首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studying the diet of echolocating, insectivorous bats can provide important insights into their foraging behaviors and ecological constraints they are facing. By examining an extensive data set covering a period of 2 years, the present study identifies the dietary composition of three sympatric insectivorous bat species in rural areas of Beijing municipality. Each species clearly has different preferences for particular food items. Greater horseshoe bats, Rhinolophus ferrumequinum, preferred to catch nocturnal, actively flying insects, mostly moths (Lepidoptera), and to a lesser percentage flies (Diptera), beetles (Coleoptera), and flying ants and termites (Hymenoptera). Other nocturnal insects which do not exhibit any perceptible wing movements, such as true bugs (Homoptera), or strictly diurnal insects that hardly ever fly in the dark, such as grasshoppers (Orthoptera) and dragon- and damselflies (Odonata), were never found in droppings of horseshoe bats. Large mouse-eared bats, Myotis chinensis, preferentially glean relatively large terrestrial prey of the order Coleoptera (mostly carabid beetles) and Orthoptera, whereas greater tube-nosed bats, Murina leucogaster, consume predominantly smaller, diurnal Coleoptera (mostly soldier beetles, Cantharidae, and ladybugs, Coccinellidae). Our findings also indicate previously not described, significant spectro-temporal differences in the echolocation signals of M. chinensis and M. leucogaster. The results suggest that in our study area the dramatic differences in the dietary composition of these three bat species are mainly based upon differences in their foraging behaviors, including differences in their echolocation signal structure. The dietary data provide important background information for conservational efforts, such as habitat protection.  相似文献   

2.
James J. Krupa  Andrew Sih 《Oecologia》1998,117(1-2):258-265
Many studies have experimentally addressed the effects of a particular predator species on prey behavior. In nature, however, prey frequently face multiple species of predators that often vary in their predatory mode and in their level of predation risk. Relatively few studies have considered prey responses under these complex conditions. In Kentucky, the stream-dwelling water strider (Aquariusremigis) coexists with many potentially dangerous predators, two of which are the green sunfish (Lepomiscyanellus) and the fishing spider (Dolomedesvittatus). Green sunfish occupy stream pools and attack water striders from below. In contrast, fishing spiders hunt along stream shorelines where they perch on overhanging vegetation or rocks and attack water striders near shore. We compared how A. remigis individuals respond to these two very different predators in pools with one or both predators. The presence of sunfish in pools had strong effects on male water strider behavior, including increased use of three types of refuge from sunfish (riffles, climbing out of the water, sitting on the water but at the edges of pools), decreased activity and a decreased number of aggressive males on the water. Spiders also influenced water strider behavior; male water striders avoided spiders by shifting away from the edges of pools. Comparisons of the effects of the two predator species showed that in general, antipredator responses by male water striders were stronger in pools with fish alone than in those with spiders alone. In the presence of both predators, male water strider behavior (microhabitat use and activity) was generally similar to behavior in the presence of fish alone. In contrast, female water striders showed no significant response to the presence of sunfish, and little response to the presence of spiders. This lack of response could be because females spent much of their time in refuges even in the absence of predators (apparently hiding from harassment by males). Both spiders and fish caused decreases in water strider mating activity. The presence of fish reduced both the number of matings per pool (mating frequency), and mean mating durations. Spiders induced a decrease in mean mating duration, but not in mating frequency. The largest reductions in mating activity occurred in pools with both predators present. Pools with either spiders or fish alone suffered 15–20% water strider mortality during our experiment (versus no mortality in predator-free pools). Extant theory suggests that when prey face conflicting microhabitat responses to two predators (as in this study), the predators should have facilitative effects on predation rates (i.e., prey that avoid one predator are often killed by the other and vice versa). Mortality rates in pools with both predators present, however, were not significantly different from that predicted by a null model of multiple predator effects. The lack of predator facilitation can be explained by the compensatory reductions in water strider activity and mating activity in the presence of both predators. Received: 26 August 1996 / Accepted: 12 June 1998  相似文献   

