首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The relative expression of matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs (TIMPs) is an important determinant in trophoblast invasion of the uterus and tumor invasion and metastasis. Our previous studies have shown that low oxygen levels increase the in vitro invasiveness of trophoblast and tumor cells. The present study examined whether changes in oxygen levels affect TIMP and MMP expression by cultured trophoblast and breast cancer cells. Reverse zymographic analysis demonstrated reduced TIMP-1 protein secretion by HTR-8/SVneo trophoblast cells as well as MDA-MB-231 and MCF-7 breast carcinoma cells cultured in 1% vs 20% oxygen for 24 h. While gelatin zymography revealed no changes in the levels of MMP-9 secreted by HTR-8/SVneo trophoblasts cultured under various oxygen concentrations for 24 h, human MDA-MB-231 breast carcinoma cells displayed increased MMP-9 secretion and human MCF-7 breast cancer cells exhibited reduced secretion of this enzyme when cultured under similar conditions. In contrast, MMP-2 levels remained unchanged in all cultures incubated under similar conditions. Western blot analysis of MMP-9 protein in cell extracts confirmed the results of zymography. To assess the contribution of enhanced MMP activity to hypoxia-induced invasion, the effect of an MMP inhibitor (llomastat) on the ability of MDA-MB-231 cells to penetrate reconstituted extracellular matrix (Matrigel) was examined. Results showed that MMP inhibition significantly decreased the hypoxic upregulation of invasion by these cells. These findings indicate that the increased cellular invasiveness observed under reduced oxygen conditions may be due in part to a shift in the balance between MMPs and their inhibitors favoring increased MMP activity.  相似文献   

2.
Overexpression of the small heat shock protein Hsp27 has been shown by us to inhibit the in vitro proliferation rate and to delay tumor development of a human melanoma cell line (A375) in nude mice. We hypothesized that Hsp27 may influence the neoplastic phenotype. In the present study Hsp27 transfectants from this cell line were analyzed for various cellular aspects associated with the metastatic process. We found that Hsp27-overexpressing clones exhibited an altered cellular morphology as compared with control transfected cells. The Hsp27-positive cells tended to develop an epithelial-like phenotype growing in clusters and were characterized by a loss of transcytoplasmic stressfibers. In parallel, Hsp27-expressing cells lost the ability to form colonies in soft agar. The invasive potential was studied in vitro by the use of a reconstituted extracellular matrix-coated filter (Matrigel). Compared with controls, Hsp27-overexpressing cells showed decreased cell invasiveness through Matrigel. A correlation between invasion and activation of matrix metalloproteinases (MMPs) has been shown in several cell models. Secretion of MMPs (MMP-2 and MMP-9) was studied by gelatin-substrate zymogram analysis, as well as by a sensitive gelatinase activity assay. The Hsp27-transfected A375 melanoma cell line showed decreased secretion of MMP-2 and MMP-9 as compared with the control transfected cells. Integrins are adhesion receptors and function in cell invasion by mediating cell movement on matrix molecules and by regulating the expression of MMPs. Both fluorescence-activated cell sorter analysis and immunofluorescence analysis revealed a loss of alpha(v)beta3 integrin in Hsp27-transfected cell colonies. Our results demonstrate that Hsp27 overexpression has a profound impact on several parameters regulating the invasive and metastatic potential of melanoma cells in vitro.  相似文献   

