共查询到20条相似文献,搜索用时 0 毫秒
1.
Minoguchi S Minoguchi M Yoshimura A 《Biochemical and biophysical research communications》2003,301(4):899-906
Neks (NIMA-related kinases) are mammalian serine/threonine (Ser/Thr) protein kinases structurally related to Aspergillus NIMA (Never in Mitosis, gene A), which plays essential roles in mitotic signaling. Among these kinases, Nek6 and Nek7 are structurally related and constitute a subfamily in the NIMA/Nek family, although their functions still remain almost elusive. In this report, we studied the enzymatic regulation of Nek6 and Nek7 to gain an insight into their cellular functions. Recombinant Nek7 produced in bacteria was active comparably to Nek6; however, the Nek7 activity in mammalian cells was found to be significantly lower than Nek6. Since Nek6 previously has been reported to in vitro phosphorylate p70 ribosomal S6 kinase at Thr412, we examined if Nek6 and Nek7 activities were controlled by the amino acid supplement, which is known to affect the phosphorylation at Thr412, and did not observe any significant effect. However, we unexpectedly found that Nek7 kinase activity was rapidly and efficiently increased by serum deprivation, while Nek6 activity was decreased. This is well consistent with the lower activity of Nek7 in cells under normal growth conditions. In addition, it was suggested that Nek7 activity would be regulated in a cell cycle-dependent manner, although Nek6 was not. These clear differences in enzymatic control between the highly similar kinases, Nek6 and Nek7, suggest their distinct signaling functions in mammalian cells. 相似文献
2.
Hiroyasu Motose Shogo Takatani Tatsuya Ikeda Taku Takahashi 《Plant signaling & behavior》2012,7(12):1552-1555
NIMA-related kinase 6 (NEK6) regulates cellular expansion and morphogenesis through microtubule organizaiton in Arabidopsis thaliana. Loss-of-function mutations in NEK6 (nek6/ibo1) cause ectopic outgrowth and microtubule disorganization in epidermal cells. We recently found that NEK6 forms homodimers and heterodimers with NEK4 and NEK5 to destabilize cortical microtubules possibly by direct binding to microtubules and the β-tubulin phosphorylation. Here, we identified a new allele of NEK6 and further analyzed the morphological phenotypes of nek6/ibo1 mutants, along with alleles of nek4 and nek5 mutants. Phenotypic analysis demonstrated that NEK6 is required for the directional growth of roots and hypocotyls, petiole elongation, cell file formation, and trichome morphogenesis. In addition, nek4, nek5, and nek6/ibo1 mutants were hypersensitive to microtubule inhibitors such as propyzamide and taxol. These results suggest that plant NEKs function in directional cell growth and organ development through the regulation of microtubule organization. 相似文献
3.
4.
Campilho A Garcia B Toorn HV Wijk HV Campilho A Scheres B 《The Plant journal : for cell and molecular biology》2006,48(4):619-627
In the Arabidopsis root, asymmetric stem-cell divisions produce daughters that form the different root cell types. Here we report the establishment of a confocal tracking system that allows the analysis of numbers and orientations of cell divisions in root stem cells. The system provides direct evidence that stem cells have lower division rates than cells in the proximal meristem. It also allows tracking of cell division timing, which we have used to analyse the synchronization of root cap divisions. Finally, it gives new insights into lateral root cap formation: epidermal stem-cell daughters can rotate the orientation of the division plane like the stem cell. 相似文献
5.
Yang J Sardar HS McGovern KR Zhang Y Showalter AM 《The Plant journal : for cell and molecular biology》2007,49(4):629-640
Arabinogalactan proteins (AGPs), a family of hydroxyproline-rich glycoproteins, occur throughout the plant kingdom. The lysine-rich classical AGP subfamily in Arabidopsis consists of three members, AtAGP17, 18 and 19. In this study, AtAGP19 was examined in terms of its gene expression pattern and function. AtAGP19 mRNA was abundant in stems, with moderate levels in flowers and roots and low levels in leaves. AtAGP19 promoter-controlled GUS activity was high in the vasculature of leaves, roots, stems and flowers, as well as styles and siliques. A null T-DNA knockout mutant of AtAGP19 was obtained and compared to wild-type (WT) plants. The atagp19 mutant had: (i) smaller, rounder and flatter rosette leaves, (ii) lighter-green leaves containing less chlorophyll, (iii) delayed growth, (iv) shorter hypocotyls and inflorescence stems, and (v) fewer siliques and less seed production. Several abnormalities in cell size, number, shape and packing were also observed in the mutant. Complementation of this pleiotropic mutant with the WT AtAGP19 gene restored the WT phenotypes and confirmed that AtAGP19 functions in various aspects of plant growth and development, including cell division and expansion, leaf development and reproduction. 相似文献
6.
