首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Applying the PDR principle to AIDS   总被引:1,自引:0,他引:1  
The principle of pathogen-derived resistance (the PDR principle) has been put forward as a broadly-applicable conceptual tool for use in designing genes which will confer resistance to pathogens. This paper reveals an example of how the PDR principle may be applied in the field of human medicine. Specifically it is shown how the PDR principle can be employed in designing a series of genes which should be capable of protecting human blood cells from the retrovirus causing the AIDS disease. Prospects are discussed for using such genes in gene therapy treatment of people infected with this virus.  相似文献   

2.
A subset of genetic mutations in photoreceptor-specific genes results in abnormally prolonged activation of transducin-mediated photosignaling in rod cells. In humans and animal models, these mutations cause visual dysfunctions ranging from a mild stationary night blindness to severe, early-onset retinal degeneration. There are mechanistic differences between mutations causing night blindness and those causing retinal degeneration. Here, we hypothesize that mutations causing continuous activation of the visual cascade as the result, for example, of the inability of the photoreceptor to regenerate rhodopsin, lead to retinal degeneration; those mutations that can terminate signaling, even if only partially and intermittently, slow the rate of degeneration sufficiently to give rise to stationary night blindness. Furthermore, we hypothesize that a prolonged decrease in intracellular calcium concentration resulting from persistent activation is responsible for triggering apoptotic rod-cell death.  相似文献   

3.
The gene encoding the beta-subunit of rod photoreceptor cGMP phosphodiesterase (gene symbol PDEB, homolog of the mouse rd gene) is mapped to human chromosome 4 using somatic cell hybrids and further localized to the chromosome band 4p16 using in situ hybridization. A mutation in the mouse gene underlies the recessive trait of retinal degeneration in the rd mouse. Thus, the human homolog is a candidate for lesions causing retinal degeneration.  相似文献   

4.
Two insults often underlie a variety of eye diseases including glaucoma, optic atrophy, and retinal degeneration—defects in mitochondrial function and aberrant Rhodopsin trafficking. Although mitochondrial defects are often associated with oxidative stress, they have not been linked to Rhodopsin trafficking. In an unbiased forward genetic screen designed to isolate mutations that cause photoreceptor degeneration, we identified mutations in a nuclear-encoded mitochondrial gene, ppr, a homolog of human LRPPRC. We found that ppr is required for protection against light-induced degeneration. Its function is essential to maintain membrane depolarization of the photoreceptors upon repetitive light exposure, and an impaired phototransduction cascade in ppr mutants results in excessive Rhodopsin1 endocytosis. Moreover, loss of ppr results in a reduction in mitochondrial RNAs, reduced electron transport chain activity, and reduced ATP levels. Oxidative stress, however, is not induced. We propose that the reduced ATP level in ppr mutants underlies the phototransduction defect, leading to increased Rhodopsin1 endocytosis during light exposure, causing photoreceptor degeneration independent of oxidative stress. This hypothesis is bolstered by characterization of two other genes isolated in the screen, pyruvate dehydrogenase and citrate synthase. Their loss also causes a light-induced degeneration, excessive Rhodopsin1 endocytosis and reduced ATP without concurrent oxidative stress, unlike many other mutations in mitochondrial genes that are associated with elevated oxidative stress and light-independent photoreceptor demise.  相似文献   

5.
6.
Retinal degenerations are the major cause of incurable blindness characterized by loss of retinal photoreceptor cells. Several genes causing these genetic diseases have been identified, however the molecular characterization of a high percentage of patients affected by retinitis pigmentosa (RP), a common form of retinal degeneration, is still unknown. The high genetic heterogeneity of these diseases hampers the comprehension of the pathogenetic mechanism causing photoreceptor cell death. Therapies are not available yet and for this reason there is a lot of interest in understanding the etiology and the pathogenesis of these disorders at a cellular and molecular level. Some common features have been identified in different forms of RP. Apoptosis was reported to be the final outcome in all RP animal models and patients analyzed so far. We recently identified two apoptotic pathways co-activated in photoreceptors undergoing cell death in the retinal degeneration (rd1) mouse model of autosomal recessive RP. Our studies opened new perspectives together with many questions that require deeper analyses in order to take advantage of this knowledge and develop new therapeutic approaches. We believe that minimizing cell demise may represent a promising curing strategy that needs to be exploited for retinal degeneration.  相似文献   