3.
GnRH-II enhances ovarian cancer cell invasion in an autocrine manner. We have now found that GnRH-II increases 37-kDa laminin receptor precursor (LRP) production in GnRH receptor (GnRHR)-positive OVCAR-3 and CaOV-3 ovarian cancer cells, while small interfering RNA (siRNA)-mediated depletion of GnRH-II or GnRHR mRNA abrogates this. The invasiveness of ovarian cancer cells is also reduced >85% by siRNA-mediated knockdown of LRP levels and >50% by pretreatment of Matrigel with a synthetic peptide that blocks interactions between laminin and the 67-kDa nonintegrin laminin receptor which comprises two LRP subunits. Conversely, overexpressing LRP in CaOV-3 cells increases their invasiveness 5-fold, while overexpressing LRP with a nonfunctional laminin-binding site does not. Depletion of LRP by siRNA treatment reduces CaOV-3 cell attachment to laminin-coated plates by ~80% but only reduces their binding to Matrigel by ~20%. Thus, while LRP influences CaOV-3 cell adhesion to laminin, LRP must act in other ways to enhance invasion. Matrix metalloproteinases (MMPs) are key mediators of invasion, and LRP siRNA treatment of OVCAR-3 and CaOV-3 cells inhibits MMP-2 but not MMP-9 mRNA levels. Overexpressing LRP in these cells increases MMP-2 production specifically, while a laminin-binding deficient LRP does not. Importantly, LRP siRNA treatment abolishes GnRH-II-induced MMP-2 production, and invasion in OVCAR-3 and CaOV-3 cells, which was also seen after MMP-2 siRNA treatment. These results suggest that GnRH-II-induced LRP expression increases the amount of the 67-kDa nonintegrin laminin receptor, which appears to interact with laminin in the extracellular matrix to promote MMP-2 expression and enhance ovarian cancer cell invasion.  相似文献   

4.
Ko HM  Park YM  Jung B  Kim HA  Choi JH  Park SJ  Lee HK  Im SY 《FEBS letters》2005,579(11):2369-2375
Platelet-activating factor (PAF) augments angiogenesis by promoting the synthesis of various angiogenic factors, via the activation of NF-kappaB. In this study, we investigated the role of the matrix metalloproteinase (MMP)-9, in PAF-induced angiogenesis. PAF increased mRNA expression, protein synthesis, and MMP-9 activity in ECV304 cells, in a NF-kappaB-dependent manner. PAF increased MMP-9 promoter activity in ECV304, which was inhibited by WEB2107, and NF-kappaB inhibitors. Transfected NF-kappaB subunits, p65 or/and p50, increased luciferase activity in the reporter plasmid MMP-9, resulting in an increase not only of MMP-9 luciferase activity, but also of mRNA expression in MMP-9. MMP-9 or NF-kappaB inhibitors significantly inhibited PAF-induced angiogenesis, in a dose-dependent manner, in an in vivo mouse Matrigel implantation model. In a parallel to the Matrigel implantation study, MMP-9 or NF-kappaB inhibitors inhibited PAF-induced sprouting of porcine pulmonary arterial endothelial cells. These data indicate that NF-kappaB-dependent MMP-9 plays a key role in PAF-induced angiogenesis.  相似文献   

5.
Matrix metalloproteinases (MMPs) MMP-2, MMP-9, and MT1-MMP are required for basement membrane degradation in cervical carcinoma. We evaluated the expression and activity of MMPs and their inhibitors RECK and TIMP-2 in 3 human invasive cervical carcinoma cell lines. Two HPV16-positive cell lines (SiHa and CaSki) and an HPV-negative cell line (C33A) were cultured either onto a type-I collagen gel, Matrigel, or plastic, to recreate their three-dimensional growth environment and evaluate the expression of these genes using quantitative real-time PCR. We also analyzed the gelatinolytic activity of MMP-2 and MMP-9 by zymography. We found that HPV (human papillomavirus)-positive cell lines express higher levels of MMP-2, MT1-MMP, and TIMP-2 than the HPV negative cell line. In addition, MMP-9 was expressed at very low levels in both HPV-negative and HPV-positive cell lines. We also observed that the expression of the RECK gene is higher in CaSki cells, being associated with higher pro-MMP-2 activity. Furthermore, Matrigel substrate influences MMP-2 expression in both SiHa and CaSki cells. On the other hand, we found that type-I collagen gel, but not Matrigel, can enhance pro-MMP-2 activity in all cell lines. Our results suggest that the presence of HPV is related to increased expression of MMP-2, MT1-MMP, and TIMP-2, and that pro-MMP-2 activity is higher in HPV-positive than in HPV-negative cells.  相似文献   