Motose H Hamada T Yoshimoto K Murata T Hasebe M Watanabe Y Hashimoto T Sakai T Takahashi T 《The Plant journal : for cell and molecular biology》2011,67(6):993-1005
NimA-related kinase 6 (NEK6) has been implicated in microtubule regulation to suppress the ectopic outgrowth of epidermal cells; however, its molecular functions remain to be elucidated. Here, we analyze the function of NEK6 and other members of the NEK family with regard to epidermal cell expansion and cortical microtubule organization. The functional NEK6-green fluorescent protein fusion localizes to cortical microtubules, predominantly in particles that exhibit dynamic movement along microtubules. The kinase-dead mutant of NEK6 (ibo1-1) exhibits a disturbance of the cortical microtubule array at the site of ectopic protrusions in epidermal cells. Pharmacological studies with microtubule inhibitors and quantitative analysis of microtubule dynamics indicate excessive stabilization of cortical microtubules in ibo1/nek6 mutants. In addition, NEK6 directly binds to microtubules in vitro and phosphorylates β-tubulin. NEK6 interacts and co-localizes with NEK4 and NEK5 in a transient expression assay. The ibo1-3 mutation markedly reduces the interaction between NEK6 and NEK4 and increases the interaction between NEK6 and NEK5. NEK4 and NEK5 are required for the ibo1/nek6 ectopic outgrowth phenotype in epidermal cells. These results demonstrate that NEK6 homodimerizes and forms heterodimers with NEK4 and NEK5 to regulate cortical microtubule organization possibly through the phosphorylation of β-tubulins. 相似文献
7.
POL and related phosphatases are dosage-sensitive regulators of meristem and organ development in Arabidopsis 总被引:1,自引:0,他引:1
CLAVATA1 (CLV1) regulates stem cell accumulation at Arabidopsis shoot and flower meristems. CLV1 encodes a receptor-like kinase, but very little is known about downstream signaling components of receptor-kinase signaling in plants. poltergeist (pol) mutants suppress the accumulation of stem cells that occur in clv mutants, and POL has been hypothesized to modulate CLV1 signaling. The POL gene, which encodes a functional protein phosphatase type 2C, is a member of a six-gene family in Arabidopsis. We have isolated loss-of-function alleles for each of the five POL-like genes (PLL1-PLL5). All gene family members, with the exception of PLL3, are expressed broadly within the plant, albeit at differing levels. We show that PLL1 regulates meristem development in parallel with POL. We observe a strong dosage sensitivity at the meristem for POL and PLL1 function in both loss- and gain-of-function analyses, suggesting that these proteins are rate-limiting modulators of stem cell specification. PLL genes also function outside of the meristem: POL and PLL1 regulate pedicel length in interaction with ERECTA, while PLL4 and PLL5 regulate leaf development. We observed no developmental role for either PLL2 or PLL3 based on single and double mutant analysis. 相似文献
8.
To isolate the genes involved in mouse primordial germ cell (PGC) development, we carried out subtraction cDNA cloning between PGC-derived embryonic germ (EG) cells and inner cell mass-derived embryonic stem cells. Among the genes preferentially expressed in EG cells, we found a gene encoding a receptor tyrosine kinase ErbB3. By in situ hybridization and immunohistochemical staining, the expression of ErbB3 as well as that of ErbB2, a coreceptor for ErbB3, was detected in PGCs in genital ridges at 12.5 dpc (days postcoitum). The expression was, however, downregulated at 14.5 dpc when the PGCs underwent growth cessation. Neuregulin-beta, a ligand for ErbB2 and ErbB3, was also expressed in genital ridges. In addition, a recombinant Neuregulin-beta enhanced the number of PGCs in 12.5-dpc embryos in culture. Taken together, these observations suggest that ErbB signaling controls the growth or survival of PGCs in genital ridges. 相似文献
9.
10.
11.
