首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Modeling vital rates improves estimation of population projection matrices   总被引:1,自引:1,他引:0  
Population projection matrices are commonly used by ecologists and managers to analyze the dynamics of stage-structured populations. Building projection matrices from data requires estimating transition rates among stages, a task that often entails estimating many parameters with few data. Consequently, large sampling variability in the estimated transition rates increases the uncertainty in the estimated matrix and quantities derived from it, such as the population multiplication rate and sensitivities of matrix elements. Here, we propose a strategy to avoid overparameterized matrix models. This strategy involves fitting models to the vital rates that determine matrix elements, evaluating both these models and ones that estimate matrix elements individually with model selection via information criteria, and averaging competing models with multimodel averaging. We illustrate this idea with data from a population of Silene acaulis (Caryophyllaceae), and conduct a simulation to investigate the statistical properties of the matrices estimated in this way. The simulation shows that compared with estimating matrix elements individually, building population projection matrices by fitting and averaging models of vital-rate estimates can reduce the statistical error in the population projection matrix and quantities derived from it.  相似文献   

2.
Summary Most life-history theory assumes that short-term variation in an organism's environment does not affect the survivorships and fecundities of the organisms. This assumption is rarely met. Here we investigate the population and evolutionary biology of red deer,Cervus elephas, to see if relaxation of this assumption is likely to make significant differences to the predicted evolutionary biology of this species. To do this we used 21 years of data from a population of deer on Rum, Western Isles, Scotland. Population growth rates in a stochastic environment were estimated using Tuljapurkar's small noise approximation, confirmed by bootstrap simulation. Numerical differentiation was used to see if the selection pressures (i.e. sensitivities of population growth rate to changes in the vital rates) differ between the stochastic and deterministic cases. The data also allow the costs of reproduction to be estimated. These costs, incorporated as trade-offs into the sensitivity analysis, allow investigation of evolutionary benefits of different life-history tactics. Environmentally induced stochastic variation in the red deer vital rates causes a slight reduction ( 1%) in the predicted population growth rate and has little impact on the estimated selection pressures on the deer's life-history. We thus conclude that, even though density-independent stochastic effects on the population are marked, the deer's fitness is not markedly affected by these and they are adapted to the average conditions they experience. However, the selected life-history is sensitive to the trade-offs between current fecundity, survivorship and future fecundity and it is likely that the environmental variance will affect these trade-offs and, thus, affect the life-history favoured by selection. We also show that the current average life-history is non-optimal and suggest this is a result of selection pressures exerted by culling and predation, now much reduced. As the use of stochastic or deterministic methods provide similar estimates in this case, the use of the latter is justified. Thus,r (the annual per capita rate of population growth) is an appropriate measure of fitness in a population with stochastic numerical fluctuations. In a population of constant size lifetime reproductive success is the obvious measure of fitness to use.  相似文献   

3.
Stochastic matrix models are frequently used by conservation biologists to measure the viability of species and to explore various management actions. Models are typically parameterized using two or more sets of estimated transition rates between age/size/stage classes. While standard methods exist for analyzing a single set of transition rates, a variety of methods have been employed to analyze multiple sets of transition rates. We review applications of stochastic matrix models to problems in conservation and use simulation studies to compare the performance of different analytic methods currently in use. We find that model conclusions are likely to be robust to the choice of parametric distribution used to model vital rate fluctuations over time. However, conclusions can be highly sensitive to the within-year correlation structure among vital rates, and therefore we suggest using analytical methods that provide a means of conducting a sensitivity analysis with respect to correlation parameters. Our simulation results also suggest that the precision of population viability estimates can be improved by using matrix models that incorporate environmental covariates in conjunction with experiments to estimate transition rates under a range of environmental conditions.  相似文献   

4.
Matrix population models are widely used to assess population status and to inform management decisions. Despite existing theories for building such models, model construction is often partially based on expert opinion. So far, model structure has received relatively little attention, although it may affect estimates of population dynamics. Here, we assessed the consequences of two published matrix structures (a 4 × 4 matrix based on expert opinion and a 10 × 10 matrix based on statistical modeling) for estimates of vital rates and stochastic population dynamics of the long-lived herb Astragalus scaphoides. We explored the ways in which choice of model structure alters the accuracy (i.e., mean) and precision (i.e., variance) of predicted population dynamics. We found that model structure had a negligible effect on the accuracy and precision of vital rates and stochastic stage distribution. However, the 10 × 10 matrix produced lower estimates of stochastic population growth rates than the 4 × 4 matrix, and more accurately predicted the observed trends in population abundance for three out of four study populations. Moreover, estimates of realized variation in population growth rate due to fluctuations in population stage structure over time were occasionally sensitive to matrix structure, suggesting differential roles of transient dynamics. Our study indicates that statistical modeling for choosing categories in matrix models might be preferable over expert opinion to accurately predict population trends and can provide a more objective way for model construction when the biological knowledge of the species is limited.  相似文献   