6.
As a result of increased glioblastoma migration and invasion into normal brain parenchyma, treatment of local tumor recurrence following initial treatment in glioblastoma patients remains challenging. Recent studies have demonstrated increased Oct-3/4 expression, a self-renewal regulator in stem cells, in glioblastomas. However, little is known regarding the influence of Oct-3/4 in glioblastoma cell invasiveness. The present study established Oct-3/4-overexpressing glioblastoma cells, which were prepared from human glioblastoma patients, to assess migration, invasion, and mRNA expression profiles of integrins and matrix metalloproteinases (MMPs). Compared with control cells, Oct-3/4 expressing-glioblastoma cells exhibited increased migration and invasion in wound healing and Matrigel invasion assays. Oct-3/4 overexpression resulted in upregulated FAK and c-Src expression, which mediate integrin signals. Vinculin accumulated along the leading edges of Oct-3/4 expressing-glioblastoma cells and associated with membrane ruffles during cell migration. Oct-3/4 expressing-cells exhibited increased MMP-13 mRNA expression and MMP-13 knockdown by shRNA suppressed cell invasion into Matrigel and organotypic brain slices. These results suggested that Oct-3/4 enhanced degradation of surrounding extracellular matrix by increasing MMP-13 expression and altering integrin signaling. Therefore, Oct-3/4 might contribute to tumor promoting activity in glioblastomas.  相似文献   

7.
In order to define the role of As2O3 in regulating the tumor cell invasiveness, the effects of As2O3 on secretion of matrix metalloproteinases (MMPs) and urokinase plasminogen activator (uPA), and in vitro invasion of HT1080 human fibrosarcoma cells were examined. As2O3 inhibited cell adhesion to the collagen matrix in a concentration dependent manner, whereas the same treatment enhanced cell to cell interaction. In addition, As2O3 inhibited migration and invasion of HT1080 cells stimulated with phorbol 12-myristate 13-aceate (PMA), and suppressed the expression of MMP-2, -9, membrane type-1 MMP, uPA, and uPA receptor (uPAR). In contrast, As2O3 increased the expression of tissue inhibitor of metalloproteinase (TIMP)-1 and PA inhibitor (PAI)-1, and reduced the MMP-2, -9, and uPA promoter activity in the presence and absence of PMA. Furthermore, the promoter stimulating and DNA binding activity of nuclear factor-kappaB (NF-kappaB) was blocked by As2O3, whereas the activator protein-1 activity was unchanged. Pretreatment of the cells with N-acetyl-L-cysteine (NAC) significantly prevented suppression of MMPs and uPA secretion, DNA binding activity of NF-kappaB, and in vitro invasion of HT1080 cells by As2O3, suggesting a role of reactive oxygen species (ROS) in this process. These results suggest that As2O3 inhibits tumor cell invasion by modulating the MMPs/TIMPs and uPA/uPAR/PAI systems of extracellular matrix (ECM) degradation. In addition, the generation of ROS and subsequent suppression of NF-kappaB activity by As2O3 might partly be responsible for the phenomena. Overall, As2O3 shows potent activity controlling tumor cell invasiveness in vitro.  相似文献   

8.
The mammalian convertase furin plays a significant role in tumorigenesis and its overexpression was observed in a number of different cancer types. To date, however, few mechanisms of action have been described. Most of the information available concerns the invasion step and designates MT1-MMP, through the activation of MMP-2, as the bona fide substrate mediating furin activity. However, recent reports indicate furin-independent pathways for MT1-MMP activation. To gain further insights into the role of furin in the invasion process, we studied the in vitro invasive capacity of LoVo cells, a furin-deficient adenocarcinoma cell line transfected with wild-type furin. Furin complementation resulted in an increased cell invasiveness that correlated with their capacity to produce MMP-2. Chemical blockage of MMPs activity with BB-3103 or MMP-2-specific antibodies revealed that the increased invasive capacity of furin-complemented cells was mediated by MMP-2. Unexpectedly, furin complementation did not change the status of MT1-MMP expression or activation, but instead resulted in the production of mature and bioactive TGFbeta1. Western blot-analysis of TGFbeta1 fragmentation species indicated that TGFbeta maturation step required furin activity, whereas results from TGFbeta-inducible reporter assays in the presence of MMP inhibitors or exogenous MMP-2 suggested that the activation step was under MMP influence. In addition, blockage with TGFbeta neutralizing antibodies revealed that furin-induced invasiveness was mediated by endogenous production of TGFbeta. Taken together, our findings established the existence of a novel alternative/complementary pathway by which furin increases tumor cell invasion through an amplification/activation loop between MMP-2 and TGFbeta.  相似文献   

