首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Wüst M  Croteau RB 《Biochemistry》2002,41(6):1820-1827
The regiochemistry and facial stereochemistry of the limonene-6-hydroxylase- (CYP71D18-) mediated hydroxylation of the monoterpene olefin limonene are determined by the absolute configuration of the substrate. (-)-(4S)-Limonene is hydroxylated at the C6 allylic position to give (-)-trans-carveol as the only product, whereas (+)-(4R)-limonene yields multiple hydroxylation products with (+)-cis-carveol predominating. Specifically deuterated limonene enantiomers were prepared to investigate the net stereospecificity of hydroxylation at C6 and the mechanism of multiple product formation. The results of isotopically sensitive branching experiments of competitive and noncompetitive design were consistent with a nondissociative kinetic mechanism, indicating that (4R)-limonene has sufficient freedom of motion within the active site of CYP71D18 to allow formation of either the trans-3- or cis-6-hydroxylated product. However, the kinetic isotope effects resulting from deuterium abstraction were significantly smaller than expected for an allylic hydroxylation, and they did not approach the intrinsic isotope effect. (4S)-Limonene is oxygenated with almost complete stereospecificity for hydrogen abstraction from the trans-6-position, demonstrating rigid orientation during hydrogen abstraction and hydroxyl delivery. The oxygenation of (4R)-limonene leading to the formation of (+/-)-trans-carveol is accompanied by considerable allylic rearrangement and stereochemical scrambling, whereas the formation of (+)-cis-carveol proceeds without allylic rearrangement and with nearly complete stereospecificity for hydrogen abstraction from the cis-6-position. These results demonstrate that a single cytochrome P450 enzyme catalyzes the hydroxylation of small antipodal substrates with distinct stereochemistries and reveal that substrate-dependent positional motion of the intermediate carbon radical (and, therefore, hydroxylation stereospecificity) is determined by active-site binding complementarity. Thus, epimerization and allylic rearrangement are not inherent features of these reactions but occur when loss of active-site complementarity allows increased substrate mobility.  相似文献   

2.
Cytochrome P450 mono-oxygenases from peppermint, spearmint and perilla (all members of the family Lamiaceae) mediate the regiospecific hydroxylation of the parent olefin (−)-limonene to produce essential oil components oxygenated at C3, C6 and C7, respectively. Cloning, expression and mutagenesis of cDNAs encoding the peppermint limonene-3-hydroxylase and the spearmint limonene-6-hydroxylase have allowed the identification of a single amino acid residue which determines the regiospecificity of oxygenation by these two enzymes. A hybridization strategy provided a cytochrome P450 limonene hydroxylase cDNA from perilla with which to further evaluate the structural determinants of regiospecificity for oxygenation of the common substrate (−)-limonene. The perilla cDNA was a partial clone of 1550 bp (lacking the N-terminal membrane insertion domain), and shared 66% identity with the peppermint 3-hydroxylase and spearmint 6-hydroxylase at the amino acid level. The perilla cytochrome P450 was expressed in Escherichia coli as a chimeric protein fused with the N-terminal membrane insertion domain of the limonene-3-hydroxylase. The kinetically competent recombinant protein was characterized and shown to produce a mixture of C3-, C6- and C7-hydroxylated limonene derivatives with a distribution of 33%, 14% and 53%, respectively.  相似文献   

3.
Xanthobacter sp. C20 was isolated from sediment of the river Rhine using cyclohexane as sole source of carbon and energy. Xanthobacter sp. C20 converted both enantiomers of limonene quantitatively into limonene-8,9-epoxide, a not previously described bioconversion product of limonene. With (4R)-limonene, (4R,8R)-limonene-8, 9-epoxide was formed as the only reaction product, while (4S)-limonene was converted into a (78:22) mixture of (4S,8R)- and (4S,8S)-limonene-8,9-epoxide. Cytochrome P-450 was shown to be induced concomitantly with limonene bioconversion activity following growth of Xanthobacter sp. C20 on cyclohexane. Maximal limonene bioconversion rate was observed at an initial substrate concentration of 12 mM. The amount of limonene-8,9-epoxide formed, up to 0.8 g l(-1), was limited by a strong product inhibition.  相似文献   

