首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Particulate (15,000g) fractions from developing seeds of honesty (Lunaria annua L.) and mustard (Sinapis alba L.) synthesize radioactive very long chain monounsaturated fatty acids (gadoleic, erucic, and nervonic) from [1-14C]oleoyl-CoA and malonyl-CoA or from oleoyl-CoA and [2-14C]malonyl-CoA. The very long chain monounsaturated fatty acids are rapidly channeled to triacylglycerois and other acyl lipids without intermediate accumulation of their CoA thioesters. When [1-14C]oleoyl-CoA is used as the radioactive substrate, phosphatidylcholines and other phospholipids are most extensively radiolabeled by oleoyl moieties rather than by very long chain monounsaturated acyl moieties. When [2-14C]malonyl-CoA is used as the radioactive substrate, no radioactive oleic acid is formed and the newly synthesized very long chain monounsaturated fatty acids are extensively incorporated into phosphatidylcholines and other phospholipids as well as triacylglycerols. The pattern of labeling of the key intermediates of the Kennedy pathway, e.g. lysophosphatidic acids, phosphatidic acids, and diacylglycerols by the newly synthesized very long chain monounsaturated fatty acids is consistent with the operation of this pathway in the biosynthesis of triacylglycerols.  相似文献   

2.
The metabolism of oleoyl coenzyme A (CoA) was examined in developing seed from two soybean (Glycine max [L.] Merr.) genotypes: Williams, a standard cultivar and A5, a mutant containing nearly twice the oleic acid (18:1) content of Williams. The in vitro rates of esterification of oleoyl-CoA to lysophosphatides by acyl-CoA: lysophosphatidylcholine acyltransferase was similar in both genotypes and lysophosphatidyl-ethanolamine was a poor substrate. Crude extracts desaturated exogenous [1-14C]dioleoyl phosphatidylcholine at 14% of the rate achieved with [1-14C]oleoyl-CoA, and 50 micromolar lysophosphatidylcholine. The desaturase enzyme also required NADH for full activity. Extracts from Williams contained 1.5-fold more oleoyl phosphatidylcholine desaturase activity, on a fresh weight basis, than did A5 and appeared to have a similar affinity for oleoyl-CoA. There was 1.2- to 1.9-fold more linoleic acid (18:2) in phosphatidylcholine from Williams than from A5, measured at two stages of development, but both genotypes had a similar distribution of fatty acids in the one and two positions. Phosphatidylethanolamine in A5 contained relatively more linoleic acid (18:2) in the one position than did Williams. The increased oleic acid (18:1) content in A5 appeared to be a result of decreased rates of 18:1 desaturation of oleoyl-phosphatidylcholine in this genotype.  相似文献   

3.
Summary

Isolated oocytes of Perinereis cultrifera have been incubated in culture media with added [3H]glycerol, [14C]butyric acid or [14C]oleic acid. The principal neutral lipid synthesized was triacylglycerol, although incorporation of radioactivity into other lipid categories (sterol, fatty acid, wax ester) was also observed. A more significant percentage of triacylglycerol was labelled after incubation with [3H]glycerol and [14C]oleic acid than with [14C]butyric acid. With this precursor, monoacylglycerol appears to be the class of lipid compartment which initially show the most radioactivity. Electron microscopic autoradiography has revealed that labelling after incorporation of glycerol was mainly localized on the lipid droplets but not on the yolk granules. A second metabolic pathway is represented by phospholipid membrane synthesis.  相似文献   

4.
Acylation of lysolecithin in the intestinal mucosa of rats   总被引:3,自引:2,他引:1       下载免费PDF全文
1. The presence of an active acyl-CoA-lysolecithin (1-acylglycerophosphorylcholine) acyltransferase was demonstrated in rat intestinal mucosa. 2. ATP and CoA were necessary for the incorporation of free [1-(14)C]oleic acid into lecithin (phosphatidylcholine). 3. The reaction was about 20 times as fast with [1-(14)C]oleoyl-CoA as with free oleic acid, CoA and ATP. 4. With 1-acylglycerophosphorylcholine as the acceptor, both oleic acid and palmitic acid were incorporated into the beta-position of lecithin; the incorporation of palmitic acid was 60% of that of oleic acid. 5. Of the various analogues of lysolecithin tested as acyl acceptors from [1-(14)C]oleoyl CoA, a lysolecithin with a long-chain fatty acid at the 1-position was most efficient. 6. The enzyme was mostly present in the brush-border-free particulate fraction of the intestinal mucosa. 7. Of the various tissues of rats tested for the activity, intestinal mucosa was found to be the most active, with testes, liver, kidneys and spleen following it in decreasing order.  相似文献   