Expansins are involved in the formation of nematode-induced syncytia in roots of Arabidopsis thaliana 总被引:1,自引:0,他引:1
Wieczorek K Golecki B Gerdes L Heinen P Szakasits D Durachko DM Cosgrove DJ Kreil DP Puzio PS Bohlmann H Grundler FM 《The Plant journal : for cell and molecular biology》2006,48(1):98-112
12.
Krupková E Immerzeel P Pauly M Schmülling T 《The Plant journal : for cell and molecular biology》2007,50(4):735-750
Mutations in the TUMOROUS SHOOT DEVELOPMENT2 (TSD2) gene reduce cell adhesion, and in strongly affected individuals cause non-coordinated shoot development that leads to disorganized tumor-like growth in vitro. tsd2 mutants showed increased activity of axial meristems, reduced root growth and enhanced de-etiolation. The expression domains of the shoot meristem marker genes KNAT1 and KNAT2 were enlarged in the mutant background. Soil-grown tsd2 mutants were dwarfed, but overall showed morphology similar to that of the wild-type (WT). The TSD2 gene was identified by map-based cloning. It encodes a novel 684 amino acid polypeptide containing a single membrane-spanning domain in the N-terminal part and S-adenosyl-l-methionine binding and methyltransferase domains in the C-terminal part. Expression of a TSD2:GUS reporter gene was detected mainly in meristems and young tissues. A green fluorescent protein-tagged TSD2 protein localized to the Golgi apparatus. The cell-adhesion defects indicated altered pectin properties, and we hypothesize that TSD2 acts as a pectin methyltransferase. However, analyses of the cell-wall composition revealed no significant differences of the monosaccharide composition, the uronic acid content and the overall degree of pectin methylesterification between tsd2 and WT. The findings support a function of TSD2 as a methyltransferase, with an essential role in cell adhesion and coordinated plant development. 相似文献
13.
14.
Morphological changes in transgenic poplar induced by expression of the rice homeobox gene OSH1 总被引:3,自引:0,他引:3
Genetically transformed lombardy poplar (Po-pulus nigra L. var. italica Koehne) plants were regenerated after co-cultivation of stem segments with Agrobacterium tumefaciens strain LBA4404 that harbored a binary vector which included the rice gene for a homeodomain protein (OSH1) and a gene for
neomycin phosphotransferase. The expression of the OSH1 gene under control of the cauliflower mosaic virus 35S promoter induced morphological abnormalities in the leaves and stems
of the newly generated transgenic poplar plants. This result suggests that OSH1 can function as a regulator of morphogenesis in transgenic poplar, as it does in transgenic rice, Arabidopsis, and tobacco plants.
Received: 16 October 1998 / Revision received: 27 November 1998 / Accepted: 12 December 1998 相似文献
15.
The study of cell cycle control in plants is expected to contribute to the understanding of plants' unique developmental features. The principal regulators of the eukaryotic cell cycle, namely, cyclin-dependent kinases (CDKs) and cyclins, are also conserved in plants. This review is concerned with our present knowledge on cell cycle regulation in Arabidopsis thaliana, which is widely accepted as a model plant for the study of a broad range of biological questions. Up to the present, 2 CDKs and 11 cyclins have been identified in Arabidopsis. While the expression of one of these CDKs has been found to be positively correlated with the competence of cells to divide, cyc1A1 expression of the cyclin has been almost exclusively confined to dividing cells. Although much remains to be studied concerning upstream regulators of these genes, the successful introduction of mutant CDKs into plants demonstrates the potential of using such an approach to intentionally modulate the plant cell cycle and development. 相似文献
16.
有机肥和植被去除管理对人工林土壤节肢动物多样性的影响 总被引:1,自引:0,他引:1
施用有机肥和林下抚育(植被去除)是人工林重要的管理措施;土壤节肢动物物种丰富,是土壤生态系统的重要组成成分,对环境变化敏感,可以作为森林管理的指示生物。人工林植被去除和施肥管理影响土壤性质、资源输入量及微生物多样性,从而影响土壤节肢动物多样性,但是相关研究还十分缺乏。以沿海地区杨树人工林为对象,研究了施用有机肥和林下植被去除对土壤节肢动物的数量和多样性的影响。结果表明,有机肥和植被去除管理对不同土壤层土壤节肢动物的数量和多样性指标影响不一致。有机肥增加0-10 cm深度土壤节肢动物总数量、蜱螨目数量,降低土壤节肢动物群落物种丰富度、均匀度和Shannon多样性指数;植被去除减少0-10 cm深度土壤节肢动物总数量和弹尾目数量,降低均匀度指数。两种处理对10-20 cm深度土壤节肢动物群落的数量和各多样性指标影响不显著。总体来说(0-20 cm),有机肥处理土壤节肢动物的数量显著增加,优势类群前气门亚目(Prostigmata)的数量增长为对照的4倍,但是土壤节肢动物群落的均匀度和Shannon多样性指数显著降低,这可能是土壤节肢动物优势类群前气门亚目密度急剧增加,而物种丰富度没有变化所导致;此外,施用有机肥增加了土壤有机质、总氮、有效磷的含量,降低土壤pH值,并且与前气门亚目密度显著相关。林下植被去除没有影响0-20 cm深度土壤节肢动物的数量和各多样性指标。 相似文献
17.