3.
Summary Competition for water surface prey between fish (Priapichtus annectens: Poeciliidae) and water striders (Potamobates unidentatus: Gerridae) was studied in the laboratory and in pools in a small tropical stream. Laboratory experiments showed that fish depressed activity and foraging success of water striders. Large fish (4–5 cm) had a greater effect than small fish (2–3 cm). The field experiment showed that competition was highly asymmetric. Presence of fish decreased water strider foraging success while the reverse interaction was insignificant. It is suggested that the higher individual foraging success of the fish, harassment of water striders by fish and the use of an exclusive resource, benthic invertebrates, by the fish, contribute to this pattern. Habitat use differed between the two species. Fish used the deeper parts of stream pools and water striders used the shallower parts of the pools. Asymmetric interference and exploitation competition may force water striders to use shallow edge habitats.  相似文献   

4.
Water striders (Hemiptera: Gerridae) are predators found on the water surface that prey mainly on arthropods. The feeding on other organisms (dead vertebrates, fishes and tadpoles) is a rare event. To our knowledge, predation of frog eggs by water striders has not yet been reported. We observed that adult water striders, Gerris latiabdominis Miyamoto, 1958 (Hemiptera: Gerridae), preyed on the eggs of three frog species, Pelophylax nigromaculata Hallowell, 1861 (Anura: Ranidae), Rana japonica Boulenger, 1879 (Anura: Ranidae), and Rhacophorus schlegelii Günther, 1858 (Anura: Rhacophoridae). We found predation by the water striders affects the survival rate of frog eggs floating on the water surface. We suggest that this hunting event would occur in water bodies in which water striders and frogs coexist, especially the region where their phenology overlaps.  相似文献   

5.
Classification of insects by echolocating greater horseshoe bats   总被引:1,自引:0,他引:1  
Summary Echolocating greater horseshoe bats (Rhinolophus ferrumequinum) detect insects by concentrating on the characteristic amplitude- and frequency modulation pattern fluttering insects impose on the returning echoes. This study shows that horseshoe bats can also further analyse insect echoes and thus recognize and categorize the kind of insect they are echolocating.Four greater horseshoe bats were trained in a twoalternative forced-choice procedure to choose the echo of one particular insect species turning its side towards the bat (Fig. 1). The bats were able to discriminate with over 90% correct choices between the reward-positive echo and the echoes of other insect species all fluttering with exactly the same wingbeat rate (Fig. 4).When the angular orientation of the reward-positive insect was changed (Fig. 2), the bats still preferred these unknown echoes over echoes from other insect species (Fig. 5) without any further training. Because the untrained bats did not show any prey preference, this indicates that the bats were able to perform an aspect-anglein-dependent classification of insects.Finally we tested what parameters in the echo were responsible for species recognition. It turned out that the bats especially used the small echo-modulations in between glints as a source of information (Fig. 7). Neither the amplitudenor the frequencymodulation of the echoes alone was sufficient for recognition of the insect species (Fig. 8). Bats performed a pattern recognition task based on complex computations of several acoustic parameters, an ability which might be termed cognitive.Abbreviations AM amplitude modulation - CF constant frequency - FM frequency modulation - S+ positive stimulus - S- negative stimulus  相似文献   

6.
Cooper  Scott D. 《Oecologia》1984,63(3):376-379
Summary Observations made in Rattlesnake Creek, Santa Barbara County, California, U.S.A. indicate that rainbow trout (Salmo gairdneri) affect the microdistribution of adult water striders (Gerris remigis). Gerrids occupied all areas of stream pools lacking trout but stayed in margins of pools containing trout. To test the hypothesis that the presence of trout controlled the distribution of water striders within pools, trout were removed from some pools and transferred to pools lacking trout. Undistrubed pools with and without trout served as controls for the trout transferrals. The results supported the hypothesis; within one week, gerrids moved to the edge of pools where trout were added and to the middle of pools where trout were removed. Time budgets and gut analyses suggest that local patterns of gerrid distribution were maintained by harrassment of gerrids by trout. At times trout had significant effects on components of gerrid fitness.  相似文献   