7.
We characterized a movement disorder of Chinese Crested dogs clinically and pathologically indistinguishable from canine multiple system degeneration (CMSD) previously recognized in Kerry Blue Terriers. This fatal disease segregated as an autosomal recessive in a 51-dog pedigree of both breeds and their crosses. The occurrence of affected dogs among first-generation crosses demonstrated that the mutations causing multiple system degeneration in these breeds are allelic. The CMSD locus maps to CFA1 (LOD > 18) and haplotype analysis narrowed the CFA1 target region to a 15-Mb segment that contains orthologs of genes on HSA6, including PARK2, the gene for the ubiquitin ligase parkin. Mutations in human PARK2 cause the most common form of familial Parkinson's disease, autosomal recessive juvenile parkinsonism, which has clinical and pathological similarities to canine multiple system degeneration. A second phenotype, canine ectodermal dysplasia (CED), segregated in the pedigree as an autosomal dominant with homozygous lethality. Dogs with ectodermal dysplasia have a sparse hair coat and abnormal dentition that is characteristic of the "hairless" variety of Chinese Cresteds. CED mapped to a region of CFA17 (LOD > 14) containing orthologs from HSA2. EDAR, the gene for the ectodysplasin A1 receptor, occurs on HSA2 but was excluded as the cause of canine ectodermal dysplasia.  相似文献   

8.
Retinitis pigmentosa is a model for the study of genetic diseases. Its genetic heterogeneity is reflected in the different forms of inheritance (autosomal dominant, autosomal recessive, or X-linked) and, in a few families, in the presence of mutations in the visual pigment rhodopsin. Clinical and molecular genetic studies of these disorders are discussed. Animal models of retinal degeneration have been investigated for many years with the hope of gaining insight into the cause of photoreceptor cell death. Recently, the genes responsible for two of these animal disorders, the rds and rd mouse genes, have been isolated and characterized. The retinal degeneration of the rd mouse is presented in detail. The possible involvement of human analogues of these mouse genes in human retinal diseases is being investigated.  相似文献   

9.
Bardet–Biedl syndrome (BBS) is an autosomal recessive disorder resulting from structural and functional defects in numerous organs. Frequent manifestations reported in the syndrome include obesity, renal dysplasia, cognitive impairment, postaxial polydactyly, pigmentary retinal degeneration and hypogonadism. To date, 17 genes causing BBS have been identified. Two of these BBS1 and BBS10 are the most frequently mutated genes.  相似文献   

10.
Outside the pseudoautosomal regions, the mammalian sex chromosomes are thought to have been genetically isolated for up to 350 million years. However, in humans pathogenic XY translocations occur in XY-homologous (gametologous) regions, causing sex-reversal and infertility. Gene conversion might accompany recombination intermediates that resolve without translocation and persist in the population. We resequenced X and Y copies of a translocation hotspot adjacent to the PRKX and PRKY genes and found evidence of historical exchange between the male-specific region of the human Y and the X in patchy flanking gene-conversion tracts on both chromosomes. The rate of X-to-Y conversion (per base per generation) is four to five orders of magnitude more rapid than the rate of Y-chromosomal base-substitution mutation, and given assumptions about the recombination history of the X locus, tract lengths have an overall average length of ∼100 bp. Sequence exchange outside the pseudoautosomal regions could play a role in protecting the Y-linked copies of gametologous genes from degeneration.  相似文献   