5.
Herbivores can have strong deleterious effects on vital rates (growth, reproduction, and survival) and thus negatively impact the population dynamics of plant species. In practice, however, these effects might be strongly correlated, for example as a result of tradeoffs between vital rates. To get better insights into the effects of herbivory on the population dynamics of the long‐lived grassland plant Primula veris population projection matrices were constructed from demographic data collected between 1999 and 2008 (nine annual transitions). Data were collected in two large grassland populations, each of which was subjected to two treatments (grazing by cattle versus a mowing treatment), yielding a total of 36 matrices. We applied a lower‐level vital rate life table response experiment (LTRE) using the small noise approximation (SNA) of the stochastic population growth rate to disentangle the contributions of changes in mean vital rates, variability in vital rates, correlations between vital rates and vital rate elasticities to the difference in the stochastic growth rate. Stochastic growth rates (a= log λS) were significantly lower in grazed than in mown plots (a= 0.0185 and 0.1019, respectively). SNA LTRE analysis showed that contributions of mean vital rates by far made the largest contribution to the observed difference in a between grazed and control plots. In particular, changes in sexual reproduction rates made the largest contributions to lower the stochastic growth rate in grazed plots: both adult flowering probabilities and flower and seed production were importantly lower in grazed populations, but these negative effects were largely buffered by increased establishment and seedling survival rates. Among the stochastic terms of the SNA decomposition, contributions of covariance and correlations between vital rates had the largest impact, whereas contributions of elasticities were smaller. The strongest correlation driver was the association between adult survival and seedling establishment, suggesting that environmental conditions favouring adult survival also are beneficial for seedling establishment. Overall, our results show that herbivory had a strong negative effect on the long‐term population growth rate of P. veris that was primarily mediated by differences in fecundity (flower and seed production) and germination.  相似文献   

6.
Many phylogenetic inference methods are based on Markov models of sequence evolution. These are usually expressed in terms of a matrix (Q) of instantaneous rates of change but some models of amino acid replacement, most notably the PAM model of Dayhoff and colleagues, were originally published only in terms of time-dependent probability matrices (P(t)). Previously published methods for deriving Q have used eigen-decomposition of an approximation to P(t). We show that the commonly used value of t is too large to ensure convergence of the estimates of elements of Q. We describe two simpler alternative methods for deriving Q from information such as that published by Dayhoff and colleagues. Neither of these methods requires approximation or eigen-decomposition. We identify the methods used to derive various different versions of the Dayhoff model in current software, perform a comparison of existing and new implementations, and, to facilitate agreement among scientists using supposedly identical models, recommend that one of the new methods be used as a standard.  相似文献   

7.
Predicting population dynamics for rare species is of paramount importance in order to evaluate the likelihood of extinction and planning conservation strategies. However, evaluating and predicting population viability can be hindered from a lack of data. Rare species frequently have small populations, so estimates of vital rates are often very uncertain due to lack of data. We evaluated the vital rates of seven small populations from two watersheds with varying light environment of a common epiphytic orchid using Bayesian methods of parameter estimation. From the Lefkovitch matrices we predicted the deterministic population growth rates, elasticities, stable stage distributions and the credible intervals of the statistics. Populations were surveyed on a monthly basis between 18–34 months. In some of the populations few or no transitions in some of the vital rates were observed throughout the sampling period, however, we were able to predict the most likely vital rates using a Bayesian model that incorporated the transitions rates from the other populations. Asymptotic population growth rate varied among the seven orchid populations. There was little difference in population growth rate among watersheds even though it was expected because of physical differences as a result of differing canopy cover and watershed width. Elasticity analyses of Lepanthes rupestris suggest that growth rate is more sensitive to survival followed by growth, shrinking and the reproductive rates. The Bayesian approach helped to estimate transition probabilities that were uncommon or variable in some populations. Moreover, it increased the precision of the parameter estimates as compared to traditional approaches.  相似文献   