内蒙草原不同植物功能群及物种对土壤微生物组成的影响 总被引:1,自引:0,他引:1
为了分析不同植物群落组成对内蒙古典型草原土壤微生物群落组成的影响,本研究利用植物功能群剔除处理实验平台,采用荧光定量PCR(real-timePCR)和自动核糖体间隔区基因分析(automated ribosomal intergenic spacer analysis,ARISA)技术,对不同植物功能群组成的非根际土壤和常见物种的根际土壤中细菌和真菌的数量及群落结构进行了分析。结果表明,在非根际土壤中,不同植物功能群组成对细菌数量有显著影响,而对真菌数量及细菌和真菌的群落结构影响不明显;在根际土壤中,不同植物物种对细菌、真菌的数量都有显著影响。此外,聚类分析表明,不同物种的根际土中细菌和真菌的群落结构也有所不同,尤其以细菌的群落结构变化较为明显。研究结果表明不同植物物种可以通过根系影响土壤微生物群落组成。 相似文献
18.
Maria Beatrice Boniotti Crisanto Gutierrez 《The Plant journal : for cell and molecular biology》2001,28(3):341-350
The activity of cyclin-dependent kinases (CDK) is crucial for cell-cycle transitions. Here, we report the identification of a CDK activity that phosphorylates the retinoblastoma-related (RBR) protein. A CDK/cyclin complex that binds to and phosphorylates RBR may be isolated from various plant sources, e.g. wheat, maize, Arabidopsis thaliana and tobacco, and from cells growing under various conditions. The presence of an RBR-associated CDK activity correlates with the proliferative activity, suggesting that phosphorylation of RBR is a major event in actively proliferating tissues. In A. thaliana, this activity comprises a PSTAIRE CDKA and at least cyclin D2. Furthermore, this CDK activity is cell-cycle-regulated, as revealed by studies with highly synchronized tobacco BY-2 cells where it is maximal in late G1 and early S phase cells and progressively decreases until G2 phase. Aphidicolin-arrested but not roscovitine-arrested cells contain a PSTAIRE-type CDK that binds to and phosphorylates RBR. Thus, association with a D-type cyclin is a likely mechanism leading to CDK activation late in G1. Our studies constitute the first report measuring the activity of CDK/cyclin complexes formed in vivo on RBR, an activity that fluctuates in a cell-cycle-dependent manner. This work provides the basis for further studies on the impact of phosphorylation of RBR on its function during the cell cycle and development. 相似文献
19.
20.
Jiang Y Bao L Jeong SY Kim SK Xu C Li X Zhang Q 《The Plant journal : for cell and molecular biology》2012,70(3):398-408
Organ size is determined by cell number and size, and involves two fundamental processes: cell proliferation and cell expansion. Although several plant hormones are known to play critical roles in shaping organ size by regulating the cell cycle, it is not known whether brassinosteroids (BRs) are also involved in regulating cell division. Here we identified a rice T-DNA insertion mutant for organ size, referred to as xiao, that displays dwarfism and erect leaves, typical BR-related phenotypes, together with reduced seed setting. XIAO is predicted to encode an LRR kinase. The small stature of the xiao mutant resulted from reduced organ sizes due to decreased cell numbers resulting from reduced cell division rate, as supported by the observed co-expression of XIAO with a number of genes involved in cell cycling. The xiao mutant displayed a tissue-specific enhanced BR response and greatly reduced BR contents at the whole-plant level. These results indicated that XIAO is a regulator of BR signaling and cell division. Thus, XIAO may provide a possible connection between BRs and cell-cycle regulation in controlling organ growth. 相似文献