首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kinetic studies on the regulation of rabbit liver pyruvate kinase   总被引:5,自引:5,他引:0  
Two kinetically distinct forms of pyruvate kinase (EC 2.7.1.40) were isolated from rabbit liver by using differential ammonium sulphate fractionation. The L or liver form, which is allosterically activated by fructose 1,6-diphosphate, was partially purified by DEAE-cellulose chromatography to give a maximum specific activity of 20 units/mg. The L form was allosterically activated by K(+) and optimum activity was recorded with 30mm-K(+), 4mm-MgADP(-), with a MgADP(-)/ADP(2-) ratio of 50:1, but inhibition occurred with K(+) concentrations in excess of 60mm. No inhibition occurred with either ATP or GTP when excess of Mg(2+) was added to counteract chelation by these ligands. Alanine (2.5mm) caused 50% inhibition at low concentrations of phosphoenolpyruvate (0.15mm). The homotropic effector, phosphoenolpyruvate, exhibited a complex allosteric pattern (n(H)=2.5), and negative co-operative interactions were observed in the presence of low concentrations of this substrate. The degree of this co-operative interaction was pH-dependent, with the Hill coefficient increasing from 1.1 to 3.2 as the pH was raised from 6.5 to 8.0. Fructose 1,6-diphosphate interfered with the activation by univalent ions, markedly decreased the apparent K(m) for phosphoenolpyruvate from 1.2mm to 0.2mm, and transformed the phosphoenolpyruvate saturation curve into a hyperbola. Concentrations of fructose 1,6-diphosphate in excess of 0.5mm inhibited this stimulated reaction. The M or muscle-type form of the enzyme was not activated by fructose 1,6-diphosphate and gave a maximum specific activity of 0.3 unit/mg. A Michaelis-Menten response was obtained when phosphoenolpyruvate was the variable substrate (K(m)=0.125mm), and this form was inhibited by ATP, as well as alanine, even in the presence of excess of Mg(2+).  相似文献   

2.
Purification and properties of rat brain pyruvate kinase   总被引:1,自引:0,他引:1  
Rat brain pyruvate kinase was purified to near homogeneity by a three-step process involving ammonium sulfate precipitation and phosphocellulose and Blue-Sepharose CL-6B column chromatography. The enzyme migrated on polyacrylamide gel along with a commercial sample of rabbit muscle pyruvate kinase. The enzyme showed a hyperbolic relationship with phosphoenolpyruvate and ADP, with apparent Km's of 0.18 and 0.42 X 10(-3) M, respectively. The enzyme was inhibited by ATP, the effect being more pronounced at unsaturating concentrations of phosphoenolpyruvate. L-Phenylalanine was found to be a strong inhibitor of the enzyme, with the Ki for inhibitor being 0.11 mM. The inhibition by phenylalanine was more pronounced at pH 7.4 than at pH 7.0, and appeared to be competitive with phosphoenolpyruvate. L-Alanine and fructose 1,6-bisphosphate prevented the inhibition of the enzyme by phenylalanine. Ca2+ was found to be a strong inhibitor of the enzyme, and the inhibition was more marked at saturating phosphoenolpyruvate concentrations. The kinetic properties of the purified brain pyruvate kinase suggest that the enzyme may be distinct from the muscle or liver enzymes.  相似文献   

3.
1. Kinetics of fructose 1,6-diphosphate activation of liver pyruvate kinase type I inhibited with MgATP and l-alanine are described as a function of enzyme and fructose 1,6-diphosphate concentrations. These results can be explained by a single pseudo-first-order transition of the enzyme into an active form, independent of the enzyme concentration. This rate constant, k(app.)=0.24s(-1) with 0.02mm-fructose 1,6-diphosphate (t(0.9) approximately 10s where t(0.9) is the time for 90% conversion), is an increasing function of fructose 1,6-diphosphate concentration far beyond that needed to maximally activate enzyme equilibrated with fructose 1,6-diphosphate (about 20mum). 2. The model equations are best analysed with numerical techniques which are described. These techniques are useful in studying similar slow transients frequently observed in stopped-flow studies of enzymes. 3. Shorter transients (t(0.9)=0.5-1.5s) were observed in the kinetic response of the enzyme to the addition of MgATP or phosphoenolpyruvate, but were not further characterized.  相似文献   