8.
1. Under the hypothesis of environmental buffering, populations are expected to minimize the variance of the most influential vital rates; however, this may not be a universal principle. Species with a life span <1 year may be less likely to exhibit buffering because of temporal or seasonal variability in vital rate sensitivities. Further, plasticity in vital rates may be adaptive for species in a variable environment with reliable cues. 2. We tested for environmental buffering and plasticity in vital rates using stage-structured matrix models from long-term data sets in four species of grassland rodents. We used periodic matrices to estimate stochastic elasticity for each vital rate and then tested for correlations with a standardized coefficient of variation for each rate. 3. We calculated stochastic elasticities for individual months to test for an association between increased reproduction and the influence of reproduction, relative to survival, on the population growth rate. 4. All species showed some evidence of buffering. The elasticity of vital rates of Peromyscus leucopus (Rafinesque, 1818), Sigmodon hispidus Say & Ord, 1825 and Microtus ochrogaster (Wagner, 1842) was negatively related to vital rate CV. Elasticity and vital rate CV were negatively related in Peromyscus maniculatus (Wagner, 1845), but the relationship was not statistically significant. Peromyscus leucopus and M. ochrogaster showed plasticity in vital rates; reproduction was higher following months where elasticity for reproduction exceeded that of survival. 5. Our results suggest that buffering is common in species with fast life histories; however, some populations that exhibit buffering are capable of responding to short-term variability in environmental conditions through reproductive plasticity.  相似文献   

9.
Measurement error and estimates of population extinction risk   总被引:2,自引:0,他引:2  
It is common to estimate the extinction probability for a vulnerable population using methods that are based on the mean and variance of the long‐term population growth rate. The numerical values of these two parameters are estimated from time series of population censuses. However, the proportion of a population that is registered at each census is typically not constant but will vary among years because of stochastic factors such as weather conditions at the time of sampling. Here, we analyse how such sampling errors influence estimates of extinction risk and find sampling errors to produce two opposite effects. Measurement errors lead to an exaggerated overall variance, but also introduce negative autocorrelations in the time series (which means that estimates of annual growth rates tend to alternate in size). If time series data are treated properly these two effects exactly counter balance. We advocate routinely incorporating a measure of among year correlations in estimating population extinction risk.  相似文献   

10.
Increased temporal variance in life-history traits is generally predicted to decrease individual fitness and population growth. We show that a widely used result of stochastic sensitivity analysis that bolsters this generality is flawed because it ignores the effects of correlations between vital rates. Considering the effects of these correlations (although ignoring autocorrelations), we show that the apparently simple relationship between vital rate variance and fitness can be considerably more complex than previously thought. In particular, the previously estimated negative sensitivities of fitness or population growth to variance in a vital rate can be either enhanced by positive correlations between rates or reversed by negative correlations, even to the point that variability in a rate can increase fitness or population growth. We apply this new sensitivity calculation to data from the desert tortoise and discuss its interpretation in light of the factors generating vital rate correlations.  相似文献   

11.
Dormant life stages are often critical for population viability in stochastic environments, but accurate field data characterizing them are difficult to collect. Such limitations may translate into uncertainties in demographic parameters describing these stages, which then may propagate errors in the examination of population‐level responses to environmental variation. Expanding on current methods, we 1) apply data‐driven approaches to estimate parameter uncertainty in vital rates of dormant life stages and 2) test whether such estimates provide more robust inferences about population dynamics. We built integral projection models (IPMs) for a fire‐adapted, carnivorous plant species using a Bayesian framework to estimate uncertainty in parameters of three vital rates of dormant seeds – seed‐bank ingression, stasis and egression. We used stochastic population projections and elasticity analyses to quantify the relative sensitivity of the stochastic population growth rate (log λs) to changes in these vital rates at different fire return intervals. We then ran stochastic projections of log λs for 1000 posterior samples of the three seed‐bank vital rates and assessed how strongly their parameter uncertainty propagated into uncertainty in estimates of log λs and the probability of quasi‐extinction, Pq(t). Elasticity analyses indicated that changes in seed‐bank stasis and egression had large effects on log λs across fire return intervals. In turn, uncertainty in the estimates of these two vital rates explained > 50% of the variation in log λs estimates at several fire‐return intervals. Inferences about population viability became less certain as the time between fires widened, with estimates of Pq(t) potentially > 20% higher when considering parameter uncertainty. Our results suggest that, for species with dormant stages, where data is often limited, failing to account for parameter uncertainty in population models may result in incorrect interpretations of population viability.  相似文献   

12.
Loop analysis is a powerful tool for analyzing matrix population models. This note shows that the results of loop analysis, which have been proved for constant matrices only, apply to stochastic matrices as well if elasticity is defined as the effect of a proportional perturbation of both mean and variance. Using the ideas of loop analysis, it is shown that the structure of the stochastic matrix in terms of alternative life-history pathways has important consequences for the effect of stochasticity on elasticities. If the life cycle contains nonoverlapping, alternative life-history pathways, the ranking in terms of elasticity of the most critical vital rates may be reversed in stochastic and the corresponding average environments. This has obvious and important consequences for population management because focusing on a deterministic model would lead to an ineffective or counterproductive management strategy.  相似文献   

