首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Skin but not vascularized cardiac allografts from B6.H-2bm12 mice are acutely rejected by C57BL/6 recipients in response to the single class II MHC disparity. The underlying mechanisms preventing acute rejection of B6.H-2bm12 heart allografts by C57BL/6 recipients were investigated. B6.H-2bm12 heart allografts induced low levels of alloreactive effector T cell priming in C57BL/6 recipients, and this priming was accompanied by low-level cellular infiltration into the allograft that quickly resolved. Recipients with long-term-surviving heart allografts were unable to reject B6.H-2bm12 skin allografts, suggesting potential down-regulatory mechanisms induced by the cardiac allografts. Depletion of CD25+ cells from C57BL/6 recipients resulted in 15-fold increases in alloreactive T cell priming and in acute rejection of B6.H-2bm12 heart grafts. Similarly, reconstitution of B6.Rag(-/-) recipients with wild-type C57BL/6 splenocytes resulted in acute rejection of B6.H-2bm12 heart grafts only if CD25+ cells were depleted. These results indicate that acute rejection of single class II MHC-disparate B6.H-2bm12 heart allografts by C57BL/6 recipients is inhibited by the emergence of CD25+ regulatory cells that restrict the clonal expansion of alloreactive T cells.  相似文献   

2.
CD4 T cells frequently help to activate CD8 T and B cells that effect transplant rejection. However, CD4 T cells alone can reject transplants, either directly or indirectly. The relative effectiveness of indirect CD4 immunity in rejecting different types of allogeneic grafts is unknown. To address this, we used a TCR transgenic mouse model in which indirect CD4 alloimmunity alone can be studied. We challenged transgenic recipients with hematopoietic cells and shortly thereafter skin transplants that could only be rejected indirectly, and observed Ag-specific indirect donor B cell and skin rejection, but not T cell elimination, reflecting a state of split tolerance. Deficiency of indirect CD4 alloimmunity in donor T cell rejection was also apparent when acute indirect rejection of donor islets occurred despite generation and maintenance of mixed T cell chimerism, due to migration of the few passenger T cells into recipient circulation. Although passenger lymphocytes delayed indirect islet rejection, they enhanced rejection by a full repertoire capable of both direct and indirect reactivity. Interestingly, the persistence of chimerism was associated with the eventual development of tolerance, as demonstrated by acceptance of donor skin grafts given late to hematopoietic cell recipients, and hyporesponsiveness of transgenic T cells from islet recipients in vitro. Mechanistically, tolerance was recessive and associated with progressive down-regulation of CD4. Collectively, our data indicate that indirect CD4 immunity is not equally destructive toward different types of allogeneic grafts, the deficiency of which generates split tolerance. The futility of these responses can convert immunity into tolerance.  相似文献   

3.
Severe burn patients lack adequate skin donor sites to resurface their burn wounds. Patients with severe burn injuries to areas such as an entire face are presently reconstructed with skin grafts that are inferior to normal facial skin. This study was designed in part to determine whether human skin allografts would survive, repopulate, and persist on patients with immunosuppression and after discontinuation of immunosuppression. Small split-thickness skin grafts were synchronously transplanted at the time of renal transplantation from six renal transplant donors to recipients. All six patients were immunosuppressed with the usual doses of renal transplant immunosuppressants (methylprednisolone, cyclosporine, prednisone, and azathioprine). The skin allografts were biopsied when rejection was suspected and at various intervals. Special histologic studies were performed on skin biopsy specimens. Class II DNA tissue typing was performed on transplanted and autogenous skin biopsy specimens of four patients. Fluorescent in situ hybridization was performed successfully on skin biopsies of four patients' transplanted skin and on two of these four patients' autogenous skin. All six human skin allografts sustained a 100 percent take and long-term clinical survival. DNA tissue typing performed on skin allograft biopsy specimens from patients taking immunosuppressants all revealed donor and recipient cells. DNA tissue typing performed on autogenous skin biopsies from the same patients all revealed only recipient cells. Fluorescent in situ hybridization performed on allograft and autogenous specimens from patients taking immunosuppressants revealed transplanted donor cells with rare recipient cells in the allograft and only recipient cells in the autogenous skin. This study of six patients proves that it is possible for human skin allografts to survive indefinitely on patients taking the usual dosages of immunosuppressants used for renal transplantation. There was minimal repopulation of skin allografts by autogenous keratinocytes and fibroblast while patients were taking immunosuppressants. Immunosuppression was discontinued in two patients after renal transplant rejection after 6 weeks and 5 years. When immunosuppression was discontinued after 5 years in one patient, the skin allograft cells were destroyed and replaced with autogenous cells, but the skin graft did not reject acutely and persisted clinically. It is hypothesized that the acellular portion of the skin allograft was not rejected acutely because of relatively low antigenicity and because it acted as a lattice for autogenous cells to migrate into and replace rejected allograft skin cells. No chimerism was seen in autogenous skin in the skin-renal transplant patients in this study.  相似文献   