4.
The biotransformation of (R)-(-)- and (S)-(-)-limonene by fungi was investigated. More than 60 fungal cultures were screened for their ability to bioconvert the substrate, using solid phase microextraction as the monitoring technique. After screening, the best fungal strains were selected for further study and were grown as sporulated surface cultures in conical flasks and as submerged liquid cultures. It was found that (+)- and (-)-limonene were converted by Penicillium digitatum to alpha-terpineol (main metabolite), cis- and trans-p-menth-2-en-1-ol, neodihydrocarveol and limonene oxide (minor metabolites) using liquid cultures. The bioconversion of (R)-(-)- and (S)-(-)-limonene by Corwespora cassiicola yielded (1S,2S,4R)- and (1R,2R,4S)-limonene-1,2-diol respectively. The bioconversions by liquid cultures were also monitored by solid phase microextraction as a function of time. The optimum conversion of limonene to alpha-terpineol by Penicillium digitatum was obtained after 8 hours (yield up to 100%). Since an important pH-decrease was noticed in some liquid broths, the stability of limonene under acidic conditions was investigated. No acid catalysed conversion products were recovered after 8 days from control flasks at pH 3.5 containing limonene.  相似文献   

5.
Microsomal preparations from the epidermal oil glands of Mentha piperita, Mentha spicata, and Perilla frutescens leaves catalyze the NADPH- and O2-dependent allylic hydroxylation of the monoterpene olefin (-)-limonene at C-3, C-6, and C-7, respectively, to produce the corresponding alcohols, (-)-trans-isopiperitenol, (-)-trans-carveol, and (-)-perillyl alcohol. These transformations are the key steps in the biosynthesis of oxygenated monoterpenes in the respective species, and the responsible enzyme systems meet most of the established criteria for cytochrome P450-dependent mixed function oxygenases. The reactions catalyzed are completely regiospecific and, while exhibiting only a modest degree of enantioselectivity, are highly specific for limonene as substrate. Of numerous monoterpene olefins tested, including several positional isomers of limonene, only the 8,9-dihydro analog served as an alternate substrate for ring (C-3 and C-6) hydroxylation, but not side chain (C-7) hydroxylation. In addition to the regiospecificity of the allylic hydroxylation, these enzymes are also readily distinguishable based on differential inhibition by substituted imidazoles.  相似文献   

6.
Cytochrome P-450-dependent hydroxylases are typical enzymes for the modification of basic flavonoid skeletons. We show in this study that CYP71D9 cDNA, previously isolated from elicitor-induced soybean (Glycine max L.) cells, codes for a protein with a novel hydroxylase activity. When heterologously expressed in yeast, this protein bound various flavonoids with high affinity (1.6 to 52 microm) and showed typical type I absorption spectra. These flavonoids were hydroxylated at position 6 of both resorcinol- and phloroglucinol-based A-rings. Flavonoid 6-hydroxylase (CYP71D9) catalyzed the conversion of flavanones more efficiently than flavones. Isoflavones were hardly hydroxylated. As soybean produces isoflavonoid constituents possessing 6,7-dihydroxy substitution patterns on ring A, the biosynthetic relationship of flavonoid 6-hydroxylase to isoflavonoid biosynthesis was investigated. Recombinant 2-hydroxyisoflavanone synthase (CYP93C1v2) efficiently used 6,7,4'-trihydroxyflavanone as substrate. For its structural identification, the chemically labile reaction product was converted to 6,7,4'-trihydroxyisoflavone by acid treatment. The structures of the final reaction products for both enzymes were confirmed by NMR and mass spectrometry. Our results strongly support the conclusion that, in soybean, the 6-hydroxylation of the A-ring occurs before the 1,2-aryl migration of the flavonoid B-ring during isoflavanone formation. This is the first identification of a flavonoid 6-hydroxylase cDNA from any plant species.  相似文献   