5.
The substrate specificity of fatty acid elongase was studied using an oil body fraction from developing seeds of Brassica napus. ATP was essential for high rates of elongase activity, but there was no apparent requirement for oleoyl-CoA, oleic acid (18:1) or CoA. Furthermore, 14C from 18:1-CoA was incorporated into eicosenoic (20:1) and erucic (22:1) acids at a much slower rate than 14C from malonyl-CoA. Incubation of [14C]18:1-CoA with the oil body fraction resulted in a rapid loss of [14C]18:1-CoA into several lipid fractions whether in the absence or presence of ATP, but the loss of 18:1-CoA had a comparatively small effect on the overall rate of elongation. Acyl-CoAs were derivatized to their respective acylbutylamide and analyzed by gas chromatography-mass spectrometry. This analysis of acyl-CoAs demonstrated that there was no detectable 20:1-CoA or 22:1-CoA at 0 min incubation, while newly synthesized 20:1-CoA and 22:1-CoA were present at 10 min. Analysis of the %14C of the substrates and products of the elongation reaction revealed that the endogenous pool of 18:1-CoA is quite small in elongase preparations. In addition, [14C]18:1-CoA added to the incubation, although incorporated into lipids, was not significantly diluted by turnover or new synthesis. In contrast, the %14C of the 20:1-CoA was two- to threefold less than that of the 18:1-CoA. Taken together, these results indicate that the [14C]18:1 from the [14C]18:1-CoA was diluted in an intermediate 18:1 pool and that the 18:1-CoA was not the major donor of the acyl group to the elongase reaction.  相似文献   

6.
It has been demonstrated that in vivo, exogenous [14C] palmitate is rapidly taken up and incorporated into phospholipid, neutral lipid and free fatty acid fractions of the kidney. During subsequent perfusion in an in vitro system, the amount of isotope decreases most rapidly in the neutral lipid (triglyceride) fraction. Net loss of chemical fatty acids cannot be detected after 2 hr. perfusion. The primary source of 14CO2 produced appears to be fatty acids from either neutral lipid or phospholipids. Since loss of 14C from neutral lipids is independent of O2 and substrates, regulation of fatty acid oxidation must be beyond triglyceride lipase.  相似文献   

7.
The effect of CoA on fatty acid synthesis by the microsomal fraction from germinating pea (Pisum sativum) was examined. Increasing concentrations of CoA progressively decreased total fatty acid synthesis from [14C]malonyl-CoA. However, the synthesis of very long chain fatty acids was relatively unaffected so that their proportion in the reaction products increased. Other CoA-esters also decreased total fatty acid synthesis while increasing the relative accumulation of radioactivity in very long chain fatty acids. The addition of CoA also altered the distribution of newly synthesized fatty acids in different lipid fractions. Complex lipid labelling was relatively increased while that of acyl-acyl carrier proteins was decreased. Very long chain fatty acids accumulated in lipids rather than thioesters. The role of CoA in controlling fatty acid synthesis in the pea microsomal fraction is discussed.  相似文献   

8.
A partially-purified diacylglycerol (DG) lipase from bovine aorta has been characterized with respect to the effects of lipid metabolites and two lipase inhibitors, phenylboronic acid and tetrahydrolipstatin (THL). DG lipase activity was determined by the hydrolysis of the sn-1 position of 1-[1-4C]palmitoyl-2-oleoyl-sn-glycerol. The products of the lipase reaction, 2-monoacylglycerol (2-monoolein) and non-esterified fatty acids (oleate, arachidonate) produced a concentration-dependent (20–200 μM) inhibition of DG lipase activity. Oleoyl-CoA and dioleoylphosphatidic acid also inhibited aortic DG lipase activity, but lysophosphatidylcholine had little or no effect. The inhibition of aortic DG lipase by phenylboronic acid was competitive, with a Ki of approx. 4 mM. THL was a very potent inhibitor of aortic DG lipase; the concentration required for inhibition to 50% of control was 2–6 nM. THL was a very potent inhibitor of concentration of substrate in the assay was increased. Attempts to identify the aortic DG lipase by covalent-labelling with [14C]THL were unsuccessful. Immunoblotting experiments revealed that hormone-sensitive triacylglycerol lipase (HSL) could not be detected in bovine aorta.  相似文献   