4.
The paper reports a study of the reaction between phosphoenolpyruvate, ADP and Mg(2+) catalysed by pig liver pyruvate kinase when activated by fructose diphosphate and K(+). The experimental results are consistent with two non-sequential mechanisms in which the substrates and products of the reaction are phosphoenolpyruvate, ADP, Mg(2+), pyruvate and MgATP. Pyruvate release occurs before ADP binding. Two Mg(2+) ions are involved, though the two Mg(2+)-binding sites cannot be occupied simultaneously. An isomerized enzyme complex forms before release of MgATP. Values were determined for the Michaelis constants of the reaction. Apparent MgATP inhibition constants are also given.  相似文献   

5.
6.
1. The kinetic properties of two genetic variants of human erythrocyte adenylate kinase were studied at limiting concentrations of both ADP and MgADP(-) in the forward direction and at limiting concentrations of both AMP and MgATP(2-) in the reverse direction. 2. Primary reciprocal plots rule out the possibility of a Ping Pong mechanism for both forms of the enzyme. 3. Analysis of the kinetic data by an appropriate computer program gave the following K(m) values for the type 1 enzyme: AMP, 0.33mm+/-0.1; MgATP(2-), 0.95mm+/-0.13; ADP, 0.12mm+/-0.03; MgADP(-), 0.22mm+/-0.04. Values for the type 2 enzyme were: AMP, 0.27mm+/-0.03; MgATP(2-), 0.40mm+/-0.05; ADP, 0.08mm+/-0.07; MgADP(-), 0.20mm+/-0.04. 4. Product inhibition studies were done by studying the reverse reaction. With ADP as product inhibitor competitive inhibition patterns were obtained with AMP and/or MgATP(2-) as variable substrate. Similar results were obtained for product inhibition by MgADP(-) with AMP as variable substrate. The results are consistent with a Rapid Equilibrium Random mechanism. 5. Secondary plots of slope versus product concentration were linear. The data were fitted to the appropriate equation and analysed by computer to give values for the product inhibition constants. 6. Differences between the values of certain kinetic constants for the two forms of the enzyme were observed.  相似文献   

7.
1. An improved purification procedure for the brain-type creatine kinase from ox smooth muscle is described. 2. Michaelis constants show the characteristic dependence on the concentration of the second substrate: the derived constants are compared with those for the enzyme from ox brain. 3. Inhibition by iodoacetamide gives a biphasic curve and the total extent of the reaction depends on the enzyme concentration. The rate of inhibition at pH8.6 is not affected by creatine plus MgADP or by a range of simple anions. Addition of creatine plus MgADP plus either NO(3) (-) or Cl(-) ions affords 71.5 and 44% protection respectively. ADP could be replaced by 2-deoxy-ADP but not by alphabeta-methylene ADP, XDP, IDP, GDP or CDP. Nucleotides that did not protect would not act as substrates. 4. Difference-spectra measurements support the interpretation that addition of NO(3) (-) ions to the enzyme-creatine-MgADP complex causes further conformational changes in the enzyme accompanying the formation of a stable quaternary enzyme-creatine-NO(3) (-)-MgADP complex that simulates an intermediate stage in the transphosphorylation reaction. However, the enzyme structure is partially destabilized by quaternary-complex formation. IDP apparently fails to act as a substrate because it cannot induce the necessary conformational change. This behaviour is compared with that of rabbit skeletal muscle creatine kinase. 5. With pyruvate kinase from rabbit muscle, anions activate in the absence of an activating cation and either inhibit or have no effect in its presence. 6. Both activation and inhibition were competitive with respect to the substrate, phosphoenolpyruvate, and curved double-reciprocal plots were obtained. The results may be interpreted in terms of co-operatively induced conformational changes, and this is supported by difference-spectra measurements. However, the Hill coefficient of 1 was not significantly altered. 7. Inhibition by lactate plus pyruvate is less than additive, indicating that both bind to the same site on the enzyme, whereas that by lactate plus NO(3) (-) is additive, indicating binding at separate sites. It is inferred that a quaternary enzyme-pyruvate-NO(3) (-)-MgADP complex could form, but no evidence was obtained to suggest that it possessed special properties comparable with those found with creatine kinase. The implications of these findings for the unidirectional nature of the mechanism of pyruvate kinase is discussed. 8. Lactate or alpha-hydroxybutyrate could not act instead of pyruvate to form a stable quaternary complex, although both activate the K(+)-free enzyme. Only the former inhibits the K(+)-activated enzyme. The activating cation both lowers the Michaelis constant for phosphoenolpyruvate and tightens up the specificity of its binding site.  相似文献   