7.
The tightly coupled nature of the reaction sequence catalyzed by monoterpene synthases has prevented direct observation of the topologically required isomerization step leading from geranyl diphosphate to the presumptive, enzyme-bound, tertiary allylic intermediate linalyl diphosphate, which ultimately cyclizes to the various monoterpene skeletons. Previous experimental approaches using the noncyclizable substrate analogs 6,7-dihydrogeranyl diphosphate and racemic methanogeranyl diphosphate, in attempts to dissect the cryptic isomerization step from the normally coupled reaction sequence, were thwarted by the limited product available from native monoterpene synthases and by the inability to resolve chiral monoterpene products at the microscale. These approaches were revisited using three recombinant monoterpene synthases and chiral phase capillary gas chromatographic methods to separate antipodal products of the substrate analogs. The recombinant monoterpene olefin synthases, (-)-limonene synthase from spearmint and (-)-pinene synthase from grand fir, yielded essentially only achiral, olefin products (corresponding to the respective analogs and homologs of myrcene, trans-ocimene and cis-ocimene) from 6,7-dihydrogeranyl diphosphate and (2S,3R)-methanogeranyl diphosphate; no significant amounts of terpenols or homoterpenols were formed, nor was direct evidence obtained for the formation of the anticipated analog and homolog of the tertiary intermediate linalyl diphosphate (i.e., 6,7-dihydrolinalyl diphosphate and homolinalyl diphosphate, respectively). In the case of recombinant (+)-bornyl diphosphate synthase from common sage, the achiral olefins were generated, as before, from 6,7-dihydrogeranyl diphosphate and (2R,3S)-methanogeranyl diphosphate, but 6,7-dihydrolinalool and homolinalool also comprised significant components of the respective product mixtures, indicating greater access of water to the active site of this enzyme compared to the olefin synthases; again, no direct evidence for the production of 6,7-dihydrolinalyl diphosphate or homolinalyl diphosphate was obtained. Resolution of the terpenol products of (+)-bornyl diphosphate synthase, by chiral phase separation, revealed the predominant formation of (3R)-dihydrolinalool from dihydrogeranyl diphosphate and of (4S)-homolinalool from (2R,3S)-methanogeranyl diphosphate. The opposite stereochemistries of these products indicates water trapping from opposite faces of the corresponding tertiary carbocationic intermediates of the respective reactions, a phenomenon that appears to result from the binding conformations of these substrate analogs. Although these experiments failed to provide direct evidence for the tertiary intermediate of the tightly coupled isomerization-cyclization sequence, they did reveal a mechanistic difference between the olefin synthases and bornyl diphosphate synthase involving access of water as a participant in the reaction.  相似文献   

8.
(+)-Pinene cyclase from sage (Salvia officinalis) catalyzes the isomerization and cyclization of geranyl pyrophosphate to (+)-alpha-pinene and (+)-camphene, and to lesser amounts of (+)-limonene, myrcene, and terpinolene, whereas (-)-pinene cyclase from this tissue catalyzes the conversion of the acyclic precursor to (-)-alpha-pinene, (-)-beta-pinene, and (-)-camphene, and to lesser quantities of (-)-limonene, myrcene, and terpinolene. The bicyclic products of these enzymes (pinene and camphene) are derived via the cyclization of the cisoid, anti-endo-conformers of the bound, tertiary allylic intermediates (3R)-linalyl pyrophosphate [+)-pinene cyclase) and (3S)-linalyl pyrophosphate [-)-pinene cyclase). When challenged with either enantiomer of linalyl pyrophosphate or with neryl pyrophosphate (cis-isomer of geranyl pyrophosphate) as substrate, both pinene cyclases synthesize disproportionately high levels of acyclic olefins (myrcene and ocimene) and monocyclic olefins (limonene and terpinolene), compared with the product mixtures generated from the natural geranyl precursor. Resolution of the limonene derived from linalyl pyrophosphate and neryl pyrophosphate demonstrated that this monocyclic olefin was formed via conformational foldings in addition to the cisoid,anti-endo-pattern. These results indicate that the alternate substrates are ionized by the cyclases prior to their achieving the optimum orientation for bicyclization. In the case of geranyl pyrophosphate, a preassociation mechanism is suggested in which optimum folding of the terpenyl chain precedes the initial ionization step.  相似文献   

9.
Ips pini bark beetles use myrcene hydroxylases to produce the aggregation pheromone component, ipsdienol, from myrcene. The enantiomeric ratio of pheromonal ipsdienol is an important prezygotic mating isolation mechanism of I. pini and differs among geographically distinct populations. We explored the substrate and product ranges of myrcene hydroxylases (CYP9T2 and CYP9T3) from reproductively-isolated western and eastern I. pini. The two cytochromes P450 share 94% amino acid identity. CYP9T2 mRNA levels were not induced in adults exposed to myrcene-saturated atmosphere. Functional assays of recombinant enzymes showed both hydroxylated myrcene, (+)- and (?)-α-pinene, 3-carene, and R-(+)-limonene, but not α-phellandrene, (?)-β-pinene, γ-terpinene, or terpinolene, with evidence that CYP9T2 strongly preferred myrcene over other substrates. They differed in the enantiomeric ratios of ipsdienol produced from myrcene, and in the products resulting from different α-pinene enantiomers. These data provide new information regarding bark beetle pheromone evolution and factors affecting cytochrome P450 structure–function relationships.  相似文献   