7.
Distributions of Daubenton's bat (Myotis daubentonii), common pipistrelle, (Pipistrellus pipistrellus), and soprano pipistrelle (Pipistrellus pygmaeus) were investigated along and altitudinal gradient of the Lledr River, Conwy, North Wales, and presence assessed in relation to the water surface condition, presence/absence of bank‐side trees, and elevation. Ultrasound recordings of bats made on timed transects in summer 1999 were used to quantify habitat usage. All species significantly preferred smooth water sections of the river with trees on either one or both banks; P. pygmaeus also preferred smooth water with no trees. Bats avoided rough and cluttered water areas, as rapids may generate high‐frequency echolocation‐interfering noise and cluttered areas present obstacles to flight. In lower river regions, detections of bats reflected the proportion of suitable habitat available. At higher elevations, sufficient habitat was available; however, bats were likely restricted due to other factors such as a less predictable food source. This study emphasizes the importance of riparian habitat, bank‐side trees, and smooth water as foraging habitat for bats in marginal upland areas until a certain elevation, beyond which bats in these areas likely cease to forage. These small‐scale altitudinal differences in habitat selection should be factored in when designing future bat distribution studies and taken into consideration by conservation planners when reviewing habitat requirements of these species in Welsh river valleys, and elsewhere within the United Kingdom.  相似文献   

8.
Water striders, a group of semi-aquatic bugs adapted to life on the water surface, have evolved mid-legs (L2) that are long relative to their hind-legs (L3). This novel appendage ground plan is a derived feature among insects, where L2 function as oars and L3 as rudders. The Hox gene Ultrabithorax (Ubx) is known to increase appendage size in a variety of insects. Using gene expression and RNAi analysis, we discovered that Ubx is expressed in both L2 and L3, but Ubx functions to elongate L2 and to shorten L3 in the water strider Gerris buenoi. Therefore, within hemimetabolous insects, Ubx has evolved a new expression domain but maintained its ancestral elongating function in L2, whereas Ubx has maintained its ancestral expression domain but evolved a new shortening function in L3. These changes in Ubx expression and function may have been a key event in the evolution of the distinct appendage ground plan in water striders.  相似文献   

9.
1. Despite the ubiquity and abundance of water striders (Hemiptera: Gerridae) in temperate streams and rivers and their potential usefulness as sentinels in contaminant studies, little is known about their feeding ecology and lipid dynamics. 2. In this study we used stable isotopes of carbon (δ13C) and nitrogen (δ15N) and elemental carbon to nitrogen ratios (C/N) to assess dietary habits and lipid content, respectively, for water striders. 3. To determine diet‐tissue fractionation factors, nymphs of the most common species in New Brunswick, Canada, Aquarius remigis were reared in the laboratory for 73 days and exhibited rapid isotopic turnover in response to a switch in diet (C half‐life = 1.5 days, N half‐life = 7.8 days). Their lipid content increased towards the end of the growing season and resulted in lower δ13C values. Diet‐tissue fractionation factors were established after correction of δ13C data for the confounding effect of de novo lipid synthesis (strider δ13Cadj– diet δ13Cadj = 0.1‰, strider δ15N – diet δ15N = 2.7‰). 4. Water striders from the majority of 45 stream sites (83%) in New Brunswick had less than 50% contribution of aquatic carbon to their diets but showed a gradual increase in the contribution of this carbon source to their diet with increasing stream size. 5. These data indicate that striders exhibit a strong connection to terrestrial carbon sources, making them important users of energy subsidies to streams from the surrounding catchment. However, this dependence on terrestrial organic matter may limit their utility as indicators of contamination of aquatic systems by heavy metals and other pollutants.  相似文献   