9.
Radioactive oleic and linoleic acids, labeled with 3H in the chain and 14C in the carbonyl group, were administered to white leghorn laying hens. Mixtures fed in separate experiments included: (1) 3H- and 14C-labeled oleic acid, (2) 3H- and 14C-labeled linoleic acid and (3) [3H]oleic aicd and [14C] linoleic acid. The 3H/14C ratios of both the neutral lipid and phospholipid fractions from the egg yolk and of the isolated acids from these lipid fractions were compared to that in the administered mixture. Agreement in the 3H/14C ratios for the neutral lipid fraction from each of the feeding experiments indicated that neither the 3H- and 14C labeled acids nor the oleic or linoleic acids were distinguishable during synthesis of the neutral lipid. Analysis of the phospholipid fractions showed that when dual-labeled mixtures of oleic acid were administered, 3H/14C ratios were elevated and, therefore, there was selective elimination of the 14C label. When dual-labeled mixtures of linoleic acid were administered, the 3H/14C ratios were in agreement; and when the two acids were administered simultaneously as a dual-labeled mixture, there was selective incorporation of linoleic acid. These findings indicate separate metabolic pathways for synthesis of neutral lipid and phospholipid in egg yolk as expected, as well as preferential use of the essential fatty acid in the phospholipid by the hen.  相似文献   

10.
Synthesis of Long-Chain Acyl-CoA in Chloroplast Envelope Membranes   总被引:6,自引:5,他引:1       下载免费PDF全文
The chloroplast envelope is the site of a very active long-chain acylcoenzyme A (CoA) synthetase. Furthermore, we have recently shown that an acyl CoA thioesterase is also associated with envelope membrane (Joyard J, PK Stumpf 1980 Plant Physiol 65: 1039-1043). To clarify the interacting roles of both the acyl-CoA thioesterase and the acyl-CoA synthetase, the formation of acyl-CoA in envelope membranes was examined with different techniques which permitted the measurement of the actual rates of acyl-CoA formation. Using [14C]ATP or [14C]oleic acid as labeled substrates, it can be shown that the envelope acyl-CoA synthetase required both Mg2+ and dithiothreitol. Triton X-100 slightly stimulated the activity. The specificity of the acyl-CoA synthetase was determined either with [14C]ATP or with [3H]CoA as substrates. The results obtained in both cases were similar, that is, as substrates, the unsaturated fatty acids were more effective than saturated fatty acids, the velocity of the reaction increased from lauric acid to palmitic acid, and the maximum velocity was obtained with unsaturated C18 fatty acids.  相似文献   

11.
1. After the injection of sodium [1-14C]acetate, the highest incorporation of 14C into the lipids of the silkworm was observed after 24hr. 2. The specific radioactivity of the palmitic acid fraction was greater and increased more rapidly than that of the stearic acid fraction, which was consistent with the precursor–product relationship to be expected on the basis of current concepts of fatty acid synthesis in vivo. 3. The results indicate the probability of synthesis of lipid components in tissues other than the fat body. 4. Fractionation studies indicate considerable differences in the rate of incorporation of [1-14C]acetate into neutral lipids and phospholipids between larvae and pupae as well as among tissues of larvae. 5. The rate of incorporation of [1-14C]acetate remains constant throughout pupal development.  相似文献   

12.
Suspensions of isolated pine needle chloroplasts were shown to incorporate galactose from UDP galactose-[14C] into galactolipids. The incorporation of the label among galactolipids was always considerably higher in the monogalactosyl diglycerides than in the digalactosyl diglycerides. The galactosyl incorporation into both galactolipid fractions was optimal at pH 8.0 and was inhibited by sulphydryl reagents (p-chloromercuribenzoate, N-ethyl maleimide and CdCl2). The chloroplast preparations were also able to biosynthesize various phospholipids and galactolipids from palmitoyl-[1-14C]-CoA; the major portion of the label appeared in phosphatidyl choline. The incorporation of palmitic-[1-14C] acid into various lipids was very poor compared to that of palmitoyl-[1-14C]-CoA. However, addition of ATP and CoA markedly stimulated lipid biosynthesis from palmitic-[1-14C] acid, suggesting the presence of activating enzymes. These chloroplast suspensions did not show any de novo fatty acid synthesis.  相似文献   