9.
In this study, we investigated whether PAF synthesized by F10-M3 cells (a clone of B16-F10 melanoma line) mediates the increased capacity of these cells to penetrate into Matrigel upon stimulation with IFN gamma. The determination of PAF synthesized by IFN gamma-stimulated tumor cells revealed that 70% of newly synthesized PAF was released into growth media, while the remaining 30% was associated with the cell bodies. An experimental protocol based on the use of WEB 2086, a PAF receptorial antagonist, was designed to explore which of the two fractions of PAF synthesized by IFN gamma-stimulated F10-M3 cells (released into the growth medium or associated with the cell bodies) is essential to their capacity to migrate through Matrigel. We found that the PAF secreted into growth medium is the fraction responsible for the enhanced invasiveness of melanoma cells stimulated with IFN gamma. We also investigated whether motility of melanoma cells is stimulated by IFN gamma, and, if so, whether PAF is involved in this effect. We found that WEB 2086 prevented the remodeling of stress fibers, examined as an index of cell motility, that we observed in F10-M3 cells stimulated with IFN gamma. Furthermore, the observation that PAF receptor is expressed in IFN gamma-stimulated melanoma cells suggests that the invasive phenotype (e.g. migration through a reconstituted basement membrane and motility) promoted by PAF is based on an autocrine mechanism. On the whole, these results might indicate that PAF contributes to the expression of properties typical of an invasive phenotype in tumor cells stimulated with cytokines.  相似文献   

10.
11.
Matrix metalloproteinases (MMPs) participate in cell migration and remodeling processes by affecting the extracellular matrix. MMP-2 is thought to be involved in cancer cell invasiveness. It has been proposed that the activity of MMP-2 can be modulated by intracellular reactive oxygen species (ROS)/reactive nitrogen species. We hypothesized that manganese superoxide dismutase (MnSOD) could mediate MMP-2 activity by changing the intracellular ROS level and that nitric oxide ((.)NO) may be involved in this process. Human breast cancer MCF-7 cells were stably transfected with plasmids containing MnSOD cDNA. A 2-30-fold increase of MnSOD protein and activity was observed in four clones. Our data demonstrated that overexpression of MnSOD stimulated the activation of MMP-2 with a corresponding elevation of ROS. A decrease in ROS by ebselen, a glutathione peroxidase mimetic, or by transduction of adenovirus containing human catalase or glutathione peroxidase cDNA abolished the effect of MnSOD on MMP-2 activation. Treatment of MCF-7 cells with antimycin A or rotenone increased intracellular ROS production and MMP-2 activation simultaneously. Our data also showed a suppression of endothelial nitric-oxide synthase expression that was accompanied by decreased (.)NO production in MnSOD-overexpressing cells. However, the changes in endothelial nitric-oxide synthase and (.)NO did not correlate with the MnSOD activity. Corresponding changes of MMP-2 activity after the addition of a NOS inhibitor (N(G)-amino-l-arginine) or a (.)NO donor ((Z)-1-[(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate) to the cells suggested the possibility that (.)NO may be involved in the MnSOD-mediated MMP-2 activation pathway. These results indicate that MnSOD induces MMP-2 activity by regulation of intracellular ROS and imply that signaling pathways involving (.)NO may also be involved in the MnSOD mediation of MMP-2 activity.  相似文献   

12.
Tumor-associated macrophages are known to amplify the malignant potential of tumors by secreting a variety of cytokines and proteases involved in tumor cell invasion and metastasis, but how these macrophages infiltrate tumors and whether the macrophage migration process facilitates tumor cell invasion remain poorly documented. To address these questions, we used cell spheroids of breast carcinoma SUM159PT cells as an in vitro model of solid tumors. We found that macrophages used both the mesenchymal mode requiring matrix metalloproteinases (MMPs) and the amoeboid migration mode to infiltrate tumor cell spheroids. Whereas individual SUM159PT cells invaded Matrigel using an MMP-dependent mesenchymal mode, when they were grown as spheroids, tumor cells were unable to invade the Matrigel surrounding spheroids. When spheroids were infiltrated or in contact with macrophages, tumor cell invasiveness was restored. It was dependent on the capacity of macrophages to remodel the matrix and migrate in an MMP-independent mesenchymal mode. This effect of macrophages was much reduced when spheroids were infiltrated by Matrigel migration-defective Hck(-/-) macrophages. In the presence of macrophages, SUM159PT migrated into Matrigel in the proximity of macrophages and switched from an MMP-dependent mesenchymal migration to an amoeboid mode resistant to protease inhibitors.Thus, in addition to the well-described paracrine loop between macrophages and tumor cells, macrophages can also contribute to the invasiveness of tumor cells by remodeling the extracellular matrix and by opening the way to exit the tumor and colonize the surrounding tissues in an MMP-dispensable manner.  相似文献   