10.
The mitochondrial sterol 27-hydroxylase (CYP27A1) is required for degradation of the C27-sterol side chain in bile acid biosynthesis. CYP27A1 seems, however, to have roles beyond this, as illustrated by patients with a deficient sterol 27-hydroxylase due to mutations of the CYP27A1 gene [cerebrotendinous xanthomatosis (CTX)]. These subjects have symptoms ranging from accumulation of bile alcohols and cholestanol to accelerated atherosclerosis and progressive neurologic impairment. The present work describes a detailed investigation on the substrate specificity of recombinant human CYP27A1. In accordance with some previous work with rat liver mitochondria, the activity in general increased with the polarity of the substrate. An obvious example was the finding that cholesterol was 27-hydroxylated more efficiently than cholesterol oleate but less efficiently than cholesterol sulfate. The oxysterols 24S-hydroxycholesterol and 25-hydroxycholesterol were 27-hydroxylated less efficiently than cholesterol, possibly due to steric hindrance. Surprisingly, sterols with a 3-oxo-Delta4 structure were found to be hydroxylated at a much higher rate than the corresponding sterols with a 3beta-hydroxy-Delta5 structure. The rates of hydroxylation of the sterols were: 7alpha-hydroxy-4-cholesten-3-one>4-cholesten-3-one>7alpha-hydroxycholesterol>24-hydroxy-4-cholesten-3-one> cholesterol>25-hydroxy-4-cholesten-3-one>24-hydroxycholesterol>or=25-hydroxycholesterol. The possibility is discussed that the findings may have implications for oxysterol-mediated regulation of gene expression. The very high activity of CYP27A1 towards the cholestanol precursor 4-cholesten-3-one may be of importance in connection with the accumulation of cholestanol in patients with CTX.  相似文献   

11.
12.
Strain DCL14, which is able to grow on limonene as a sole source of carbon and energy, was isolated from a freshwater sediment sample. This organism was identified as a strain of Rhodococcus erythropolis by chemotaxonomic and genetic studies. R. erythropolis DCL14 also assimilated the terpenes limonene-1,2-epoxide, limonene-1,2-diol, carveol, carvone, and (-)-menthol, while perillyl alcohol was not utilized as a carbon and energy source. Induction tests with cells grown on limonene revealed that the oxygen consumption rates with limonene-1,2-epoxide, limonene-1,2-diol, 1-hydroxy-2-oxolimonene, and carveol were high. Limonene-induced cells of R. erythropolis DCL14 contained the following four novel enzymatic activities involved in the limonene degradation pathway of this microorganism: a flavin adenine dinucleotide- and NADH-dependent limonene 1, 2-monooxygenase activity, a cofactor-independent limonene-1, 2-epoxide hydrolase activity, a dichlorophenolindophenol-dependent limonene-1,2-diol dehydrogenase activity, and an NADPH-dependent 1-hydroxy-2-oxolimonene 1,2-monooxygenase activity. Product accumulation studies showed that (1S,2S,4R)-limonene-1,2-diol, (1S, 4R)-1-hydroxy-2-oxolimonene, and (3R)-3-isopropenyl-6-oxoheptanoate were intermediates in the (4R)-limonene degradation pathway. The opposite enantiomers [(1R,2R,4S)-limonene-1,2-diol, (1R, 4S)-1-hydroxy-2-oxolimonene, and (3S)-3-isopropenyl-6-oxoheptanoate] were found in the (4S)-limonene degradation pathway, while accumulation of (1R,2S,4S)-limonene-1,2-diol from (4S)-limonene was also observed. These results show that R. erythropolis DCL14 metabolizes both enantiomers of limonene via a novel degradation pathway that starts with epoxidation at the 1,2 double bond forming limonene-1,2-epoxide. This epoxide is subsequently converted to limonene-1,2-diol, 1-hydroxy-2-oxolimonene, and 7-hydroxy-4-isopropenyl-7-methyl-2-oxo-oxepanone. This lactone spontaneously rearranges to form 3-isopropenyl-6-oxoheptanoate. In the presence of coenzyme A and ATP this acid is converted further, and this finding, together with the high levels of isocitrate lyase activity in extracts of limonene-grown cells, suggests that further degradation takes place via the beta-oxidation pathway.  相似文献   