4.
The CD134-CD134 ligand (CD134L) costimulatory pathway has been shown to be critical for both T and B cell activation; however, its role in regulating the alloimmune response remains unexplored. Furthermore, its interactions with other costimulatory pathways and immunosuppressive agents are unclear. We investigated the effect of CD134-CD134L pathway blockade on allograft rejection in fully MHC-mismatched rat cardiac and skin transplantation models. CD134L blockade alone did not prolong graft survival compared with that of untreated recipients, and in combination with donor-specific transfusion, cyclosporine, or rapamycin, was less effective than B7 blockade in prolonging allograft survival. However, in combination with B7 blockade, long-term allograft survival was achieved in all recipients (>200 days). Moreover, this was synergistic in reducing the frequency of IFN-gamma-producing alloreactive lymphocytes and inhibiting the generation of activated/effector lymphocytes. Most impressively, this combination prevented rejection in a presensitized model using adoptive transfer of primed lymphocytes into athymic heart transplant recipients. In comparison to untreated recipients (mean survival time (MST): 5.3 +/- 0.5 days), anti-CD134L mAb alone modestly prolonged allograft survival (MST: 14 +/- 2.8 days) as did CTLA4Ig (MST: 21.5 +/- 1.7 days), but all grafts were rejected within 24 days. Importantly, combined blockade further and significantly prolonged allograft survival (MST: 75.3 +/- 12.7 days) and prevented the expansion and/or persistence of primed/effector alloreactive T cells. Our data suggest that CD134-CD134L is a critical pathway in alloimmune responses, especially recall/primed responses, and is synergistic with CD28-B7 in mediating T cell effector responses during allograft rejection. Understanding the mechanisms of collaboration between these different pathways is important for the development of novel strategies to promote long-term allograft survival.  相似文献   

5.
CD8 T cell cross-priming, an established mechanism of protective antiviral immunity, was originally discovered during studies involving minor transplantation Ags. It is unclear whether or how cross-primed CD8 T cells, reactive to donor-derived, but recipient class I MHC-restricted epitopes, could injure a fully MHC-disparate, vascularized transplant. To address this question we studied host class I MHC-restricted, male transplantation Ag-reactive T cell responses in female recipients of fully MHC-disparate, male heart transplants. Cross-priming to the immune-dominant determinant HYUtyp occurred at low frequency after heart transplantation. CD8 T cell preactivation through immunization with HYUtyp mixed in CFA did not alter the kinetics of acute rejection. Furthermore, neither HYUtyp immunization nor adoptive transfer of HYUtyp-specific TCR-transgenic T cells affected outcome in 1) a model of chronic rejection in the absence of immunosuppression or 2) a model of allograft acceptance induced by costimulatory blockade. The results support the contention that CD8 T cells reactive to host-restricted, but donor-derived, Ags are highly specific and are nonpathogenic bystanders during rejection of MHC-disparate cardiac allografts.  相似文献   

