative responses and proline accumulation induced by exogenous H2O2 were investigated in the callus from halophyte Nitraria tangutorum Bobr. H2O2-treated callus exhibited higher H2O2 content than untreated callus. The activities of catalase (CAT) and peroxidase (POD) significantly increased in the callus
treated with H2O2, while ascorbate peroxidase (APX) activity decreased. In addition, significantly enhanced proline content was observed in
the callus treated by H2O2, which could be alleviated by H2O2 scavenger dimethylthiourea and calcium (Ca) chelator ethylene glycol bis-(β-aminoethyl ether)-N,N,N′,N′-tetra-acetic acid
(EGTA). Moreover, γ-glutamyl kinase (GK) activity increased in H2O2-treated callus, but proline dehydrogenase (PDH) activity decreased significantly, and the reduction was partly abolished
by EGTA or Ca channel blocker verapamil. Assays using a scanning electron microscope showed significantly enhanced Ca content
in H2O2-treated callus. 相似文献
8.
9.
Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max) 总被引:10,自引:0,他引:10
Inhibition of root elongation and modification of membrane properties are sensitive responses of plants to aluminium. The present paper reports on the effect of AI on lipid peroxidation and activities of enzymes related to production of activated oxygen species. Soybean seedlings (Glycine max L. cv. Sito) were precultured in solution culture for 3–5 days and then treated for 1–72 h with Al (AICI3 ) concentrations ranging from 10 to 75 μM at a constant pH of 4.1. In response to Al supply, lipid peroxidation in the root tips (< 2 cm) was enhanced only after longer durations of treatment. Aluminium-dependent increase in lipid peroxidation was intensified by Fe2+ (FeSO4 ). A close relationship existed between lipid peroxidation and inhibition of root-elongation rate induced by Al and/or Fe toxicity and/or Ca deficiency. Besides enhancement of lipid peroxidation in the crude extracts of root tips due to Al, the activities of superoxide dismutase (EC 1.15.1.1) and peroxidase (EC 1.11.1.7) increased, whereas catalase (EC 1.11.1.6) activity decreased. This indicates a greater generation of oxygen free radicals and related tissue damage. The results suggest that lipid peroxidation is part of the overall expression of Al toxicity in roots and that enhanced lipid peroxidation by oxygen free radicals is a consequence of primary effects of Al on membrane structure. 相似文献
10.
To analyse nodular antioxidant enzyme expression in response to salt stress, Phaseolus vulgaris genotype BAT477 was inoculated with reference strain CIAT899, and treated with 50 mM NaCl. Plant growth, nodulation and nitrogen fixing activity were analysed. Results showed that: (1) all parameters, particularly in nodules, were affected by salt treatments, and (2) confirmed preferential growth allocation to roots. The ARA was significantly decreased by salt treatments. Protein dosage confirmed that nodules were more affected by salt treatment than were roots. We analysed superoxide dismutase, catalase, ascorbate peroxidase and peroxidase in nodules, roots and a free rhizobial strain. Our results indicated that SOD and CAT nodular isozymes had bacterial and root origins. The SOD expressed the same CuZn, Fe and Mn SOD isoforms in nodules and roots, whereas in free rhizobia we found only one Fe and Mn SOD. APX and POX nodule and root profiles had only root origins, as no rhizobial band was detected. Under salt stress, plant growth, nitrogen fixation and activities of antioxidant defense enzymes in nodules were affected. Thus, these enzymes appear to preserve symbiosis from stress turned out that NaCl salinity lead to a differential regulation of distinct SOD and POX isoenzyme. So their levels in nodules appeared to be consistent with a symbiotic nitrogen fixing efficiency hypothesis, and they seem to function as the molecular mechanisms underlying the nodule response to salinity. 相似文献
11.