10.
Echolocation constraints of Daubenton's Bat foraging over water   总被引:2,自引:0,他引:2  
1. Daubenton's Bats ( Myotis daubentonii ) foraging over a stream concentrated their activity over calm surfaces, avoiding an adjacent area with small ripples (< 3 cm high). Aerial insects were most abundant over the ripples, so insect distribution could not explain why the bats avoided this area.
2. The bats flew low over water and always ( N = 22) directed the head forwards, presumably emitting the echolocation beam parallel to the surface, thus minimizing clutter. At an angle of incidence of 30° there was significantly more clutter from the rippled water.
3. The ripples produced ultrasonic noises in the form of transient pulses at an average rate of 6·2 per second. In the present case, such pulses were common enough potentially to interfere with target detection by the bats. Transient noises and echo clutter from moving ripples may be the principal reason why bats generally avoid foraging low over turbulent water.
4. The target strength of a potential insect prey at the water surface and the source levels of the bats' searching signals were measured to use in estimating the echo level at the bat when it detects the prey. The echo level at detection (+ 38 dB sound pressure level) was about the same as the clutter level extrapolated to the detection distance. This suggests that Daubenton's Bat operates at very low signal-to-noise ratios when foraging for insects near the water surface.  相似文献   

11.
Summary In Crystal Lake, British Columbia, small fry (15 mm SL) of the threespine stickleback (Gasterosteus aculeatus) are concentrated in vegetation while larger fry are not. Because fry in all size classes feed primarily on zooplankton, even when in vegetation, we hypothesized that size-limited predation was responsible for the observed shift in habitat use with size. The major predators on fry in Crystal Lake are adult threespine stickleback, the water scorpion, Ranatra sp. (Hemiptera: Nepidae), backswimmers, Notonecta spp. (Hemiptera: Notonectidae), and dragonfly naiads of the genus Aeshna (Odonata: Aeschnidae). On the basis of distribution and hunting behavior we excluded the insects Ranatra sp., and Notonecta sp. as causal agents for this shift in resource by fry in water >0.25 m deep. Ranatra was found almost exclusively near the shoreline in water <0.25 m deep, and both insects hunted primarily as ambush predators within vegetation. Such predators seemed more likely to drive vulnerable fry from vegetation than to restrict them to it. In contrast, Aeshna naiads and adult stickleback frequently hunted outside of vegetation. In prey preference experiments the naiads did not show the decline in predation efficiency on fry >15 mm SL that would be expected if size-limited predation by this insect was responsible for the observed shift in resource use by fry. Adult stickleback only fed on fry <15 mm SL, and in an experimental situation, consumed fry at a rate 10 times greater than that exhibited by any of the insects. Predation experiments demonstrated that small fry (11–15 mm) spent more time in vegetation in the presence of adult conspecifics than they did in control pools, as would be expected if size-limited cannibalism caused small, vulnerable fry to be restricted to vegetation. Fry >15 mm SL were found outside of vegetation more often than in control treatments. The probable cause of this result is that adults become aggressive toward fry at this size, and often could be seen chasing large fry from vegetation during the experiments. Dragonfly naiads (Aeshna spp.) spent most of their time in vegetation in the experimental pools. Both size classes of fry spent less time in vegetation in the presence of dragonfly naiads than they did in control treatments, an apparent reflection of their similar vulnerabilities to these naiads. The presence of vegetation in pools reduced predation rates by adult stickleback on small fry. Because the experiments presented here indicate that fry are capable of rapidly assessing predation risk and of altering their behavior adaptively, we conclude that small fry occupy vegetation as a refuge from cannibalism. Once fry have reached the size-threshold at which they are no longer vulnerable to adult conspecifics they are able to forage farther from vegetation thereby reducing risk of predation by insects in vegetation and possibly acquiring more abundant food resources.  相似文献   