8.
The functional changes, associated with the sequential transformation of L'4 into L4 pyruvate kinase (ATP:pyruvate 2-O-phosphotransferase, EC 2.7.1.40) were studied. L'4 enzyme from human erythrocytes shows strong hysteretic behaviour: the initial rate of the enzyme preincubated with an unsaturating concentration of phosphoenolpyruvate is much higher than of the enzyme preincubated with ADP, at the same phosphoenolpyruvate concentration, although the "final activity" (the activity of the linear part of the reaction progress curve) was the same in both cases. This phenomenon was observed both in the presence and absence of fructose 1,6-diphosphate. High concentrations of both Mg2+free and MgATP2- diminish the difference in initial rate, between the ADP and phosphoenolpyruvate preincubated enzymes: Mg2+free by stabilizing the phosphoenolpyruvate-induced form; ATPMg2- by stabilizing the ADP-induced form. The magnitude of the difference in initial rates of the ADP-or phosphoenolpyruvate-preincubated enzyme is a function of both substrates. L4 pyruvate kinase (either from human liver or trypsin treated L'4 enzyme) does not, or to a very slight extent, show such behaviour. L'2L2 pyruvate kinase shows behaviour intermediate between L'4 and L4 enzymes. A model is proposed to describe the kinetic behaviour of L'4 and L4 enzymes.  相似文献   

9.
The allosteric fructose 1,6-bisphosphate-activated pyruvate kinase from Escherichia coli was modified with pyridoxal 5'-phosphate in the presence and in the absence of phosphoenolpyruvate, fructose 1,6-bisphosphate, MgADP and MgATP. In all cases a time-dependent inactivation was observed, but the rate and the extent of inactivation varied according to the conditions used. The kinetic properties of the partially inactivated enzyme were differently modified by addition of substrates and effectors to the modification mixture, the parameters mostly affected being those concerning fructose 1,6-bisphosphate. Tryptic peptides obtained from fully inactivated pyruvate kinase in the different conditions have been separated. In all conditions three main 6-pyridoxyllysine-containing peptides were present, the amounts of which showed significant differences in the presence of fructose 1,6-bisphosphate and MgADP. The function of the labelled peptides and the evidence supporting the physical existence of different conformational states are discussed. The main conclusion concerns the involvement of one of the above peptides in the binding of the allosteric effector fructose 1,6-bisphosphate.  相似文献   

10.
1. The reaction pathway for the carboxylation of pyruvate, catalysed by pig liver pyruvate carboxylase, was studied in the presence of saturating concentrations of K(+) and acetyl-CoA. 2. Free Mg(2+) binds to the enzyme in an equilibrium fashion and remains bound during all further catalytic cycles. MgATP(2-) binds next, followed by HCO(3) (-) and then pyruvate. Oxaloacetate is released before the random release, at equilibrium, of P(i) and MgADP(-). 3. This reaction pathway is compared with the double displacement (Ping Pong) mechanisms that have previously been described for pyruvate carboxylases from other sources. The reaction pathway proposed for the pig liver enzyme is superior in that it shows no kinetic inconsistencies and satisfactorily explains the low rate of the ATP[unk][(32)P]P(i) equilibrium exchange reaction. 4. Values are presented for the stability constants of the magnesium complexes of ATP, ADP, acetyl-CoA, P(i), pyruvate and oxaloacetate.  相似文献   