Marcelle Auday Costa Hugo Alves Pinheiro Elizabeth Santos Cordeiro Shimizu Felipe Tameirão Fonseca Benedito Gomes dos Santos Filho Fabrícia Kelly Cabral Moraes Diego Moreira de Figueiredo 《Trees - Structure and Function》2010,24(2):275-283
The effects of drought on membrane lipids and leaf pigments and the ability of andiroba (Carapa guianensis Aubl.) plants to attenuate oxidative damage through antioxidant enzymes or adjusting carotenoids and glycinebetaine (GB)
were examined. Assessments were performed when pre-dawn leaf water potential (Ψpd) of water-stressed plants reached −1.35 and −3.21 MPa (15 and 27 days after withholding irrigation) and 12 h after resuming
watering (short-term rewetting, day 28). Oxidative damages to lipids were evident on day 15, in which drought caused an increase
of 47% in malondialdehyde (MDA) content. On day 27, MDA content did not differ between treatments. The activity of superoxide
dismutase remained unchanged over experimental period, while significant increases in the ascorbate peroxidase (APX, 110%)
and catalase (CAT, 50%) activities were observed only on day 27. GB content was 62% (day 15) and 112% (day 27) higher in water-stressed
plants than in control. Regardless of Ψpd, both chlorophyll (Chl) a, Chl b and total carotenoids remained unchanged between well-watered and water-stressed plants, indicating that drought did not
result in degradation of leaflet pigments. On day 28, Ψpd of water-stressed plants increased near to control plants and both activities of APX and CAT did not differ between treatments.
Altogether, adjustments in APX and CAT activity and in the GB content were efficient strategies to prevent expressive oxidative
damages in water-stressed andiroba plants. 相似文献
12.
Kaliene da Silva Carvalho Hugo Alves Pinheiro Reginaldo Alves Festucci-Buselli Dalton Dias da Silva Júnior Gledson Luiz Salgado de Castro Flávio José Rodrigues Cruz Bruna Sayuri Fujiyama 《Acta Physiologiae Plantarum》2013,35(1):13-21
Young Carapa guianensis plants were examined under well-watered (control) and water-deficit conditions with the aim to evaluate possible relationship between diurnal changes in leaflet gas exchange with lipid peroxidation and adjustments in antioxidative responses. Treatment comparisons were assessed when leaflet water potential (Ψw) in water-stressed plants reached around ?2.5 ± 0.5 MPa at pre-dawn. Regardless of watering regime, the highest net CO2 assimilation rate and stomatal conductance were recorded until 9:00 h. Control plants showed diurnal increases in transpiration, while it was strongly decreased in water-stressed plants. Diurnal decreases in intercellular to ambient CO2 concentration ratio were just observed in stressed plants. Regardless of watering regime, non-significant changes (P > 0.05) in Ψw and relative water content were registered throughout the day; however, both variables were significantly lower (P < 0.05) in stressed plants. Malondialdehyde concentration did not vary throughout the day, but it was higher in stressed plants. Excepting for guaiacol-type peroxidase, the antioxidant enzyme activities varied throughout the day regardless of watering regimes. Nevertheless, increases in antioxidant enzymes were more expressive in water-stressed plants. Despite, a relationship between diurnal changes in A and g s and lipid peroxidation or antioxidant enzymes was unclear regardless of watering regimes. Thus, we conclude that although plants from both watering regimes were able to adjust antioxidant enzymes activities throughout the day, the water-stressed plants were more susceptible to damages to net CO2 assimilation and suffered more expressive oxidative damages to lipids than plants grown under well-watered conditions. 相似文献
13.