13.
1. Nerve cell bodies were isolated in bulk from cerebral cortices of 15 day-old rabbits after intrathecal injections of [3H]plamitate, [3H]oleate or [3H]arachidonate and [14C]glycerol. 2. Nuclear, microsomal and two mitochondrial fractions were isolated from homogenates of the radioactively labelled nerve cell bodies by using differential and discontinuous-gradient centrifugation. 3. After 7.5min in vivo, a high percentage (>80%) of the total 3H-labelled fatty acid radioactivity was found in the membrane fractions of the nerve cell bodies, whereas after 60min in vivo 50% of the total [14C]glycerol radioactivity was found in the high-speed supernatant. 4. The specific radioactivities of phosphatidylcholine, phosphatidylethanolamine and phosphatidylinositol, and the radioactivity in neutral lipid and non-esterified fatty acid fractions were determined in the four subfractions, as were the distributions of several marker enzymes and nucleates. 5. With respect of 3H-labelled fatty acid, the phospholipids of the nuclear fraction had the highest specific radioactivities of the four subfractions. However, for [14C]glycerol labelling, generally the 14C specific radioactivities for individual phospholipids were comparable in the four subfractions. This latter observation suggests transport of phospholipids synthesized de novo between membranes of the nerve cell body. 6. Double-labelling experiments demonstrated that individual phospholipids and the combined neutral lipids of the nuclear fraction had higher labelling ratios of 3H-labelled fatty acid/[14C]glycerol than did the corresponding lipids of the microsomal or mitochondrial fractions. 7. On the basis of the labelling results and the marker studies, it is proposed that it is indeed the nuclei of the nuclear fraction that have these lipids highly labelled with 3H-labelled fatty acid, and the existence of nuclear acyl transferases that are responsible for this fatty acid incorporation is suggested.  相似文献   

14.
J. J. MacCarthy  P. K. Stumpf 《Planta》1980,150(5):412-418
A cell-free extract containing the enzymes for de-novo synthesis, elongation and desaturation of fatty acids was prepared from cultured cells of Catharanthus roseus G. Don. 14C-Fatty acids synthesized by the extract from [2-14C]malonyl CoA substrate were palmitic (16:0), stearic (18:0) and oleic (18:1). Dialyzed extract was active and stable at room temperature and at 4° C, but was inactivated on boiling. There was an absolute requirement for NADPH for incorporation of [2-14C]malonyl CoA into total fatty acids. Escherichia coli acyl carrier protein stimulated total fatty-acid synthesis without affecting the relative ratio of individual fatty acids. Total fatty-acid synthesis at a rate of 45 nmol·mg-1 protein·h-1 occurred at a substrate level of 73 M malonyl CoA, cofactor levels of 500 M NADPH, 30 g·ml-1 E. coli ACP, and 1.0 mg·ml-1 extract protein. Total fatty acid synthesis was also sensitive to cerulenin and CoA levels. Variations in the relative abundance of individual 14C-fatty acids were regulated by concentrations of [14C]malonyl CoA. NADPH and ferredoxin, as well as by pH, temperature and length of incubation. Fatty-acid synthetase enzymes responsible for [14C]palmitic acid were rapidly saturated at a low substrate level (0.3 M malonyl CoA). Increasing the level of [2-14C]malonyl CoA permitted further synthesis of [14C]stearate and [14C]oleate. Desaturation of [14C]stearate to [14C]oleate was stimulated by increasing the levels of NADPH and ferredoxin. The desaturase and elongase enzymes were sensitive to acidic pH. The desaturase was also unstable at 41° C, although fatty acid synthetase and elongase were unaffected by this temperature.Abbreviation ACP Acyl carrier protein  相似文献   