11.
1. The properties of pyruvate kinase and, if present, phosphoenolpyruvate carboxykinase from the muscles of the sea anemone, scallop, oyster, crab, lobster and frog were investigated. 2. In general, the properties of pyruvate kinase from all muscles were similar, except for those of the enzyme from the oyster (adductor muscle); the pH optima were between 7.1 and 7.4, whereas that for oyster was 8.2; fructose bisphosphate lowered the optimum pH of the oyster enzyme from 8.2 to 7.1, but it had no effect on the enzymes from other muscles. Hill coefficients for the effect of the concentration of phosphoenolpyruvate were close to unity in the absence of added alanine for the enzymes from all muscles except oyster adductor muscle; it was 1.5 for this enzyme. Alanine inhibited the enzyme from all muscles except the frog; this inhibition was relieved by fructose bisphosphate. Low concentrations of alanine were very effective with the enzyme from the oyster (50% inhibition was observed at 0.4mm). Fructose bisphosphate activated the enzyme from all muscles, but extremely low concentrations were effective with the oyster enzyme (0.13mum produced 50% activation). 3. In general, the properties of phosphoenolpyruvate carboxykinase from the sea anemone and oyster muscles are similar: the K(m) values for phosphoenolpyruvate are low (0.10 and 0.13mm); the enzymes require Mn(2+) in addition to Mg(2+) for activity; and ITP inhibits the enzymes and the inhibition is relieved by alanine. These latter compounds had no effect on enzymes from other muscles. 4. It is suggested that changes in concentrations of fructose bisphosphate, alanine and ITP produce a coordinated mechanism of control of the activities of pyruvate kinase and phosphoenolpyruvate carboxykinase in the sea anemone and oyster muscles, which ensures that phosphoenolpyruvate is converted into oxaloacetate and then into succinate in these muscles under anaerobic conditions. 5. It is suggested that in the muscles of the crab, lobster and frog, phosphoenolpyruvate carboxykinase catalyses the conversion of oxaloacetate into phosphoenolpyruvate. This may be part of a pathway for the oxidation of some amino acids in these muscles.  相似文献   

12.
1. Preincubation of partially purified rat liver L-type pyruvate kinase at 25 degrees for 10min. causes a marked increase in co-operativity with respect to both the substrate, phosphoenolpyruvate, and the allosteric activator, fructose 1,6-diphosphate. 2. The results are consistent with the existence of two forms of liver L-type pyruvate kinase, designated forms L(A) and L(B). It is postulated that form L(A) has a low K(m) for phosphoenolpyruvate (about 0.1mm) and is not allosterically activated, whereas form L(B) is allosterically activated by fructose 1,6-diphosphate, exhibiting in the absence of the activator sigmoidal kinetics with half-maximal activity at about 1mm-phosphoenolpyruvate. In the presence of fructose 1,6-diphosphate, form L(B) gives Michaelis-Menten kinetics with K(m) less than 0.1mm. It is further postulated that preincubation converts form L(A) into form L(B). 3. The influence of pH on the preincubation effect was studied. 4. The inhibition of pyruvate kinase by Cu(2+) was studied in detail. Though phosphoenolpyruvate and fructose 1,6-diphosphate readily protect the enzyme against Cu(2+) inhibition, little evidence of significant reversal of the inhibition by these compounds could be found. 5. The effects of starvation, fructose feeding and preincubation on the pyruvate kinase activity of crude homogenates of various tissues of the rat were also studied.  相似文献   