6.
Nonmyeloablative conditioning has significantly reduced the morbidity associated with bone marrow transplantation. The donor hemopoietic cell lineage(s) responsible for the induction and maintenance of tolerance in nonmyeloablatively conditioned recipients is not defined. In the present studies we evaluated which hemopoietic stem cell-derived components are critical to the induction of tolerance in a total body irradiation-based model. Recipient B10 mice were pretreated with mAbs and transplanted with allogeneic B10.BR bone marrow after conditioning with 100-300 cGy total body irradiation. The proportion of recipients engrafting increased in a dose-dependent fashion. All chimeric recipients exhibited multilineage donor cell production. However, induction of tolerance correlated strictly with early production of donor T cells. The chimeras without donor T cells rejected donor skin grafts and demonstrated strong antidonor reactivity in vitro, while possessing high levels of donor chimerism. These animals lost chimerism within 8 mo. Differentiation into T cells was aborted at a prethymic stage in recipients that did not produce donor T cells. Moreover, donor Ag-driven clonal deletion of recipient T cells occurred only in chimeras with donor T cells. These results demonstrate that donor T cell production is critical in the induction of transplantation tolerance and the maintenance of durable chimerism. In addition, donor T cell production directly correlates with the deletion of potentially alloreactive cells.  相似文献   

7.
A novel subset of CD3(+)CD4(-)CD8(-) (double negative; DN) regulatory T cells has recently been shown to induce donor-specific skin allograft acceptance following donor lymphocyte infusion (DLI). In this study, we investigated the effect of DLI on rat to mouse cardiac xenotransplant survival and the ability of DN T cells to regulate xenoreactive T cells. B6 mice were given either DLI from Lewis rats, a short course of depleting anti-CD4 mAb, both DLI and anti-CD4 treatment together, or left untreated. DLI alone did not prolong graft survival when compared with untreated controls. Although anti-CD4-depleting mAb alone significantly prolonged graft survival, grafts were eventually rejected by all recipients. However, the combination of DLI and anti-CD4 treatment induced permanent cardiac xenograft survival. We demonstrate that recipients given both DLI and anti-CD4 treatment had a significant increase in the total number of DN T cells in their spleens when compared with all other treatment groups. Furthermore, DN T cells harvested from the spleens of DLI plus anti-CD4-treated mice could dose-dependently inhibit the proliferation of syngeneic antidonor T cells. Suppression mediated by these DN T cells was specific for antidonor T cells as T cells stimulated by third-party Ags were not suppressed. These results demonstrate for the first time that a combination of pretransplant DLI and anti-CD4-depleting mAb can induce permanent survival of rat to mouse cardiac xenografts and that DN T regulatory cells play an important role in preventing long-term concordant xenograft rejection through the specific suppression of antidonor T cells.  相似文献   

8.
Transplantation of immature retinal tissues may offer a solution for restoring sight to individuals afflicted with degenerative retinal diseases. Promising results have recently demonstrated that neonatal retinal grafts placed in the eye can survive, differentiate into photoreceptor cells, and respond to evoked electrical stimuli. These transplants, however, were performed in immunologically immature recipients. Since it is important to know whether neonatal neuronal retina (NNR) tissue is immunogenic in immune-competent recipients, and whether this tissue displays inherent immune privilege, we have examined the fate of such grafts placed in a non-immune-privileged site of adult recipient mice. We found that typical, photoreceptor-dominated rosettes formed in differentiating NNR grafts, and that these allografts survived beyond 12 days, whereas genetically identical skin grafts were rejected earlier. Class II MHC-bearing cells of recipient origin were observed along the edge of NNR allografts as early as day 5. Donor-specific delayed hypersensitivity was not detected at 12 days, but did emerge on day 20, coincident with rejection of NNR allografts. Lymph nodes, but not spleens, of mice bearing NNR grafts at 12 days contained regulatory lymphoid cells that suppressed delayed hypersensitivity in naive recipients. We conclude that NNR grafts accommodate and even differentiate in the non-immune-privileged space beneath the kidney capsule. Survival beneath the kidney capsule of NNR allografts, but not skin allografts, at 12 days and beyond implies that NNR tissue possesses inherent immune privilege. The vulnerability of these grafts to rejection by 20 days reveals this privilege to be partial and temporary.  相似文献   