13.
A stochastic Markov chain model for metastatic progression is developed for primary lung cancer based on a network construction of metastatic sites with dynamics modeled as an ensemble of random walkers on the network. We calculate a transition matrix, with entries (transition probabilities) interpreted as random variables, and use it to construct a circular bi-directional network of primary and metastatic locations based on postmortem tissue analysis of 3827 autopsies on untreated patients documenting all primary tumor locations and metastatic sites from this population. The resulting 50 potential metastatic sites are connected by directed edges with distributed weightings, where the site connections and weightings are obtained by calculating the entries of an ensemble of transition matrices so that the steady-state distribution obtained from the long-time limit of the Markov chain dynamical system corresponds to the ensemble metastatic distribution obtained from the autopsy data set. We condition our search for a transition matrix on an initial distribution of metastatic tumors obtained from the data set. Through an iterative numerical search procedure, we adjust the entries of a sequence of approximations until a transition matrix with the correct steady-state is found (up to a numerical threshold). Since this constrained linear optimization problem is underdetermined, we characterize the statistical variance of the ensemble of transition matrices calculated using the means and variances of their singular value distributions as a diagnostic tool. We interpret the ensemble averaged transition probabilities as (approximately) normally distributed random variables. The model allows us to simulate and quantify disease progression pathways and timescales of progression from the lung position to other sites and we highlight several key findings based on the model.  相似文献   

14.
Life-history theory predicts vital rates that on average make large contributions to the annual multiplication rate of a lineage should be highly buffered against environmental variability. This prediction has been tested by looking for a negative correlation between the sensitivities (or elasticities) of the elements in a projection matrix and their variances (or coefficients of variation). Here, we show by constructing random matrices that a spurious negative correlation exists between the sensitivities and variances, and between the elasticities and coefficients of variation, of matrix elements. This spurious correlation arises in part because size transition probabilities, which are bounded by 0 and 1, have a limit to their variability that often does not apply to matrix elements representing reproduction. We advocate an alternative analysis based on the underlying vital rates (not the matrix elements) that accounts for the inherent limit to the variability of zero-to-one vital rates, corrects for sampling variation, and tests for a declining upper limit to variability as a vital rate's fitness contribution increases. Applying this analysis to demographic data from five populations of the alpine cushion plant Silene acaulis, we provide evidence of stronger buffering in the vital rates that most influence fitness.  相似文献   

15.
Summary The course of evolutionary change in DNA sequences has been modeled as a Markov process. The Markov process was represented by discrete time matrix methods. The parameters of the Markov transition matrices were estimated by least-squares direct-search optimization of the fit of the calculated divergence matrix to that observed for two aligned sequences. The Markov process corrected for multiple and parallel substitutions of bases at the same site. The method avoided the incorrect assumption of all previously described methods that the divergence between two present-day sequences is twice the divergence of either from the common and unknown ancestral sequence. The three previous methods were shown to be equivalent. The present method also avoided the undesirable assumptions that sequence composition has not changed with time and that the substitution rates in the two descendant lineages were the same. It permitted simultaneous estimation of ancestral sequence composition and, if applicable, of different substitution rates for the two descendant lineages, provided the total number of estimated parameters was less than 16. Properties of the Markov chain were discussed. It was proved for symmetric substitution matrices that all elements of the equilibrium divergence matrix equal 1/16, and that the total difference in the divergence matrix at epoch k equals the total change in the common substitution matrix at epoch 2k for all values of k. It was shown how to resolve an ambiguity in the assignment of two different substitution rates to the two descendant lineages when four or more similar sequences are available. The method was applied to the divergence matrix for codon site 3 for the mouse and rabbit beta-globins. This observed divergence matrix was significantly asymmetric and required at least two different substitution rates. This result could be achieved only by using different asymmetric substitution matrices for the two lineages.  相似文献   

16.
In conservation management, there is an urgent need for estimates of population viability and for knowledge of the contributions of different life-history stages to population growth rates. Collection of long-term demographic data from a study population is time-consuming and may considerably delay the start of proper management actions. We examined the possibility of replacing a long-term temporal data set (demographic data from several years within a population) with a short-term spatial data set (demographic data from different populations for the same subset of two continuous years) for stochastic estimates of population viability. Using matrix population models for ten perennial plant species, we found that the matrix elements of spatial data sets often deviated from those of temporal data sets and that matrix elements generally varied more spatially than temporally. The appropriateness of replacing temporal data with spatial data depended on the subset of years and populations used to estimate stochastic population growth rates (log λs). Still, the precision of log λs estimates measured as variation in the yearly change of logarithmic population size rarely differed significantly between the spatial and temporal data sets. Since a spatiotemporal comparison of matrix elements and their variation cannot be used to assess whether spatial and temporal data sets are interchangeable, we recommend further research on the topic.  相似文献   