13.
Adenosine 5′-triphosphate sulphurylase from Saccharomyces cerevisiae   总被引:3,自引:0,他引:3  
1. ATP sulphurylase from Saccharomyces cerevisiae was purified 140-fold by using heat treatment, DEAE-cellulose chromatography and Sepharose 6B gel filtration. 2. The enzyme was stable at -15 degrees C, optimum reaction velocity was between pH7.0 and 9.0, and the activation energy was 62kJ/mol (14.7kcal/mol). 3. The substrate was shown to be the MgATP(2-) complex, free ATP being inhibitory. 4. Double-reciprocal plots from initial-velocity studies were intersecting and the K(m) of each substrate was determined at infinite concentration of the other (K(m) MgATP(2-), 0.07mm; MoO(4) (2-), 0.17mm). 5. Radio-isotopic exchange between the substrate pairs, adenosine 5'-[(35)S]sulphatophosphate and SO(4) (2-), (35)SO(4) (2-) and adenosine 5'-sulphatophosphate, occurred only in the presence of either MgATP(2-) or PP(i). This suggests, along with the initial-velocity data, a sequential reaction mechanism in which both substrates bind before any product is released. 6. The enzyme reaction was specific for ATP and was not inhibited by l-cysteine, l-methionine, SO(3) (2-), S(2)O(3) (2-) (all 2mm) nor by p-chloromercuribenzoate (1mm). 7. Competitive inhibition of the enzyme with respect to MoO(4) (2-) was produced by SO(4) (2-) (K(i)=2.0mm) and non-competitive inhibition by sulphide (K(i)=3.4mm). 8. Adenosine 5'-sulphatophosphate inhibited strongly and concentrations as low as 0.02mm altered the normal hyperbolic velocity-substrate curves with both MgATP(2-) and MoO(4) (2-) to sigmoidal forms.  相似文献   

14.
T M Dougherty  W W Cleland 《Biochemistry》1985,24(21):5875-5880
pH profiles have been determined for the reactions catalyzed by pyruvate kinase between pyruvate and MgATP and between phosphoenolpyruvate and MgADP. V, V/KMgATP, and V/Kpyruvate all decrease below a pK of 8.3 and above one of 9.2. The group with pK = 8.3 is probably a lysine that removes the proton from pyruvate during enolization, while the pK of 9.2 is that of water coordinated to enzyme-bound Mg2+. The fact that this pK shows in all three pH profiles shows that pyruvate forms a predominantly second sphere complex and cannot replace hydroxide to form the inner sphere complex that results in enolization and subsequent phosphorylation. On the basis of the displacement of the pK of the acid-base catalytic group in its V/K profile, phosphoenolpyruvate is a sticky substrate, reacting to give pyruvate approximately 5 times faster than it dissociates. The V/K profile for the slow substrate phosphoenol-alpha-ketobutyrate shows the pK of 8.3 for the acid-base catalytic group in its correct position, but this group must be protonated so that it can donate a proton to the intermediate enolate following phosphoryl transfer. The secondary phosphate pK of the substrate is seen in this V/K profile as well as in the pKi profile for phosphoglycolate (but not in those for glycolate O-sulfate or oxalate), showing a preference for the trianion for binding. The chemical mechanism with the natural substrates thus appears to involve phosphoryl transfer between MgADP and a Mg2+-bound enolate with metal coordination of the enolate serving to make it a good leaving group.  相似文献   

15.
A fructokinase (EC 2.7.1.4) was obtained from pea (Pisum sativum L.) seeds. This enzyme, termed fructokinase (fraction IV), was specific for fructose as substrate and had little activity with glucose or mannose. Excess fructose inhibited the enzyme at the optimum pH (8.2) but not at pH 6.6. MgATP was inhibitory at pH 6.6. The apparent Michaelis-Menten constants at pH 8.2 were 0.057 mm for fructose and 0.10 mm for MgATP. Mg(2+) ions were essential for activity; Mn(2+) could partially replace Mg(2+). Fructokinase (fraction IV) had a requirement for K(+) ions which could be substantially replaced by Rb(+) or NH(4) (+) but not by Na(+). The enzyme was inhibited by MgADP. The possible significance of fructokinase (fraction IV) in plant carbohydrate metabolism is discussed.  相似文献   