9.
Activation of innate immunity through Toll-like receptors (TLR) can abrogate transplantation tolerance by revealing hidden T cell alloreactivity. Separately, the cholinergic anti-inflammatory pathway has the capacity to dampen macrophage activation and cytokine release during endotoxemia and ischemia reperfusion injury. However, the relevance of the α7 nicotinic acetylcholine receptor (α7nAChR)-dependent anti-inflammatory pathway in the process of allograft rejection or maintenance of tolerance remains unknown. The aim of our study is to investigate whether the cholinergic pathway could impact T cell alloreactivity and transplant outcome in mice. For this purpose, we performed minor-mismatched skin allografts using donor/recipient combinations genetically deficient for the α7nAChR. Minor-mismatched skin grafts were not rejected unless the mice were housed in an environment with endogenous pathogen exposure or the graft was treated with direct application of imiquimod (a TLR7 ligand). The α7nAChR-deficient recipient mice showed accelerated rejection compared to wild type recipient mice under these conditions of TLR activation. The accelerated rejection was associated with enhanced IL-17 and IFN-γ production by alloreactive T cells. An α7nAChR-deficiency in the donor tissue facilitated allograft rejection but not in recipient mice. In addition, adoptive T cell transfer experiments in skin-grafted lymphopenic animals revealed a direct regulatory role for the α7nAChR on T cells. Taken together, our data demonstrate that the cholinergic pathway regulates alloreactivity and transplantation tolerance at multiple levels. One implication suggested by our work is that, in an organ transplant setting, deliberate α7nAChR stimulation of brain dead donors might be a valuable approach for preventing donor tissue inflammation prior to transplant.  相似文献   

10.
Donor leukocytes play a dual role in rejection and acceptance of transplanted organs. They provide the major stimulus for rejection, and their removal from the transplanted organ prolongs its survival. Paradoxically, administration of donor leukocytes also prolongs allograft survival provided that they are administered 1 wk or more before transplantation. Here we show that administration of donor leukocytes immediately after transplantation induced long-term acceptance of completely MHC-mismatched rat kidney or liver transplants. The majority of long-term recipients of kidney transplants were tolerant of donor-strain skin grafts. Acceptance was associated with early activation of recipient T cells in the spleen, demonstrated by a rapid increase in IL-2 and IFN-gamma at that site followed by an early diffuse infiltrate of activated T cells and apoptosis within the tolerant grafts. In contrast, IL-2 and IFN-gamma mRNA were not increased in the spleens of rejecting animals, and the diffuse infiltrate of activated T cells appeared later but resulted in rapid graft destruction. These results define a mechanism of allograft acceptance induced by donor leukocytes that is associated with activation-induced cell death of recipient T cells. They demonstrate for the first time that posttransplant administration of donor leukocytes leads to organ allograft tolerance across a complete MHC class I plus class II barrier, a finding with direct clinical application.  相似文献   

11.
Allograft rejection is initiated by an immune response to donor MHC proteins. We recently reported that this response can result in breakdown of immune tolerance to a recipient self Ag. However, the contribution of this autoimmune response to graft rejection has yet to be determined. Here, we found that after mouse allogeneic heart transplantation, de novo CD4+ T cell and B cell autoimmune response to cardiac myosin (CM), a major contractile protein of cardiac muscle, is elicited in recipients. Importantly, CM is the autoantigen that causes autoimmune myocarditis, a heart autoimmune disease whose histopathological features resemble those observed in rejected cardiac transplants. Furthermore, T cell responses directed to CM peptide myhcalpha 334-352, a known myocarditogenic determinant, were detected in heart-transplanted mice. No responses to CM were observed in mice that had received an allogeneic skin graft or a syngeneic heart transplant, demonstrating that this response is tissue specific and that allogeneic response is necessary to break tolerance to CM. Next, we showed that sensitization of recipient mice with CM markedly accelerates the rejection of allogeneic heart. Therefore, posttransplant autoimmune response to CM is relevant to the rejection process. We conclude that transplantation-induced autoimmune response to CM represents a new mechanism that may play a significant role in cardiac transplant rejection.  相似文献   