13.
14.
The capacity of inflammatory cell-derived matrix metalloproteinases (MMPs) to cleave tissue factor pathway inhibitor (TFPI) and alter its activity was investigated. MMP-7 (matrilysin) rapidly cleaved TFPI to a major 35-kDa product. In contrast, MMP-1 (collagenase-1), MMP-9 (gelatinase B), and MMP-12 (macrophage elastase) cleaved TFPI into several fragments including the 35-kDa band. However, rates of cleavage were most rapid for MMP-7 and MMP-9. NH(2)-terminal amino acid sequencing revealed that MMP-12 cleaved TFPI at Lys(20)-Leu(21)(close to Kunitz I domain and producing a 35-kDa band), Arg(83)-Ile(84) (between Kunitz I and II domains), and Ser(174)-Thr(175) (between Kunitz II and III domains). MMP-7 and MMP-9 cleaved TFPI at Lys(20)-Leu(21) with additional COOH-terminal processing. These MMPs did not cleave tissue factor (TF), factor VII, and factor Xa. Proteolytic cleavage by MMP-1, MMP-7, MMP-9, and MMP-12 resulted in considerable loss of TFPI activity. These observations indicate specific cleavage of TFPI by MMPs, which broadens their substrate profile. Co-localization of MMPs, TF, and TFPI in atherosclerotic tissues suggests that release of MMPs from inflammatory cell leukocytes may effect TF-mediated coagulation.  相似文献   

15.
16.
In this study, we investigated whether PAF synthesized by F10-M3 cells (a clone of B16-F10 melanoma line) mediates the increased capacity of these cells to penetrate into Matrigel upon stimulation with IFNγ. The determination of PAF synthesized by IFNγ-stimulated tumor cells revealed that 70% of newly synthesized PAF was released into growth media, while the remaining 30% was associated with the cell bodies. An experimental protocol based on the use of WEB 2086, a PAF receptorial antagonist, was designed to explore which of the two fractions of PAF synthesized by IFNγ-stimulated F10-M3 cells (released into the growth medium or associated with the cell bodies) is essential to their capacity to migrate through Matrigel. We found that the PAF secreted into growth medium is the fraction responsible for the enhanced invasiveness of melanoma cells stimulated with IFNγ. We also investigated whether motility of melanoma cells is stimulated by IFNγ, and, if so, whether PAF is involved in this effect. We found that WEB 2086 prevented the remodeling of stress fibers, examined as an index of cell motility, that we observed in F10-M3 cells stimulated with IFNγ. Furthermore, the observation that PAF receptor is expressed in IFNγ-stimulated melanoma cells suggests that the invasive phenotype (e.g. migration through a reconstituted basement membrane and motility) promoted by PAF is based on an autocrine mechanism. On the whole, these results might indicate that PAF contributes to the expression of properties typical of an invasive phenotype in tumor cells stimulated with cytokines.  相似文献   