16.
Kinetic properties of rat liver pyruvate kinase type I at pH7.5 and 6.5 were studied with physiological ranges of substrates, modifiers and Mg(2+) concentrations at increasing enzyme concentrations, including the estimated cellular concentrations (approx. 0.1mg/ml). Enzyme properties appear unaffected by increased enzyme concentration if phosphoenolpyruvate, fructose 1,6-diphosphate and inhibitors are incubated with enzyme before starting the reaction with ADP. Our data suggest that minimum cellular concentrations of MgATP and l-alanine provide virtually complete inhibition of pyruvate kinase I at pH7.5. The most likely cellular control of existing pyruvate kinase I results from the strong restoration of enzyme activity by the small physiological amounts of fructose 1,6-diphosphate. Decreasing the pH to 6.5 also restores pyruvate kinase activity, but to only about one-third of its activity in the presence of fructose 1,6-diphosphate. Neither pyruvate nor 2-phosphoglycerate at cellular concentrations inhibit the enzyme significantly.  相似文献   

17.
J A Bittl  J DeLayre  J S Ingwall 《Biochemistry》1987,26(19):6083-6090
Brain, heart, and skeletal muscle contain four different creatine kinase isozymes and various concentrations of substrates for the creatine kinase reaction. To identify if the velocity of the creatine kinase reaction under cellular conditions is regulated by enzyme activity and substrate concentrations as predicted by the rate equation, we used 31P NMR and spectrophotometric techniques to measure reaction velocity, enzyme content, isozyme distribution, and concentrations of substrates in brain, heart, and skeletal muscle of living rat under basal or resting conditions. The total tissue activity of creatine kinase in the direction of MgATP synthesis provided an estimate for Vmax (23.4 +/- 2.8, 62.4 +/- 4.5, and 224 +/- 16 mM/s) and exceeded the NMR-determined in vivo reaction velocities by an order of magnitude (4.1 +/- 1.2, 5.1 +/- 1.6, and 18.4 +/- 2.4 mM/s for brain, heart, and skeletal muscle, respectively). The isozyme composition varied among the three tissues: greater than 99% BB for brain; 14% MB, 61% MM, and 25% mitochondrial for heart; and 98% MM and 2% mitochondrial for skeletal muscle. The NMR-determined reaction velocities agreed with predicted values from the creatine kinase rate equation (r2 = 0.98; p less than 0.001). The concentrations of free creatine and cytosolic MgADP, being less than or equal to the dissociation constants for each isozyme, were dominant terms in the creatine kinase rate equation for predicting the in vivo reaction velocity. Thus, we observed that the velocity of the creatine kinase reaction is regulated by total tissue enzyme activity and by the concentrations of creatine and MgADP in a manner that is independent of isozyme distribution.  相似文献   

18.
The kinetic influence of bound creatine kinase (CK) on the Ca(2+)-activated myosin ATPase was evaluated. ATPase rates were measured from 0.8 microM to 3.2 mM MgATP. Under control conditions, the apparent KmATP was 79.9 +/- 13.3 microM. In contrast, the addition of 12.2 mM phosphocreatine (PCr) decreased the apparent KmATP to a value of 13.6 +/- 1.4 microM. To determine if this reduction was merely the result of an ATP maintenance system, ATP was regenerated using either phosphoenolpyruvate and pyruvate kinase (PEP-PK), or PCr and soluble bovine cardiac CK. Data obtained with PEP + PK indicated an apparent KmATP of 65.5 +/- 7.3 microM. To study the effects of exogenous CK, the endogenous CK was irreversibly inhibited with 1 mM iodoacetamide. The kinetics of the ATPase were then examined by adding soluble CK to the incubation medium. Under these conditions, the KmATP was 56.4 +/- 0.86 microM. Therefore, these two ATP regeneration systems could not duplicate the effects of endogenous CK. The reduction of the apparent KmATP by endogenous CK was not the result of an altered inhibition by MgADP. MgADP inhibition was determined to be non-competitive, with a Ki of 5.0 +/- 0.1 mM. These data suggest that the observed kinetic effects reflect the proximity of the enzymes in the myofibrillar bundle, thus emphasizing the importance of bound CK for the localized regeneration of MgATP utilized by the myosin ATPase.  相似文献   