11.
Legionella pneumophila is a ubiquitous organism in the aquatic environment where it is capable of invasion and intracellular proliferation within various protozoan species and is also capable of causing pneumonia in humans. In silico analysis showed that the three sequenced L. pneumophila genomes each contained a common multigene family of 11 ankyrin (ank) genes encoding proteins with approximately 30-35 amino acid tandem Ankyrin repeats that are involved in protein-protein interactions in eukaryotic cells. To examine whether the ank genes are involved in tropism of protozoan hosts, we have constructed isogenic mutants of L. pneumophila in ten of the ank genes. Among the mutants, the DeltaankH and DeltaankJ mutants exhibit significant defects in robust intracellular replication within A. polyphaga, Hartmanella vermiformis and Tetrahymena pyriformis. A similar defect is also exhibited in human macrophages. Most of the ank genes are upregulated by L. pneumophila upon growth transition into the post-exponential phase in vitro and within Acanthamoeba polyphaga, and this upregulation is mediated, at least in part, by RpoS. Single-cell analyses have shown that upon co-infection of the wild-type strain with the ankH or ankJ mutant, the replication defect of the mutant is rescued within communal phagosomes harbouring the wild-type strain, similar to dot/icm mutants. Therefore, at least two of the L. pneumophila eukaryotic-like Ank proteins play a role in intracellular replication of L. pneumophila within amoeba, ciliated protozoa and human macrophages. The Ank proteins may not be involved in host tropism in the aquatic environment. Many of the L. pneumophila eukaryotic-like ank genes are triggered upon growth transition into post-exponential phase in vitro as well as within A. polyphaga. Our data suggest a role for AnkH and AnkJ in modulation of phagosome biogenesis by L. pneumophila independent of evasion of lysosomal fusion and recruitment of the rough endoplasmic reticulum.  相似文献   

12.
Amyotrophic lateral sclerosis (ALS) is the third most common adult-onset neurodegenerative disease. It causes the degeneration of motoneurons and is fatal due to paralysis, particularly of respiratory muscles. ALS can be inherited, and specific disease-causing genes have been identified, but the mechanisms causing motoneuron death in ALS are not understood. No effective treatments exist for ALS. One well-studied theory of ALS pathogenesis involves faulty RNA editing and abnormal activation of specific glutamate receptors as well as failure of glutamate transport resulting in glutamate excitotoxicity; however, the excitotoxicity theory is challenged by the inability of anti-glutamate drugs to have major disease-modifying effects clinically. Nevertheless, hyperexcitability of upper and lower motoneurons is a feature of human ALS and transgenic (tg) mouse models of ALS. Motoneuron excitability is strongly modulated by synaptic inhibition mediated by presynaptic glycinergic and GABAergic innervations and postsynaptic glycine receptors (GlyR) and GABAA receptors; yet, the integrity of inhibitory systems regulating motoneurons has been understudied in experimental models, despite findings in human ALS suggesting that they may be affected. We have found in tg mice expressing a mutant form of human superoxide dismutase-1 (hSOD1) with a Gly93 → Ala substitution (G93A-hSOD1), causing familial ALS, that subsets of spinal interneurons degenerate. Inhibitory glycinergic innervation of spinal motoneurons becomes deficient before motoneuron degeneration is evident in G93A-hSOD1 mice. Motoneurons in these ALS mice also have insufficient synaptic inhibition as reflected by smaller GlyR currents, smaller GlyR clusters on their plasma membrane, and lower expression of GlyR1α mRNA compared to wild-type motoneurons. In contrast, GABAergic innervation of ALS mouse motoneurons and GABAA receptor function appear normal. Abnormal synaptic inhibition resulting from dysfunction of interneurons and motoneuron GlyRs is a new direction for unveiling mechanisms of ALS pathogenesis that could be relevant to new therapies for ALS.  相似文献   

13.
The human Y--probably because of its nonrecombining nature--has lost 97% of its genes since X and Y chromosomes started to diverge [1, 2]. There are clear signs of degeneration in the Drosophila miranda neoY chromosome (an autosome fused to the Y chromosome), with neoY genes showing faster protein evolution [3-6], accumulation of unpreferred codons [6], more insertions of transposable elements [5, 7], and lower levels of expression [8] than neoX genes. In the many other taxa with sex chromosomes, Y degeneration has hardly been studied. In plants, many genes are expressed in pollen [9], and strong pollen selection may oppose the degeneration of plant Y chromosomes [10]. Silene latifolia is a dioecious plant with young heteromorphic sex chromosomes [11, 12]. Here we test whether the S. latifolia Y chromosome is undergoing genetic degeneration by analyzing seven sex-linked genes. S. latifolia Y-linked genes tend to evolve faster at the protein level than their X-linked homologs, and they have lower expression levels. Several Y gene introns have increased in length, with evidence for transposable-element accumulation. We detect signs of degeneration in most of the Y-linked gene sequences analyzed, similar to those of animal Y-linked and neo-Y chromosome genes.  相似文献   