13.
The metabolism of 25-hydroxyvitamin D(3) was studied with a crude mitochondrial cytochrome P450 extract from pig kidney and with recombinant human CYP27A1 (mitochondrial vitamin D(3) 25-hydroxylase) and porcine CYP2D25 (microsomal vitamin D(3) 25-hydroxylase). The kidney mitochondrial cytochrome P450 catalyzed the formation of 1alpha,25-dihydroxyvitamin D(3), 24,25-dihydroxyvitamin D(3) and 25,27-dihydroxyvitamin D(3). An additional metabolite that was separated from the other hydroxylated products on HPLC was also formed. The formation of this 25-hydroxyvitamin D(3) metabolite was dependent on NADPH and the mitochondrial electron transferring protein components. A monoclonal antibody directed against purified pig liver CYP27A1 immunoprecipitated the 1alpha- and 27-hydroxylase activities towards 25-hydroxyvitamin D(3) as well as the formation of the unknown metabolite. These results together with substrate inhibition experiments indicate that CYP27A1 is responsible for the formation of the unknown 25-hydroxyvitamin D(3) metabolite in kidney. Recombinant human CYP27A1 was found to convert 25-hydroxyvitamin D(3) into 1alpha,25-dihydroxyvitamin D(3), 25,27-dihydroxyvitamin D(3) and a major metabolite with the same retention time on HPLC as that formed by kidney mitochondrial cytochrome P450. Gas chromatography-mass spectrometry (GC-MS) analysis of the unknown enzymatic product revealed it to be a triol different from other known hydroxylated 25-hydroxyvitamin D(3) metabolites such as 1alpha,25-, 23,25-, 24,25-, 25,26- or 25,27-dihydroxyvitamin D(3). The product had the mass spectrometic properties expected for 4beta,25-dihydroxyvitamin D(3). Recombinant porcine CYP2D25 converted 25-hydroxyvitamin D(3) into 1alpha,25-dihydroxyvitamin D(3) and 25,26-dihydroxyvitamin D(3). It can be concluded that both CYP27A1 and CYP2D25 are able to carry out multiple hydroxylations of 25-hydroxyvitamin D(3).  相似文献   

14.
CYP3A4 has unusual kinetic characteristics because it has a large active site. CYP3A4 produced more 4-hydroxytriazolam than alpha-hydroxytriazolam at concentrations of more than 60 muM triazolam, and different steroids had different inhibitory effects on the system. To clarify these interesting observations, the interactions between substrate and substrate/steroid were investigated by theoretical calculations. When two triazolam molecules were docked into the active site, the distance between the O-atom and the 4-hydroxylated site was less than the distance to the alpha-hydroxylated site because of interaction between the two triazolam molecules. Estradiol inhibited both alpha- and 4-hydroxytriazolam formation by 50%. Dehydroepiandrosterone (DHEA) inhibited alpha-hydroxylation more than 4-hydroxytriazolam formation, whereas aldosterone had no effect. When one triazolam molecule and one steroid molecule were simultaneously docked, estradiol increased the distance between the O-atom and the two hydroxylated sites, DHEA only increased the distance between the O-atom and alpha-hydroxylated site, and aldosterone did not change the distances. The relevant angles of Fe-O-C in the hydroxylated site of triazolam also widened, together with increased distance. These findings indicate that formation of a substrate and substrate/effector complex in the active site may be a factor for determining the enzyme kinetic parameters of CYP3A4.  相似文献   

15.
Selective transformations of limonene by asco- and basidiomycetes were investigated. On the shake flask scale, Penicillium citrinum hydrated R-(+)-limonene to a-terpineol [83% regioselectivity (rs), more than 80 mg l(-1) product yield], and Gongronella butleri catalysed the terminal oxidation to yield perillyl alcohol (60% rs, 16 mg l(-1)). On the laboratory bioreactor scale, Penicillium digitatum produced a peak concentration of 506 mg a-terpineol l(-1) in the fed-batch mode, equivalent to a theoretical yield of 67%, and no volatile by-products were found. Fusarium proliferatum transformed R-(+)-limonene enantiospecifically to cis-(+)-carveol (98.6% ee, more than 35 mg l(-1) product yield) and S-(-)-limonene predominantly to trans-(-)-carveol (96.3% ee). Pleurotus sapidus selectively dehydrogenised the accumulating trans-(-)-carveol to the corresponding enantiopure R-(-)-carvone. The results show that a careful selection of strain and bioprocess parameters may improve both the yield and the optical purity of a desired product.  相似文献   