12.
Stream salmonids choose foraging locations to maximize the energy benefit of foraging within the constraints of size-mediated dominance hierarchies and predation risk. But, because stream habitats are temporally variable, fish must use a search process to monitor changing habitat conditions as a means of locating potentially-better foraging locations. I explored the cues used by the cutthroat trout, Oncorhynchus clarki clarki, when searching for food at the pool scale by artificially increasing prey availability at different locations by using special feeders and by manipulating pool velocities. Behavior of individually marked fish was monitored from stream bank platforms under unmanipulated control conditions and under seven experimental sets of conditions involving different combinations of feeder location and velocity manipulation. Under natural conditions fish elected to forage in the deepest (>50 cm), fastest (0.10–0.25 m s−1) locations and within 1 m of structure cover, but would readily move to shallower (<30 cm) water away from cover if velocities were manipulated to be highest there. Although fish did not locate feeders unless they were placed in high-velocity areas, when high velocity was provided fish would move into very shallow water (<20 cm) if prey were delivered there. Responses of individual trout to manipulations indicated that water velocity was the main physical cue used by fish to decide where to forage, and that fish could also learn about new food sources by observing conspecifics. Overall, results indicated fish were not “perfect searchers” that could quickly locate new food resources over short time scales, even when the new resources were within a few meters of the fish’s normal foraging location. When given the correct cues, however, fish could detect new food sources and defend them against subordinate fish. Movement of new fish into and out of the study pools during the ten-day observation period was common, consistent with the idea that trout used movement as a means of exploring and learning about habitat conditions at the reach scale.  相似文献   

13.
This study of growth and developmental time in the water strider Limnoporus canaliculatus (Heteroptera: Gerridae) is based on longitudinal data from specimens reared individually in the laboratory. I analyzed multivariate allometry using a common principal components approach. This technique identified patterns of variation that were uncorrelated both within and among instars and which remained fairly constant throughout the growth period; in contrast, the overall amount of variation increased from young to older instars. Negative correlations between size and subsequent growth increments indicated convergent growth in the first three instars, but there was a transition to positive correlations (divergent growth) in later instars. Analysis of covariation among measurements made in different instars showed strong ontogenetic autocorrelation and revealed patterns remarkably similar to those found in mammals and birds; yet corresponding analyses of growth increments showed mainly independent variation in different instars. Therefore, I conclude that the strong correlations among stage-specific measurements result from the part-whole relationships inherent to these cumulative size data, but do not reflect specific properties of the organisms studied. In contrast to size increments, instar durations of water striders were highly correlated throughout the larval period, indicating that individuals tended to develop at either relatively fast or relatively slow rates in all instars. The correlations between growth increments and instar durations were nil or negative, contrary to expectations from life-history theory. The results of these analyses of individual variation match the findings from other water striders and from interspecific comparisons in the genus Limnoporus, but information about physiological mechanisms of molting and growth in insects cannot completely explain the patterns observed.  相似文献   

14.
Summary Five Greater Horseshoe bats,Rhinolophus ferrumequinum, were trained in a two-alternative forced-choice procedure to discriminate between artificial echoes of insects fluttering at different wingbeat rates. The stimuli were electronically produced phantom targets simulating fluttering insects with various wingbeat frequencies (Figs. 3, 4). Difference thresholds for wingbeat rates of 50 Hz and 100 Hz were determined. For an S+ of 50 Hz the difference threshold values lay between 2.8 and 4.6 Hz for individual bats; with an S+ of 100 Hz they increased to between 9.8 and 12.0 Hz (Figs. 5, 6, Table 1).Three bats, previously trained to discriminate between a S+ of 50 Hz and a S– with a lower wingbeat rate, were tested with higher frequency stimuli. When they had to decide between their old S+ of 50 Hz and either a 60 or 70 Hz echo two bats continued to select the 50 Hz stimulus while the third bat now preferred the faster fluttering insects (Table 2).During the discrimination task the echolocation behavior of the bats was monitored. When the phantom targets were presented all bats increased their duty-cycle of sound emission from about 40% to sometimes near 70%. They did so by either emitting longer echolocation calls or by increasing the sound repetition rate (Figs. 7, 8).The results show that Greater Horseshoe bats can determine the wingbeat rate of flying insects with an accuracy between 6 and 12%. Possible cues for flutter rate determination by cf-fm bats from natural and artificial insect echoes are discussed.Abbreviations DC duty-cycle - PD pulse duration - PI pulse interval - cf constantfrequency - fm frequency modulation  相似文献   