Superoxide dismutase, glutathione peroxidase, catalase, and lipid peroxidation in the major organs of the aging rats 总被引:5,自引:0,他引:5
Glutathione peroxidase (GSh-Px), superoxide dismutase (SOD), catalase (CAT) activities and malon-dialdehyde (MDA) content were determined in heart, liver, kidney and brain of rats. Two different age groups (4 months; 24 months) were considered. GSH-Px and SOD activities decrease significantly for the aged liver and kidney. During aging, the activity of catalase increase in cardiac muscle and, in contrast, decrease in other organs. Lipids peroxidation, expressed in term of MDA formation, decrease in all the organs of the aged rats. The results indicate that: 1) the liver and kidney antioxidative defense decrease with age; 2) the enzymatic activities evolve in a different manner for different enzymes and organs. Furthermore, the results suggest that there is not any correlation between the SOD, CAT, and GSH-Px activities and the peroxidative status of the organs; thus, the age-related increase in the MDA content proposed as a criterion of aging process should be considered with caution. 相似文献
14.
Miller RR Hay CM Striegnitz TR Honsey LE Coykendall CE Blacquiere KD 《Comparative biochemistry and physiology. Toxicology & pharmacology : CBP》2006,144(1):25-33
The effects of exogenous glycine on homocysteine (HoCys)-induced reductions in chick (Gallus gallus) embryo viability, HoCys-induced increases in brain and hepatic membrane lipid peroxidation, HoCys-induced apoptosis (caspase-3 activities) in brain and hepatic tissues, and HoCys-induced reductions in brain and hepatic S-adenosylemethionine (SAM)/S-adenosylhomocysteine (SAH) levels were studied. Exogenous HoCys caused reductions in percent living embryos and reductions in embryo masses. Exogenous glycine attenuated these HoCys-induced reductions in embryo viability. Brain and liver tissues of HoCys-treated embryos exhibited increased caspase-3 activities, increased lipid hydroperoxide (LPO) levels, and reduced levels of long-chain polyunsaturated membrane fatty acids. While exogenous glycine attenuated HoCys-induced changes in brain caspase-3 activities, brain LPO levels, and brain membrane PUFA levels, exogenous glycine was less effective in attenuating HoCys-induced changes in hepatic caspase-3 activities and hepatic membrane PUFA levels. HoCys-induced reductions in SAM/SAH ratios were observed in brains and livers. Exogenous glycine attenuated HoCys-induced reductions in brain SAM/SAH. However, glycine was unable to attenuate HoCys-induced reductions in hepatic SAM/SAH levels. 相似文献
15.
SUMMARYUVA-induced lipid peroxidation in cultured human skin fibroblasts, as measured by the release in the supernatant of thiobarbituric acid-reactive substances, is found to be linear with increasing irradiation dose (up to about 250 kJ m?2). Concomitantly, within this dose range catalase is strongly inactivated by UVA radiation according to an exponential process (k≈0.01 kJ?1 m2). This suggests that catalase is not involved in modulating the peroxidation process. Inactivation of catalase by 3-amino-1,2,4-triazole can be efficiently achieved prior to irradiation. This inactivation has no consequence on the extent of peroxidation triggered by subsequent exposure to UVA radiation. It may be therefore strongly suggested that catalase is not, via H2O2 removal, a key enzyme in the cellular defence equipment towards UV A-peroxidative stress. An alternative interpretation may be formulated which supports the view that H2O2 produced upon exposure to UVA has no or very little role in triggering the lipid peroxidation process. 相似文献
16.
Effect of erythropoietin on membrane lipid peroxidation, superoxide dismutase, catalase, and glutathione peroxidase of rat RBC 总被引:2,自引:0,他引:2
M Chakraborty J Ghosal T Biswas A G Datta 《Biochemical medicine and metabolic biology》1988,40(1):8-18
Starved animals having low levels of erythropoietin in blood showed increased MDA, fluorescent pigments, and met-Hb values whereas the hemoglobin concentration decreased significantly on starvation. In vivo and in vitro studies with Ep reversed the effects of starvation and brought these values close to normal. The activities of the enzymes (SOD, catalase, GSH-PX, GR G6PD, and 6PGD) which protect the RBC membrane directly or indirectly from peroxidative threat, decreased on starvation and restored to normal levels after Ep treatment. 相似文献
17.