14.
HIF-1α is known to play an important role in the induction of VEGF by hypoxia in retinal pigment epithelial (RPE) cells. However, the involvement of the other isoform, HIF-2α, in RPE cells remains unclear. Thus, the purpose of present study was to clarify the role of HIF-2α during induction of angiogenic genes in hypoxic RPE cells. When human RPE cells (ARPE-19) were cultured under hypoxic conditions, HIF-1α and HIF-2α proteins increased. This induced an increase in mRNA for VEGF, causing secretion of VEGF protein into the medium. This conditioned medium induced tube formation in human vascular endothelial cells (HUVEC). The increased expression of mRNA for VEGF in hypoxic RPE cells was partially inhibited by HIF-1α siRNA, but not by HIF-2α siRNA. However, co-transfection of HIF-1α siRNA and HIF-2α siRNA augmented downregulation of VEGF mRNA and protein in hypoxic RPE cells and inhibited formation of tube-like structures in HUVEC. GeneChip and PCR array analyses revealed that not only VEGF, but also expression of other angiogenic genes were synergistically downregulated by co-transfection of hypoxic RPE cells with HIF-1α and HIF-2α siRNAs. These findings suggest an important compensatory role for the HIF-2α isoform in the regulation of angiogenic gene expression. Thus, suppression of angiogenic genes for HIF-1α and HIF-2α may be a possible therapeutic strategy against retinal angiogenesis in Age-related macular degeneration (ARMD).  相似文献   

15.
The deafness mouse has profound sensorineural hearing loss with degeneration of hair cells soon after birth. The mode of inheritance is recessive, and there are no associated phenotypic anomalies. Thus, this mouse provides a model for recessive, nonsyndromic, prelingual deafness. We have mapped the gene causing deafness in the mouse to Chromosome (Chr) 19 by analysis of 230 intersubspecific backcross progeny. No recombinants were found with the microsatellite marker D19Mit14. The loci for two guanine nucleotide-binding proteins are tightly linked to this marker, and they are being investigated as possible candidate genes. The identification of the defective gene in the mouse will help to explain the mechanism that causes hair cell degeneration and is likely to identify a homologous gene for deafness in humans.  相似文献   

16.
A morphological and anatomical study of regenerants obtained from mandarin anther culture was carried out. Beside morphologically normal somatic embryos, abnormal structures were originated in the course of somatic embryogenesis. Anatomical anomalies can be found at several growth stages, causing the formation of slender stems, stubby structures, non-functional leaves. When too long, some structures are subject to shedding, with the formation of various abscission zones. Most of them are subject to degeneration, although many are capable of further, localized, morphogenesis. A thorough knowledge of morphology and anatomy of normal and abnormal regenerants could make possible to select and subculture the lines considered most suitable for conversion into plantlets.  相似文献   

17.
Accumulation of vitamin A-derived lipofuscin fluorophores in the retinal pigment epithelium (RPE) is a pathologic feature of recessive Stargardt macular dystrophy, a blinding disease caused by dysfunction or loss of the ABCA4 transporter in rods and cones. Age-related macular degeneration, a prevalent blinding disease of the elderly, is strongly associated with mutations in the genes for complement regulatory proteins (CRP), causing chronic inflammation of the RPE. Here we explore the possible relationship between lipofuscin accumulation and complement activation in vivo. Using the abca4(-/-) mouse model for recessive Stargardt, we investigated the role of lipofuscin fluorophores (A2E-lipofuscin) on oxidative stress and complement activation. We observed higher expression of oxidative-stress genes and elevated products of lipid peroxidation in eyes from abca4(-/-) versus wild-type mice. We also observed higher levels of complement-activation products in abca4(-/-) RPE cells. Unexpectedly, expression of multiple CRPs, which protect cells from attack by the complement system, were lower in abca4(-/-) versus wild-type RPE. To test whether acute exposure of healthy RPE cells to A2E-lipofuscin affects oxidative stress and expression of CRPs, we fed cultured fetal-derived human RPE cells with rod outer segments from wild-type or abca4(-/-) retinas. In contrast to RPE cells in abca4(-/-) mice, human RPE cells exposed to abca4(-/-) rod outer segments adaptively increased expression of both oxidative-stress and CRP genes. These results suggest that A2E accumulation causes oxidative stress, complement activation, and down-regulation of protective CRP in the Stargardt mouse model. Thus, Stargardt disease and age-related macular degeneration may both be caused by chronic inflammation of the RPE.  相似文献   