19.
The effect of adenylic acid, glucose-6-phosphate, fructose-1,6-diphosphate and phosphoenolpyruvate on creatine kinase isoenzymes (brain extract, muscle and heart extracts and purified muscle enzyme) was studied. These effectors, especially phosphoenolpyruvate, are shown to inhibit in different degree the reaction of ATP formation catalysed by creatine kinase from all tissues. The effectors do not inhibit the creatine phosphate synthesis in extracts, but depress purified creatine kinase. The interrelationship of the creatine kinase system and the key glycolytic enzymes (phosphofructokinase, hexokinase, pyruvate kinase) is discussed.  相似文献   

20.
Some aspects of the kinetics of rat liver pyruvate carboxylase   总被引:9,自引:9,他引:0  
1. The kinetics of rat liver pyruvate carboxylase were examined and the effect of various agents as activators or inhibitors determined. 2. Essentially similar results were obtained in comparisons of kinetics determined by a radioactivity method involving extracts of acetone-dried powders from whole livers and with a spectrophotometric assay using partially purified enzyme from the mitochondrial fraction. Activity per g of liver from fed or starved rats assayed under optimum substrate and activator conditions was 3 or 6 mumol of oxaloacetate formed/min at 30 degrees C, respectively. 3. The enzyme exhibited cold-lability and lost activity on standing, even in 1.5m-sucrose. 4. The K(m) towards pyruvate was about 0.33mm and towards bicarbonate 4.2mm. K(m) towards MgATP(2-) was 0.14mm. Mg(2+) ions activated the enzyme, in addition to their role in MgATP(2-) formation. From calculations of likely concentrations of free Mg(2+) in the assay medium a K(a) towards Mg(2+) of about 0.25mm was deduced. Mn(2+) also activated the enzyme as well as Mg(2+), but at much lower concentrations. It appeared to be inhibitory when concentrations of free Mn(2+) as low as 0.1mm were present. 5. Excess of ATP is inhibitory, and this appears at least in part independent of the trapping of Mg(2+). 6. Both Co(2+) and Zn(2+) were inhibitory; 2mol of the latter appeared to be bound even in the presence of excess of Mg(2+) and the inhibition was time-dependent. 7. Ca(2+) inhibited by competition with Mg(2+) (K(i) about 0.38mm). The inhibition due to Ca(2+) was less pronounced when activation was with Mn(2+). Inhibition by Ca(2+) and ATP appeared to be additive. 8. Hill plots suggested that no interactions occurred between ATP-binding sites. Although similar plots for total Mg(2+) gave n=3.6, no conclusions could be drawn due to the chelation of the cation with other components of the assay. Similar difficulties arose in assessing the values for Ca(2+). 9. The enzyme was inactive in the absence of acetyl-CoA and showed a sigmoidal response in its presence. K(a) was about 0.1mm with possibly up to four binding sites. Malonyl-CoA was a competitive inhibitor, with K(i) 0.01mm. 10. There was no apparent inhibition by glucose, glucose 6-phosphate, fructose 6-phosphate, fructose 1,6-diphosphate, acetoacetate, beta-hydroxybutyrate, malate, aspartate, pyruvate, palmitoylcarnitine, octanoate, glutathione, butacaine, triethyltin or potassium chloride under the conditions used. Inhibition was found with citrate (possibly by chelation) and adenosine, and also by phosphoenolpyruvate, AMP, ADP and cyclic AMP, K(i) towards the last four being 0.55, 0.76, 0.25 and 1.4mm respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号