15.
The effect of electroconvulsive shock on the labeling of phospholipids and neutral lipids in mice brains was examined after intracerebral injection of [1-14C] arachidonic acid or [1-14C]palmitic acid. Electroconvulsive shock reduced greatly the removal of radiolabeled arachidonic acid from the free fatty acid pool. At the same time, the incorporation of arachidonic acid was partially inhibited in triacylglycerol, diacylglycerol, and phosphatidylinositol, whereas the incorporation of [1-14C]palmitic acid was not affected. Pretreatment with desipramine and pargyline potentiated the lipid effect of electroconvulsive shock in neutral glycerides. These electroconvulsive shock-induced changes reflect alterations in the metabolism of intracerebrally injected arachidonic acid, but not of similarly injected palmitic acid. From the available data whether decreased ATP, enzyme inhibition or other factors are involved cannot be ascertained. Moreover, the electroconvulsive shock-enhanced endogenous free arachidonic acid may possibly dilute the injected radiolabeled fatty acid, thus decreasing its availability for arachidonoyl-coenzyme A synthesis. Hence, a partial inhibition of the activation-acylation of these fatty acids, primarily arachidonic acid, also may be involved in the seizure-induced accumulation of free fatty acids in the brain.  相似文献   

16.
Exogenous [1-14C]oleic acid and [1-14C]linoleic acid were taken up and esterified to complex lipids by greening cucumber (Cucumis sativus L.) cotyledons. Both 14C-labeled fatty acids were initially esterified to phosphatidylcholine prior to eventual accumulation in triacylglycerols and galactolipids. Kinetic data suggest that esterification occurs prior to desaturation and that phosphatidylcholine is the initial site of both [14C]-oleate and [1-14C]linoleate esterification and of [1-14C]oleate desaturation to [1-14C]linoleate. [1-14C]Linoleic acid was esterified more rapidly than [14C]oleic acid and its desaturation product, [1-14C]α-linolenate, occurred mainly on monogalactosyl diacylglycerol, although some was also observed on the other major acyl lipids, including phosphatidylcholine.  相似文献   

17.
The viability of Streptococcus lactis and Lactobacillus sp. A-12 after freezing at -17°C for 48 h was better preserved when the cells were grown in medium supplemented with oleic acid or Tween 80 (polyoxyethylene sorbitan monooleate). A pronounced change in the cellular fatty acid composition was noted when the bacteria were grown in the presence of Tween 80. In S. lactis the ratio of unsaturated to saturated fatty acids increased from 1.18 to 2.55 and in Lactobacillus sp. A-12 it increased from 0.85 to 1.67 when Tween 80 was added to the growth medium. The antibiotic cerulenin markedly inhibited the growth of lactic acid bacteria in tomato juice (TJ) medium but had almost no effect on the growth of the bacteria in TJ medium containing Tween 80 (or oleic acid). The antibiotic inhibited markedly the incorporation of [1-14C]acetate but had no inhibitory effect on the incorporation of exogenous [1-14C]oleate (or [1-14C]palmitate) into the lipid fractions of lactic acid bacteria. Thus, the fatty acid composition of lactic acid bacteria, inhibited by the antibiotic cerulenin, can be modulated by exogenously added oleic acid (or Tween 80) without the concurrent endogenous fatty acid synthesis from acetate. The data obtained suggest that cerulenin inhibits neither cyclopropane fatty acid synthesis nor elongation of fatty acid acyl intermediates. The radioactivity of cells grown in the presence of [1-14C]oleate and cerulenin was associated mainly with cyclopropane Δ19:0, 20:0 + 20:1, and 21:0 acids. As a consequence, cerulenin caused a decrease in the ratio of unsaturated to saturated fatty acids in lactic acid bacteria as compared with cells grown in TJ medium plus Tween 80 but without cerulenin. Cerulenin caused a decrease in the viability of S. lactis and Lactobacillus sp. A-12 after freezing at -17°C for 48 h only when Tween 80 was present in the growth medium. We conclude that the sensitivity of lactic acid bacteria to damage from freezing can be correlated with specific alterations in the cellular fatty acids.  相似文献   