12.
Chemokine-chemokine receptor interactions and the subsequent recruitment of T lymphocytes to the graft are believed to be among the initial events in the development of acute and chronic rejection of heart transplants. We sought to determine the role of chemokine receptor Cxcr3 on the development of acute and chronic rejection in a multiple minor Ag mismatched mouse heart transplant model. The frequencies and kinetics of immunodominant H60 (LTFNYRNL) miHA-specific CD8 T cells in wild-type or Cxcr3-/- C57BL/6 recipients were monitored using MHC class I tetramer after BALB/b donor hearts were transplanted. Acceptance of grafts, severity of rejection, and infiltration of T cells were not altered in Cxcr3-/- recipients. However, graft survival was moderately prolonged in Cxcr3-/- recipient mice undergoing acute rejection. Analyses of splenocytes, PBLs, and graft-infiltrating cells revealed increased alloreactive T cells (H60-specific CD8 T cells) in the peripheral blood and spleen but not in the graft. Adoptively transferred Cxcr3-/- CD8 T cells in the BALB/b heart-bearing B6 scid mice showed retention of alloreactive CD8 T cells in the blood but less infiltration into the graft. Cxcr3-/- recipients with long-term graft survival also showed a marked decrease of CD8+ T cell infiltration and reduced neo-intimal hyperplasia. These data indicate that Cxcr3 plays a critical role in the trafficking as well as activation of alloreactive T cells. This role is most eminent in a transplant model when a less complex inflammatory milieu is involved such as a well-matched graft and chronic rejection.  相似文献   

13.
Lethally irradiated mice reconstituted with syngeneic bone marrow cells were grafted with allogeneic skin grafts 6-7 weeks after irradiation and reconstitution. Mice with intact thymuses rejected the grafts whereas the mice thymectomized before irradiation and reconstitution did not. Thymectomized irradiated mice (TIR mice) reconstituted with bone marrow cells from donors immune to the allografts rejected the grafts. Bone marrow cells from immunized donors, pretreated with Thy 1.2 antibody and C', did not confer immunity to TIR recipients. To determine the number of T lymphocytes necessary for the transfer of immunity by bone marrow cells from immunized donors, thymectomized irradiated mice were reconstituted with nonimmune bone marrow cells treated with Thy 1.2 antibody and C' and with various numbers of splenic T lymphocytes from nonimmune and immune donors. Allogeneic skin graft rejection was obtained with 10(6) nonimmune or 10(4) immune T cells. The effect of immune T cells was specific: i.e., immune T cells accelerated only rejection of the relevant skin grafts whereas against a third-party skin grafts acted as normal T lymphocytes.  相似文献   

14.
To evaluate the priming and trafficking of male Ag-reactive CD4(+) T cells in vivo, we developed an adoptive transfer model, using Marilyn (Mar) TCR transgenic T cells that are specific for the H-Y minor transplantation Ag plus I-A(b). By manipulating donor and recipient strain combinations, we permitted the Mar CD4(+) T cells to respond to the H-Y Ag after processing and presentation by recipient APCs (indirect pathway), or to the male Ag as expressed on donor APCs (direct pathway). Mar CD4(+) T cells responding through the indirect pathway specifically proliferated and expressed activation markers between days 2 and 4 posttransplant, migrated to the graft 2-3 days before cessation of graft heartbeat, and were detected in close proximity to transplant-infiltrating recipient APCs. Intriguingly, adoptively transferred Mar T cells did not respond to male heart or skin grafts placed onto syngeneic MHC class II-deficient female recipients, demonstrating that activation of Mar T cell preferentially occurs through cognate interactions with processed male Ag expressed on recipient APCs. The data highlight the potency of indirect processing and presentation pathways in vivo and underscore the importance of indirectly primed CD4(+) T cells as relevant participants in both the priming and effector phases of acute graft rejection.  相似文献   

15.
Transgenic mice were created in which a sheep keratin promoter directed the expression of IL-2 into the dermis. These KIL-2 transgenic mice were used to investigate the effects of localized IL-2 dysregulation on immune responses. Peripheral tolerance to skin antigens was not broken by in situ IL-2 expression because syngeneic KIL-2 skin grafts were not rejected. However, MHC Class I-disparate skin grafts from KIL-2 donors were rejected faster (median survival time (MST) 12 days) than grafts of non-transgenic littermate skin (MST 18 days). In contrast, the kinetics of KIL-2 H-Y-disparate skin graft rejection (MST 14 days) did not differ significantly from controls (MST 16 days), suggesting that upregulation of IL-2 at the effector site could affect CD4+ T cell- independent, but not CD4+ T cell-dependent, responses. No effect on rejection kinetics was observed when wild type allogeneic skin was grafted onto transgenic mice that expressed bcl2 constitutively in their lymphocytes (MST of 14 days, both sets), indicating that this was not simply due to increased longevity of T cells within the IL-2 expressing graft. We therefore suggest that aberrant expression of IL-2 can accelerate helper-independent CD8+ T cell responses by increasing proliferation and/or differentiation of cytolytic T cells at the effector site.  相似文献   