16.
Enzymes from Salvia officinalis and Tanacetum vulgare leaf epidermis catalyze the conversion of the acyclic precursor geranyl pyrophosphate to the cyclic monoterpenes (+)- and (-)-bornyl pyrophosphate, respectively. The antipodal cyclizations are considered to proceed by the initial isomerization of the substrate to the respective bound tertiary allylic intermediates (-)-(3R)- and (+)-(3S)-linalyl pyrophosphate. [(3R)-8,9-14C,(3RS)-1E-3H] Linalyl pyrophosphate (3H:14C = 5.22) was tested as a substrate with the cyclases from both sources to determine the configuration of the cyclizing intermediate. This substrate yielded (-)-bornyl pyrophosphate with 3H:14C ratio greater than 31, indicating specific utilization of (+)-(3S)-linalyl pyrophosphate as predicted. With the (+)-bornyl pyrophosphate cyclase, the 3H:14C ratio of the product was about 4.16, indicating a preference for the (-)-(3R)-enantiomer, but the ability also to utilize (+)-(3S)-linalyl pyrophosphate. (3R)- and (3S)-[1Z-3H]Linalyl pyrophosphate were separately compared to the achiral precursors [1-3H] geranyl pyrophosphate and [1-3H]neryl pyrophosphate (cis-isomer) as substrates for the cyclizations. All functional precursors afforded optically pure (-)-(1S,4S)-bornyl pyrophosphate with the T. vulgare-derived cyclase (as determined by chromatographic separation of diastereomeric ketals of the derived ketone camphor), and (+)-(3S)-linalyl pyrophosphate was the preferred substrate. With the (+)-bornyl pyrophosphate cyclase from S. officinalis, geranyl, neryl, and (-)-(3R)-linalyl pyrophosphates gave the expected (+)-(1R,4R)-stereoisomer as the sole product, and (-)-(3R)-linalyl pyrophosphate was the preferred substrate. However, (3S)-linalyl pyrophosphate yielded (-)-(1S,4S)-bornyl pyrophosphate, albeit at lower rates, indicating the ability of this enzyme to catalyze the anomalous enantiomeric cyclization.  相似文献   

17.
The oxygenation pattern of the cyclic monoterpenoids of commercial mint (Mentha) species is determined by regiospecific cytochrome P450-catalyzed hydroxylation of the common olefinic precursor (-)-4S-limonene. In peppermint (Mentha x piperita), C3-allylic hydroxylation leads to (-)-trans-isopiperitenol, whereas in spearmint, C6-allylic hydroxylation leads to (-)-trans-carveol. The microsomal limonene-6-hydroxylase was purified from the oil glands of spearmint, and amino acid sequences from the homogeneous enzyme were used to design PCR primers with which a 500-bp amplicon was prepared. This nondegenerate probe was employed to screen a spearmint oil gland cDNA library from which the corresponding full-length cDNA was isolated and subsequently confirmed as the C6-hydroxylase by functional expression using the baculovirus-Spodoptera system. The probe was also utilized to isolate two closely related full-length cDNA species from a peppermint oil gland cDNA library which were confirmed as the limonene-3-hydroxylase by functional expression as before. Deduced sequence analysis of these regiospecific cytochrome P450 monooxygenases indicates that both enzymes bear a typical amino-terminal membrane anchor, consistent with the microsomal location of the native forms, exhibit calculated molecular weights of 56,149 (spearmint) and about 56,560 (peppermint), and are very similar in primary sequence (70% identity and 85% similarity). The availability of these regiochemically distinct, yet very closely related, recombinant hydroxylases and their corresponding genes provides a unique model system for understanding structure-function relationships in cytochrome P450 substrate binding and catalysis, and a means for transgenic manipulation of monoterpene biosynthetic pathways in plants.  相似文献   