15.
We estimated the relative contribution of fruits and insects as sources of dietary protein in two species of Neotropical frugivorous bats (Artibeus jamaicensis and Sturnira lilium) using stable carbon and nitrogen isotope analyses. An insectivorous species (Pteronotus parnellii) was also included for comparison. We found constant patterns in stable carbon and nitrogen isotope composition in blood that separated the two species of frugivorous bats from the insectivorous bat. When we used these isotopic values (combined with those of dietary fruits and insects) to estimate the percent contribution of fruits and insects to the diet of the bats, we obtained different results, depending on assumptions and model adopted. We tested models using both 8“N and 8′3C results simultaneously and separately and further used diet‐tissue fractionation factors of 3%o for nitrogen and 1 and 3.5%o for carbon. We found that a carbon‐based model with a diet‐blood enrichment factor of 3.5%o produced the most parsimonious results. The model estimated that A. jamaicensis and S. lilium obtained most of their protein requirements from fruits, whereas P. parnellii fed mostly on insects. No sexual or seasonal variations in the diet of the two frugivorous species were detected. We found no evidence that the diet of sexually active females differed from that of nonsexually active females in the two species of frugivorous bats. We suggest that future studies better define isotopic fractionation between diet and tissues of bats using captive rearing and controlled diets.  相似文献   

16.
Water striders are insects living on the water surface, over which they can move very quickly and rarely get wetted. We measured the force of free walking in water striders, using a hair attached to their backs and a 3D strain gauge. The error was calculated by comparing force and data derived from geometry and was estimated as 13%. Females on average were stronger (1.32 mN) than males (0.87 mN), however, the ratio of force to weight was not significantly different. Compared with other lighter species, Aquarius paludum seems stronger, but the ratio of force to weight is actually lower. A. paludum applies about 0.3 mN.cm^-1 to 0.4 mN.cm 1 with its mid-legs, thus avoiding penetrating the surface tension layer while propelling itself rapidly over the water surface. We also investigated the external morphology with SEM. The body is covered by effectively two layers of macro-and micro-hairs, which renders them hydrophobic. The setae are long (40 μm-60μm) and stiff, being responsible for waterproofing, and the microtrichia are much smaller (〈10μm), slender, and flexible, holding a bubble over the body when submerged.  相似文献   

17.
This study compares the antipredator responses of two congeneric water striders that live in different habitats yet share a common predator. Aquarius nebularis and A. remigis are stream-dwelling species of water striders found in close association in central Kentucky. Aquarius nebularis typically inhabit third- and fourth-order streams that support diverse and complex fish communities; A. remigis inhabit adjacent first- and second-order tributaries that tend to have either no fish or relatively few fish patchily distributed. The ecological conditions for these two species are distinctly different, yet the green sunfish (Lepomis cyanellus) is a surface-feeding predator and a potential risk to both species. In experimental pools with sunfish, an initial fish strike caused A. remigis to move to the edge of the pool and become inactive. For the rest of the observation period, A. remigis reduced behaviour patterns that attract predators such as skating on open water, mating and male–male aggression. The proportion of A. remigis missing from sunfish pools was 5 times higher than in pools lacking fish, suggesting that 20% of water striders were killed by predation. In contrast, an initial fish strike caused A. nebularis to exhibit a burst of activity as individuals erratically skated over the open water. They then resumed the less active pre-attack behaviours a short time later. Aquarius nebularis showed none of the antipredator behaviours typical for A. remigis. Furthermore, the proportion of A. nebularis missing from sunfish pools did not differ from that in pools without fish. Although antipredator behaviour has been examined for relatively few species of water striders, this study suggests that the behaviour of the most commonly studied species, A. remigis, may not be indicative for water striders in general., Corresponding author: James J. Krupa, School of Biological Sciences, University of Kentucky, Lexington, KY 40506-0225, U.S.A. E-mail: bio149@pop.uky.edu bio149@pop.uky.edu  相似文献   