18.
Developing soybean (cv. Dare) cotyledons harvested at 30 days after flowering were pulse-labeled with [1-(14)C]oleoyl-CoA. The metabolic interrelation of radiolabeled unsaturated fatty acids between the major glycerolipid classes was determined at various time intervals. At chase time zero, [(14)C]oleic acid accounted for 99.2% of the total glycerolipid radioactivity, and phospholipids contained 92% of the total incorporated radioactivity. With time, phospholipids were metabolized in triacylglycerol biosynthesis and radioactivity was detected in polyunsaturated fatty acids. The hypothesis that phospholipids were metabolic intermediates in polyunsaturated fatty acid biosynthesis was tested by comparing the theoretical and the actual amount of radiolabeled oleic acid that was associated with triacylglycerol as a function of time. The radioactive oleic acid found in triacylglycerol at various intervals was derived from phospholipids via a diacylglycerol intermediate. Assuming no phospholipid desaturation, the potential or theoretical amounts of [(14)C]oleic acid that could be transferred to triacylglycerol from phospholipids was defined by a system of differential equations. The results demonstrated that the decline in [(14)C]oleic acid from phospholipid after long chase intervals was equal to the total amount of radioactive unsaturated fatty acids found in neutral lipids. The difference between the theoretical and actual amounts of [(14)C]oleic acid present in triacylglycerol after long time intervals was equal to the amount of radioactivity present in polyunsaturated fatty acids. Based upon those findings in soybeans, the desaturation of oleic acid associated with phospholipids was highly probable.  相似文献   

19.
Etiolated Cucumis sativus L. cotyledons preferentially catabolized exogenous [1-14C]oleic acid and [1-14C]linoleic acid with relatively little incorporation into complex lipids or desaturation of the 14C-labeled fatty acids. Following a 16-hour exposure to light, the greening cotyledons efficiently desaturated the exogenous 14C-labeled fatty acids. A small amount of oleate desaturation to linoleate was observed in etiolated tissue, but hardly any linoleate desaturation to α-linolenate was detected. Both oleate and linoleate desaturation showed diurnal variations with maxima at the end of light periods and minima at the end of dark periods. Illumination of etiolated tissue by flashing light, as opposed to continuous light, failed to stimulate either chlorophyll or α-linolenic acid biosynthesis, and both processes could be halted or reversed by 10 micrograms per milliliter cycloheximide. Production of polyunsaturated fatty acids from [1-14C]acetate, [1-14C]oleic acid, and [1-14C]linoleic acid, by greening cucumber cotyledons, was markedly affected by tissue integrity with finely chopped cotyledons having very little capacity for their synthesis and intact seedlings showing the highest rates.  相似文献   

20.
Uptake of Tween-fatty acid esters and incorporation of the fatty acids into lipids by soybean (Glycine max [L.] Merr.) suspension cultures was investigated, together with subsequent turnover of the incorporated fatty acids and associated changes in endogenous fatty acid synthesis. Tween uptake was saturable, and fatty acids were rapidly transferred from Tweens to all acylated lipids. Patterns of incorporation into glycerolipids were similar in cells treated with Tweens carrying [1-14C]-fatty acids and in cells treated with [1-14C]acetate, indicating that exogenous fatty acids were used for glycerolipid synthesis essentially as if they had been made by the cell. In Tween-treated cells neutral lipids (which include Tweens) initially accounted for the majority of lipid radioactivity. Radioactivity was then rapidly transferred to glycerolipids. A transient pool of free fatty acids accounting for up to 10% of lipid radioactivity was observed. This was consistent with the hypothesis that fatty acids are transferred from Tweens to lipids by deacylation of the Tweens, creating a pool of free fatty acids which are then used for lipid synthesis. Sterols were only slightly labeled in cells treated with Tweens, but accounted for nearly 50% of lipid radioactivity in cells treated with acetate. This suggested very little degradation and reutilization of the radioactive fatty acids in cells treated with Tweens. In cells treated with either [1-14C]acetate or Tween-[1-14C]-18:1, 70% of the initial fatty acid radioactivity remained in fatty acids after a 100 hour chase. By contrast, fatty acids not normally present disappeared more rapidly, suggesting differential treatment of such fatty acids compared with those normally present. Cells which had incorporated large amounts of exogenous fatty acids altered fatty acid synthesis in three distinct ways: (a) amounts of [1-14C]acetate incorporated into fatty acids were reduced; (b) cells incorporating exogenous unsaturated fatty acids increased the proportion of [1-14C]acetate partitioned into saturated fatty acids, while the converse was true of cells which had incorporated exogenous saturated fatty acids; (c) desaturation of 18:1 to 18:2 and 18:3 was reduced in cells which had incorporated unsaturated fatty acids. These results suggest that Tween-fatty acid esters will be useful for supplying fatty acids to cells for a variety of studies related to fatty acid or membrane metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号