18.
Geranyl pyrophosphate:(-)-endo-fenchol cyclase catalyzes the conversion of geranyl pyrophosphate to (-)-endo-fenchol by a process thought to involve the initial isomerization of the substrate to the tertiary allylic isomer, linalyl pyrophosphate, and the subsequent cyclization of this bound intermediate. Studies with 18O-labeled acyclic precursors and H2(18)O, followed by mass spectrometric analysis of the cyclic product, confirmed that water was the sole source of the carbinol oxygen atom of endo-fenchol, thus indicating the participation of the solvent in terminating this presumptive carbocationic reaction. The isomerization component of the normally coupled reaction sequence was demonstrated directly using the substrate analog 2,3-cyclopropylgeranyl pyrosphosphate and by isolating the corresponding homoallylic analog of linalyl pyrophosphate as a major reaction product. The cyclization component of the reaction sequence was effectively dissected using linalyl pyrophosphate as substrate, and both isomerization and cyclization steps were shown to take place at the same active site of the cyclase, an observation consistent with the efficient coupling of these processes. 2-Fluorogeranyl pyrophosphate and 2-fluorolinalyl pyrophosphate were shown to be effective inhibitors of the cyclase, and the electron-withdrawing substituent was shown to greatly suppress the rate of cyclization of these labeled analogs, indicating that both steps of the coupled isomerization-cyclization sequence are initiated by ionization of an allylic pyrophosphate. Additional evidence for the electrophilic nature of the reaction was obtained by demonstrating the ability of the cyclase to solvolyze other substrate analogs which bear an allylic pyrophosphate, and by showing that cyclization was strongly inhibited by sulfonium analogs of presumptive carbocationic intermediates of the reaction sequence, especially in the presence of inorganic pyrophosphate as counterion. In spite of the fact that the fenchol cyclase terminates the cyclization with an external nucleophile (H2O), the primary mechanistic features of this isomerization-cyclization reaction are similar to those catalyzed by other cyclases that terminate the reaction by deprotonation or cation capture by the pyrophosphate moiety of the substrate.  相似文献   

19.
vitamin D is 25-hydroxylated in the liver, before being activated by 1alpha-hydroxylation in the kidney. Recently, the rat cytochrome P450 2J3 (CYP2J3) has been identified as a principal vitamin D 25-hydroxylase in the rat [Yamasaki T, Izumi S, Ide H, Ohyama Y. Identification of a novel rat microsomal vitamin D3 25-hydroxylase. J Biol Chem 2004;279(22):22848-56]. In this study, we examine whether human CYP2J2 that exhibits 73% amino acid homology to rat CYP2J3 has similar catalytic properties. Recombinant human CYP2J2 was overexpressed in Escherichia coli, purified, and assayed for vitamin D 25-hydroxylation activity. We found significant 25-hydroxylation activity toward vitamin D3 (turnover number, 0.087 min(-1)), vitamin D2 (0.16 min(-1)), and 1alpha-hydroxyvitamin D3 (2.2 min(-1)). Interestingly, human CYP2J2 hydroxylated vitamin D2, an exogenous vitamin D, at a higher rate than it did vitamin D3, an endogenous vitamin D, whereas, rat CYP2J3 hydroxylated vitamin D3 (1.4 min(-1)) more efficiently than vitamin D2 (0.86 min(-1)). Our study demonstrated that human CYP2J2 exhibits 25-hydroxylation activity as well as rat CYP2J3, although the activity of human CYP2J2 is weaker than rat CYP2J3. CYP2J2 and CYP2J3 exhibit distinct preferences toward vitamin D3 and D2.  相似文献   

20.
The new pyridyl imidazolidinone derivative, 1-[5-(4'-chlorobiphenyl-4-yloxy)-3-methylpentyl]-3-pyridin-4-yl-imidazolidin-2-one (+/-)-1a, was synthesized and found to have an excellent antiviral activity against EV71 (IC50 = 0.009 microM). Therefore, both the enantiomers, (S)-(+)-1a and (R)-(-)-1a, have been prepared starting from readily available monomethyl (R)-3-methylglutarate (7) as a useful chiral building block and their antiviral activity was evaluated in a plaque reduction assay. Interestingly, we observed that the enantiomer (S)-(+)-1a was 10-fold more active against enterovirus71 (EV71) (IC50 = 0.003 microM) than the corresponding enantiomer (R)-(-)-1a (IC50 = 0.033 microM). Similar results were found against all five strains (1743, 2086, 2231, 4643, and BrCr) of EV71 tested. This demonstrated that the absolute configuration of the chiral carbon atom at the 3-position of the alkyl linker considerably influenced the anti-EV71 activity of these pyridyl imidazolidinones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号