17.
18.
Francescangeli  E.  Lang  D.  Dreyfus  H.  Boila  A.  Freysz  L.  Goracci  G. 《Neurochemical research》1997,22(10):1299-1307
Platelet-Activating Factor (PAF) is a potent lipid mediator involved in physiological and pathological events in the nervous tissue where it can be synthesized by two distinct pathways. The last reaction of the de novo pathway utilizes CDPcholine and alkylacetylglycerol and is catalyzed by a specific phosphocholinetransferase (PAF-PCT) whereas the remodelling pathway ends with the reaction catalyzed by lyso-PAF acetyltransferase (lyso-PAF AcT) utilizing lyso-PAF, a product of phospholipase A2 activity, and acetyl-CoA. The levels of PAF in the nervous tissue are also regulated by PAF acetylhydrolase that inactivates this mediator. We have studied the activities of these enzymes during cell proliferation and differentiation in two experimental models: 1) neuronal and glial primary cell cultures from chick embryo and 2) LA-N-1 neuroblastoma cells induced to differentiate by retinoic acid (RA). In undifferentiated neuronal cells from 8-days chick embryos the activity of PAF-PCT was much higher than that of lyso-PAF AcT but it decreased during the period of cellular proliferation up to the arrest of mitosis (day 1–3). During this period no significant changes of lyso-PAF AcT activity was observed. Both enzyme activities increased during the period of neuronal maturation and the formation of cellular contacts and synaptic-like junctions. The activity of PAF acetylhydrolase was unchanged during the development of the neuronal cultures. PAF-PCT activity did not change during the development of chick embryo glial cultures but lyso-PAF AcT activity increased up to the 12th day. RA treatment of LA-N-1 cell culture in proliferation decreased PAF-PCT activity and had no significant effect on lyso-PAF AcT and PAF acetylhydrolase indicating that the synthesis of PAF by the enzyme catalyzing the last step of the de novo pathway is inhibited when the LA-N-1 cells are induced to differentiate. These data suggest that: 1) in chick embryo primary cultures, both pathways are potentially able to contribute to PAF synthesis during development of neuronal cells particularly when they form synaptic-like junctions whereas, during development of glial cells, only the remodelling pathway might be particularly active on synthesizing PAF; 2) in LA-N-1 neuroblastoma cells PAF-synthesizing enzymes coexist and, when cells start to differentiate the contribution of the de novo pathway to PAF biosynthesis might be reduced.  相似文献   

19.
The matrix metalloproteinases (MMPs), responsible for the degradation of extracellular matrix (ECM) proteins, may regulate brain cellular functions. Choline acetyltransferase (ChAT) transfected murine neuroblastoma cell line N18TG2, that synthesize acetylcholine and show enhancement of several neurospecific markers (i.e., sinapsin I, voltage gated Na(+) channels, high affinity choline uptake) and fiber outgrowth, were studied for the MMP regulation during neuronal differentiation. Zymography of N18TG2 culture medium revealed no gelatinolytic activity, whereas after carbachol treatment of cells both MMP-9 and activated MMP-2 forms were detected. ChAT-transfected clone culture medium contains three MMP forms at 230, 92, and 66kDa. Carbachol treatment increased MMP-2 and MMP-9 gene expression in N18TG2 cells and higher levels for both genes were also observed in ChAT transfected cells. The data are consistent with the hypothesis that acetylcholine brings about the activation of an autocrine loop modulating MMP expression.  相似文献   

20.
Matrix metalloproteinases (MMPs) play a crucial role in tumor cell invasion and metastasis. Expression of MMP-1 has been reported as a prognostic predictor of recurrence in human chondrosarcoma, and studies using human chondrosarcoma cell lines indicate that MMP-1 expression levels correlate with in vitro invasiveness. These observations suggest that MMP-1 activity has a central role in cell egress from the primary tumor at an early step in the metastatic cascade. In this study, siRNA was used to investigate whether knock down of the MMP-1 gene could be used to inhibit invasiveness in a human chondrosarcoma cell line. The inhibitory effect of siRNA on endogenous MMP-1 gene expression and protein synthesis was demonstrated via RT-PCR, Northern blotting, Western blotting, collagenase activity assay, and an in vitro cell migration assay. The siRNA inhibited MMP-1 expression specifically, since it did not affect the expression of endogenous glyceraldehyde phosphate dehydrogenase (GAPDH) nor other collagenases. Most importantly, the siRNA mediated reduction in MMP-1 expression correlated with a decreased ability of chondrosarcoma cells to invade a Type I collagen matrix. The reduction of invasive behavior demonstrated by human chondrosarcoma cells transfected with MMP-1 siRNA and the specificity of this inhibition supports the hypothesis that this metalloproteinase molecule is involved in initiation of chondrosarcoma metastasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号