18.
We describe the mating system of Aquarius paludum insularis based on field observations and test hypotheses about the effects of body size, hunger level and post-copulatory guarding on reproductive performance. The mating sequence of this species was typical for temperate water striders, except that most oviposition was carried out by tandem pairs, most of which were submerged. Mate guarding continued until the end of oviposition, lasting up to 18.2h, which was much longer than that recorded for other species of water striders. Pair partners changed after oviposition. Extended contact guarding reduced female mobility. In the case of females that carried long-winged males, there was a significant reduction in speed and stride between tandem as opposed to single females. However, when short-winged males were carried, there was not a significant difference. Short-term foraging efficiency did not differ significantly between tandem and single females, and thus did not reflect the difference in mobility. Hunger level did not significantly affect female mating receptivity. Although the number of harassment bouts by unpaired males did not differ between single and tandem females, single females suffered significantly more harassment. Females were able to lay fertilized eggs for about 15 days after a single copulation, but they accepted long guarding and multiple mating during this period as well. The cost of resisting male mating attempts appears to be greater than the cost of carrying males.  相似文献   

19.
Rainfall Cues and Flash-Flood Escape in Desert Stream Insects   总被引:1,自引:0,他引:1  
Desert stream insects may use rainfall cues to anticipate and escape flash floods, but this has been studied in few taxa. We used controlled, replicated experiments to quantify the use of rainfall cues for flood escape in seven common desert stream insects. The hemipterans Curicta pronotata and Aquarius remigis responded consistently to rainfall cues by crawling vertically away from the water, in such a way that they may escape flash floods in nature. The coleopteran Gyrinus plicifer showed no response to rainfall cues. The hemipteran Ambrysus woodburyi did not exit the water but sought refuge under submerged rocks. Three taxa (Ranatra quadridentata, Corydalus texanus, and Rhantus atricolor) gave ambiguous results, although the latter apparently responded to environmental cues other than rainfall. We conclude that rainfall cues are a sufficient mechanism for flood escape in some taxa, but other desert stream insects may employ different strategies (behavioral, life history, or morphological) to survive floods.  相似文献   

20.
Bats that glean prey (capture them from surfaces) produce relatively inconspicuous echolocation calls compared to aerially foraging bats and could therefore be difficult predators to detect, even for insects with ultrasound sensitive ears. In the cricket Teleogryllus oceanicus, an auditory interneuron (AN2) responsive to ultrasound is known to elicit turning behaviour, but only when the cricket is in flight. Turning would not save a cricket from a gleaning bat so we tested the hypothesis that AN2 elicits more appropriate antipredator behaviours when crickets are on the ground. The echolocation calls of Nyctophilus geoffroyi, a sympatric gleaning bat, were broadcast to singing male and walking female T. oceanicus. Males did not cease singing and females did not pause walking more than usual in response to the bat calls up to intensities of 82 dB peSPL. Extracellular recordings from the cervical connective revealed that the echolocation calls elicited AN2 action potentials at high firing rates, indicating that the crickets could hear these stimuli. AN2 appears to elicit antipredator behaviour only in flight, and we discuss possible reasons for this context-dependent function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号