16.
The effector mechanism of skin allograft rejection has been characterized as Ag specific, rejecting cells that express the target alloantigen but sparing those that do not. However, the rejection of MHC class II disparate skin grafts, in which very few cells (Langerhans cells) actually express the target Ia Ag could conceivably proceed by either one of two distinct rejection mechanisms. One possibility is that Ia- cells are destroyed by a sequence of events in which CD4+ T cells, activated by Ia+ LC, elaborate soluble factors that are either directly cytolytic or that recruit and activate non-specific effector cells. The alternative possibility is that activated CD4+ T cells elaborate soluble factors which induce Ia expression on Ia- cell populations, and that these Ia+ cells are subsequently destroyed by effector cells specific for the induced Ia alloantigens. We found that rejection of Ia+ LC was not of itself sufficient to cause rejection of skin grafts, indicating that skin allograft rejection is contingent on the destruction not only of LC but of other graft cell populations as well. We then investigated whether CD4+ T cells rejected allogeneic skin grafts in an antigen specific fashion. To do so, we engrafted immunoincompetent H-2b nude mice with trunk skin grafts from B6----A/J allophenic mice because such skin is composed of mutually exclusive cell populations expressing either H-2a or H-2b histocompatibility Ag, but not both. The engrafted mice were subsequently reconstituted with H-2b CD4+ T cells. The CD4+ T cells destroyed keratinocytes of A/J origin but spared keratinocytes of B6 origin, even though neither cell population constitutively expresses target IAk alloantigen. The targeted rejection of A/J keratinocytes but not of B6 keratinocytes indicates that the target Ia alloantigen must have been induced on Ia- A/J keratinocytes, rendering them susceptible to destruction by anti-Iak-specific CD4+ effector cells. These data demonstrate that CD4+ T cell rejection of skin allografts is mediated by Ag-specific CD4+ cytolytic T cells and hence, requires the induction of target Ia alloantigens on epidermal cells within the graft.  相似文献   

17.
Critical, but conditional, role of OX40 in memory T cell-mediated rejection   总被引:4,自引:0,他引:4  
Memory T cells can be a significant barrier to the induction of transplant tolerance. However, the molecular pathways that can regulate memory T cell-mediated rejection are poorly defined. In the present study we tested the hypothesis that the novel alternative costimulatory molecules (i.e., ICOS, 4-1BB, OX40, or CD30) may play a critical role in memory T cell activation and memory T cell-mediated rejection. We found that memory T cells, generated by either homeostatic proliferation or donor Ag priming, induced prompt skin allograft rejection regardless of CD28/CD154 blockade. Phenotypic analysis showed that, in contrast to naive T cells, such memory T cells expressed high levels of OX40, 4-1BB, and ICOS on the cell surface. In a skin transplant model in which rejection was mediated by memory T cells, blocking the OX40/OX40 ligand pathway alone did not prolong the skin allograft survival, but blocking OX40 costimulation in combination with CD28/CD154 blockade induced long-term skin allograft survival, and 40% of the recipients accepted their skin allograft for >100 days. In contrast, blocking the ICOS/ICOS ligand and the 4-1BB/4-1BBL pathways alone or combined with CD28/CD154 blockade had no effect in preventing skin allograft rejection. OX40 blockade did not affect the homeostatic proliferation of T cells in vivo, but markedly inhibited the effector functions of memory T cells. Our data demonstrate that memory T cells resisting to CD28/CD154 blockade in transplant rejection are sensitive to OX40 blockade and suggest that OX40 is a key therapeutic target in memory T cell-mediated rejection.  相似文献   