18.
Protein O-mannosylation has a profound effect on the development and physiology of mammalian organisms. Mutations in genes affecting O-mannosyl glycan biosynthesis result in congenital muscular dystrophies. The main pathological mechanism triggered by O-mannosylation defects is a compromised interaction of cells with the extracellular matrix due to abnormal glycosylation of α-dystroglycan. Hypoglycosylation of α-dystroglycan impairs its ligand-binding activity and results in muscle degeneration and failure of neuronal migration. Recent experiments revealed the existence of compensatory mechanisms that could ameliorate defects of O-mannosylation. However, these mechanisms remain poorly understood. O-mannosylation and dystroglycan pathway genes show remarkable evolutionary conservation in a wide range of metazoans. Mutations and downregulation of these genes in zebrafish and Drosophila result in muscle defects and degeneration, also causing neurological phenotypes, which suggests that O-mannosylation has similar functions in mammals and lower animals. Thus, future studies in genetically tractable model organisms, such as zebrafish and Drosophila, should help to reveal molecular and genetic mechanisms of mammalian O-mannosylation and its role in the regulation of dystroglycan function.  相似文献   

19.
细胞凋亡是多细胞生物体内由激素刺激,基因调控,蛋白调节的一个主动的程序化死亡过程,对生物体特定组织功能的发生、发展、衰老及退化等具有重要作用。而昆虫飞行肌细胞凋亡对昆虫迁飞行为尤为重要,它直接决定迁飞性昆虫能否选择更适宜的寄主植物和生活条件,进而影响到对农作物的危害地域和严重程度。本文在近年来昆虫细胞凋亡的研究基础上,从分子生物学的角度,综述了调控昆虫飞行肌细胞凋亡的相关基因和蛋白质的研究进展,探讨了昆虫飞行肌细胞凋亡发生与调控的分子生物学机制。  相似文献   

20.
Retinitis pigmentosa is a leading cause of blindness and a progressive retinal disorder, affecting millions of people worldwide. This disease is characterized by photoreceptor degeneration, eventually leading to complete blindness. Autosomal dominant (adRP) has been associated with mutations in at least four ubiquitously expressed genes encoding pre-mRNA splicing factors—Prp3, Prp8, Prp31 and PAP1. Biological function of adRP-associated splicing factor genes and molecular mechanisms by which mutations in these genes cause cell-type specific photoreceptor degeneration in humans remain to be elucidated. To investigate the in vivo function of these adRP-associated splicing factor genes, we examined Drosophila in which expression of fly Prp31 homolog was down-regulated. Sequence analyses show that CG6876 is the likely candidate of Drosophila melanogaster Prp31 homolog (DmPrp31). Predicted peptide sequence for CG6876 shows 57% similarity to the Homo sapiens Prp31 protein (HsPrp31). Reduction of the endogenous Prp31 by RNAi-mediated knockdown specifically in the eye leads to reduction of eye size or complete absence of eyes with remarkable features of photoreceptor degeneration and recapitulates the bimodal expressivity of human Prp31 mutations in adRP patients. Such transgenic DmPrp31RNAi flies provide a useful tool for identifying genetic modifiers or interacting genes for Prp31. Expression of the human Prp31 in these animals leads to a partial rescue of the eye phenotype. Our results indicate that the Drosophila CG6876 is the fly ortholog of mammalian Prp31 gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号