17.
1. Life-history theory predicts that those vital rates that make larger contributions to population growth rate ought to be more strongly buffered against environmental variability than are those that are less important. Despite the importance of the theory for predicting demographic responses to changes in the environment, it is not yet known how pervasive demographic buffering is in animal populations because the validity of most existing studies has been called into question because of methodological deficiencies. 2. We tested for demographic buffering in the southern-most breeding mammal population in the world using data collected from 5558 known-age female Weddell seals over 30 years. We first estimated all vital rates simultaneously with mark-recapture analysis and then estimated process variance and covariance in those rates using a hierarchical Bayesian approach. We next calculated the population growth rate's sensitivity to changes in each of the vital rates and tested for evidence of demographic buffering by comparing properly scaled values of sensitivity and process variance in vital rates. 3. We found evidence of positive process covariance between vital rates, which indicates that all vital rates are affected in the same direction by changes in annual environment. Despite the positive correlations, we found strong evidence that demographic buffering occurred through reductions in variation in the vital rates to which population growth rate was most sensitive. Process variation in vital rates was inversely related to sensitivity measures such that variation was greatest in breeding probabilities, intermediate for survival rates of young animals and lowest for survival rates of older animals. 4. Our work contributes to a small but growing set of studies that have used rigorous methods on long-term, detailed data to investigate demographic responses to environmental variation. The information from these studies improves our understanding of life-history evolution in stochastic environments and provides useful information for predicting population responses to future environmental change. Our results for an Antarctic apex predator also provide useful baselines from a marine ecosystem when its top- and middle-trophic levels were not substantially impacted by human activity.  相似文献   

18.
Genetic correlations between traits can constrain responses to natural selection. To what extent such correlations limit adaptation depends on patterns of directional selection. I derive the expected rate of adaptation (or evolvability) under randomly changing selection gradients. When directional selection gradients have an arbitrary covariance matrix, the average rate of adaptation depends on genetic correlations between traits, contrary to the isotropic case investigated in previous studies. Adaptation may be faster on average with more genetic correlation between traits, if these traits are selected to change jointly more often than the average pair of traits. However, natural selection maximizes the long‐term fitness of a population, not necessarily its rate of adaptation. I therefore derive the average lag load caused by deviations of the mean phenotype from an optimum, under several forms of environmental changes typically experienced by natural populations, both stochastic and deterministic. Simple formulas are produced for how the G matrix affects long‐term fitness in these contexts, and I discuss how their parameters can be estimated empirically.  相似文献   

19.
Demographic compensation arises when vital rates change in opposite directions across populations, buffering the variation in population growth rates, and is a mechanism often invoked to explain the stability of species geographic ranges. However, studies on demographic compensation have disregarded the effects of temporal variation in vital rates and their temporal correlations, despite theoretical evidence that stochastic dynamics can affect population persistence in temporally varying environments. We carried out a seven‐year‐long demographic study on the perennial plant Arabis alpina (L.) across six populations encompassing most of its elevational range. We discovered demographic compensation in the form of negative correlations between the means of plant vital rates, but also between their temporal coefficients of variation, correlations and elasticities. Even if their contribution to demographic compensation was small, this highlights a previously overlooked, but potentially important, role of stochastic processes in stabilising population dynamics at range margins.  相似文献   

20.
The rapid invasion of lionfish into the Western North Atlantic and Caribbean will undoubtedly affect native reef fishes via processes such as trophic disruption and niche takeover, yet little is known about the dynamics of this invasion. We constructed a stage-based, matrix population model in which matrix elements were comprised of lower-level parameters. Lionfish vital rates were estimated from existing literature and from new field and laboratory studies. Sensitivity analysis of lower-level parameters revealed that population growth rate is most influenced by larval mortality; elasticity analysis of the matrix indicated strong influence of the adult and juvenile survival elements. Based on this model, approximately 27% of an invading adult lionfish population would have to be removed monthly for abundance to decrease. Hierarchical modeling indicated that this point estimate falls within a broad uncertainty interval which could result from imprecise estimates of life-history parameters. The model demonstrated that sustained removal efforts could be substantially more effective by targeting juveniles as well as adults.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号