The objective of this work was to test whether Ca2+, a second messenger in stress response, is involved in ABA-induced antioxidant enzyme activities in Stylosanthes guianensis. Plants were sprayed with abscisic acid (ABA), calcium channel blocker, LaCl3, calcium chelator, ethylene glycol-bis(β-amino ethyl ether)-N,N,N′, N′-tetraacetid acid (EGTA), and ABA in combination with LaCl3 or EGTA. Their effects on superoxide dismutase (SOD) and ascorbate peroxidase (APX) activities and chilling resistance were
compared. The results showed that ABA decreased electrolyte leakage and lipid peroxidation but increased maximum photochemical
efficiency measured as variable to maximum fluorescence ratio (Fv/Fm) under chilling stress. Treatment with LaCl3 or EGTA alone and in combination with ABA increased electrolyte leakage and lipid peroxidation, decreased Fv/Fm, suggesting
that the block in Ca2+ signalling decreased chilling resistance of S. guianensis and the ABA-enhanced chilling resistance. ABA-induced SOD and APX activities were suppressed by LaCl3 or EGTA. The results suggested that Ca2+ is involved in the ABA-enhanced chilling resistance and the ABA-induced SOD and APX activities in S. guianensis. 相似文献
18.
BACKGROUND AND AIMS: The use of grafted plants in vegetable crop production is now being expanded greatly. However, few data are available on the formation of graft unions in vegetables. In this work, the structural development of the graft union formation in tomato plants is studied, together with the possible relationship with activities of peroxidases and catalases. METHODS: Tomato (Lycopersicon esculentum Mill.) seedlings of cultivar Fanny were grafted on the rootstock of cultivar AR-9704 using the 'tongue approach grafting' method, and were grown in a crop chamber. A study of the structural development of the graft union and the involvement of peroxidases and catalases in the process of graft formation was carried out during the first stages of the graft union (4, 8 and 15 d after grafting). KEY RESULTS: Observation of the structure of the graft union showed formation of xylem and phloem vessels through the graft union 8 d after grafting. In addition, root hydraulic conductance, L0, indicate that the graft union is fully functional 8 d after grafting, which coincided with an increase of peroxidase and catalase activities. CONCLUSIONS: These results suggest that increased peroxidase and catalase activities might be implicated in graft development in tomato plants. 相似文献
19.
The aim of this work was to assess the relationships between lead (Pb) and uranium (U) exposure, lipid peroxidation and some enzyme activities in a mollusc (Cohicula sp.), an earthworm (Eisenia fetida) and a fish (Brachydanio redo). A comparative shrdy was perfotmed both in vibo and in vivo on whole organism postmitochondrial fractions and four potential biomarken were analyted: a marker of neurotoxicity (acetylcholinesterase activity, AChE, EC 3.1.1.7), a marker of oxidative sbss (malondialdehyde (MDA) level), and two markers of hydroperoxide detoxication: catalase (EC 1.11.1.6) and glutathione pemxidase (GPx, EC 1.11.1.9) activities. Our results have shown that the MDA contents were not signilicantty changed by exposures to lead either in vitro or in vivo. During uranium exposure, the MDA content was increased in vitro (particularly in fish samples) whereas this metal failed to sthnulate Spid peroxidation in vivo. With some exceptions, in vitro and in vivo exposures to lead and uranium showed that the AChE, catalase and GPx acbirites were decreased in the three species. These exceptions indicated that different mechanisms occurred in the different species. In conclusion, it was shown that S9 fractions of whole organisms could be useful for environmental contamination biomonitoring. Moreover, it was shown that AChE activities wen modulated by metals in viva and cannot be considered as specific bomarken of organophosphorus or carbaw pedcide exposure. Acetylcholinesterase and catalase activieies cwld be used to survey lead and uranium contamination. 相似文献
20.
The effects of ethanol on hepatic lipid peroxidation and on the activities of glutathione reductase and peroxidase 总被引:2,自引:0,他引:2
C M MacDonald 《FEBS letters》1973,35(2):227-230