18.
The location of immune activation is controversial during acute allograft rejection and unknown in xenotransplantation. To determine where immune activation to a xenograft occurs, we examined whether splenectomized alymphoplastic mice that possess no secondary lymphoid organs can reject porcine skin xenografts. Our results show that these mice rejected their xenografts, in a T cell-dependent fashion, at the same tempo as wild-type recipients, demonstrating that xenograft rejection is not critically dependent on secondary lymphoid organs. Furthermore, we provide evidence that immune activation in the bone marrow did not take place during xenograft rejection. Importantly, immunity to xenoantigens was only induced after xenotransplantation and not by immunization with porcine spleen cells, as xenografted mutant mice developed an effector response, whereas mutant mice immunized by porcine spleen cells via i.p. injection failed to do so. Moreover, we provide evidence that antixenograft immunity occurred via direct and indirect Ag presentation, as recipient T cells could be stimulated by either donor spleen cells or recipient APCs. Thus, our data provide evidence that direct and indirect Ag presentation by a xenograft induces immunity in the absence of secondary lymphoid organs. These results have important implications for developing relevant xenotransplantation protocols.  相似文献   

19.
Although interruption of CD40-CD40L interactions via their respective mAbs yields prolonged allograft survival, the relative importance of CD40 or CD40L on donor or host cells remains unknown. Moreover, it is uncertain whether any allospecific tolerance occurring with CD40-CD40L blockade will also prevent allograft arteriopathy, the major long-term limitation to transplantation. Therefore, we performed cardiac transplantations using CD40L-deficient (CD40L-/-) mice to investigate the mechanisms underlying prolonged allograft survival. Without immunosuppression, wild-type (WT) hosts rejected allo-mismatched WT or CD40L-/- heart allografts within 2 wk. Conversely, allografts in CD40L-/- hosts beat vigorously for 12 wk. Anti-CD40 treatment did not induce graft failure in CD40L-/- recipients. Although graft-infiltrating cells were reduced approximately 50% in CD40L-/- hosts, the relative percentages of macrophages and T cell subsets were comparable to WT. IFN-gamma, TNF-alpha, and IL-10 were diminished commensurate with the reduced cellular infiltrate; IL-4 was not detected. CD40L-/- recipients did not develop IgG alloantibodies and showed diminished B7 and CD28 expression on subsets of graft-infiltrating cells. CD40L-/- transplant recipients developed allospecific tolerance to the donor haplotype; second set donor skin grafts engrafted well, whereas third-party skin grafts were vigorously rejected. By MLR, splenocytes from CD40L-/- allograft recipients also demonstrated allo-specific hyporesponsiveness. Nevertheless, allografts in CD40L-/- hosts developed significant graft arteriosclerosis by 8-12 wk posttransplant. Therefore, we propose that early alloresponses, without CD40-CD40L costimulation, induce allospecific tolerance but may trigger allo-independent mechanisms that ultimately result in graft vasculopathy.  相似文献   

20.
The role of immune response to tissue-specific Ags in transplant rejection is poorly defined. We have previously reported that transplantation of cardiac allografts triggers a CD4(+) Th1 cell response to cardiac myosin (CM), a major contractile protein of the heart, and that pretransplant activation of proinflammatory CM-specific T cells accelerates rejection. In this study, we show that administration of CM together with IFA (CM/IFA) can prevent acute rejection of an allogeneic heart transplant. Prolongation of cardiac graft survival is associated with activation of CM- and allo-specific T cells secreting type 2 cytokines (IL-4, IL-5) and reduction of the frequency of proinflammatory IFN-gamma-secreting (type 1) alloreactive T cells. Blocking of IL-4 cytokine with Abs abrogates the prolongation. CM/IFA treatment prevents acute rejection of MHC class I-mismatched, but not fully mismatched grafts. However, if donor heart is devoid of MHC class II expression, CM-IFA administration delays rejection of fully allogeneic cardiac transplants. This finding suggests that the effect of CM modulation depends on the type (direct vs indirect) and strength of recipient's CD4(+) T cell alloresponse. Our results underscore the important role of host immunity to tissue-specific Ags in the rejection of an allograft. This study demonstrates that modulation of the immune response to a tissue-specific Ag can significantly prolong cardiac allograft survival, an observation that may have important implications for the development of novel selective immune therapies in transplantation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号