首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Rho-kinase-dependent Ca2+ sensitization is an essential process for contraction of mammalian vascular smooth muscle but the information about its effects in non-mammalian vessels is scarce. We aimed to investigate, using the Rho-kinase inhibitor hydroxyfasudil, the potential role of the Rho-kinase pathway of Ca2+ sensitization in depolarization- and agonist-mediated contraction of chicken embryo (at day 19 of the 21 days of incubation) femoral arteries. Contraction elicited by KCl (125 mM) comprised two phases (phasic and tonic contraction), both of which were abolished in the absence of extracellular Ca2+. Hydroxyfasudil (10 μM) left the initial phasic component nearly intact but abolished the tonic component. Hydroxyfasudil also induced a marked impairment of the contractions elicited by phenylephrine (PE), the thromboxane A2 mimetic U46619, and endothelin-1. In contrast, inhibition of protein kinase C (PKC) by chelerythrine did not affect KCl- or PE-induced contractions, indicating lack of participation of PKC-mediated Ca2+ sensitization. Incubation under chronic hypoxia (15% O2 from day 0) impaired embryonic growth but did not significantly affect hydroxyfasudil-mediated relaxation. In summary, our findings are indicative of a role for Rho-kinase activity in depolarization- and agonist-induced force generation in chicken embryo femoral arteries.  相似文献   

2.
L-type Ca2+ channel (VGCC) mediated Ca2+ influx in vascular smooth muscle cells (VSMC) contributes to the functional properties of large arteries in arterial stiffening and central blood pressure regulation. How this influx relates to steady-state contractions elicited by α1-adrenoreceptor stimulation and how it is modulated by small variations in resting membrane potential (Vm) of VSMC is not clear yet. Here, we show that α1-adrenoreceptor stimulation of aortic segments of C57Bl6 mice with phenylephrine (PE) causes phasic and tonic contractions. By studying the relationship between Ca2+ mobilisation and isometric tension, it was found that the phasic contraction was due to intracellular Ca2+ release and the tonic contraction determined by Ca2+ influx. The latter component involves both Ca2+ influx via VGCC and via non-selective cation channels (NSCC). Influx via VGCC occurs only within the window voltage range of the channel. Modulation of this window Ca2+ influx by small variations of the VSMC Vm causes substantial effects on the contractile performance of aortic segments. The relative contribution of VGCC and NSCC to the contraction by α1-adrenoceptor stimulation could be manipulated by increasing intracellular Ca2+ release from non-contractile sarcoplasmic reticulum Ca2+ stores. Results of this study point to a complex interactions between α1-adrenoceptor-mediated VSMC contractile performance and Ca2+ release form contractile or non-contractile Ca2+ stores with concomitant Ca2+ influx. Given the importance of VGCC and their blockers in arterial stiffening and hypertension, they further point toward an additional role of NSCC (and NSCC blockers) herein.  相似文献   

3.
Using a sucrose-bridge technique, we studied electrical and mechanical responses of smooth muscle ring strips of the rabbit main pulmonary artery to applications of blockers of voltage-operated (including Ca2+-dependent) K+ channels, tetraethylammonium (TEA) and 4-aminopyridine (4-AP), as well to application of nitric oxide (NO); nitroglycerin (NG) was used as a donor of the latter. All experiments were carried out under conditions of blockade of the adreno- and cholinoreceptors in the preparation. Both TEA and 4-AP evoked dose-dependent effects: depolarization of smooth muscle cells (SMC) and their contraction. Simultaneous addition of TEA and 4-AP to the normal superfusate (Krebs solution) resulted in intensification of depolarization and initiated generation of action potentials (AP); contractions became rather intensive and possessed a tetanic pattern. Addition of NG to TEA- and 4-AP-containing Krebs solution effectively suppressed AP generation and contractions, whereas the depolarization level underwent only mild modifications. These findings show that Ca2+-dependent high-conductance K+ channels (KCa channels) and 4-AP-sensitive voltage-operated K+ channels (KV channels) are involved in the formation of the resting membrane potential (RMP) in SMC of the rabbit main pulmonary artery. The impact of the KCa channels is greater than that of the KV channels. We suppose that the effects of NO on SMC are related to inhibition of the activity of high-threshold voltage-operated L-type Ca2+ channels and, probably, to lowering of the sensitivity of the contractile SMC apparatus to Ca2+.  相似文献   

4.
Airway hyperresponsiveness is a major characteristic of asthma and is believed to result from the excessive contraction of airway smooth muscle cells (SMCs). However, the identification of the mechanisms responsible for airway hyperresponsiveness is hindered by our limited understanding of how calcium (Ca2+), myosin light chain kinase (MLCK), and myosin light chain phosphatase (MLCP) interact to regulate airway SMC contraction. In this work, we present a modified Hai-Murphy cross-bridge model of SMC contraction that incorporates Ca2+ regulation of MLCK and MLCP. A comparative fit of the model simulations to experimental data predicts 1), that airway and arteriole SMC contraction is initiated by fast activation by Ca2+ of MLCK; 2), that airway SMC, but not arteriole SMC, is inhibited by a slower activation by Ca2+ of MLCP; and 3), that the presence of a contractile agonist inhibits MLCP to enhance the Ca2+ sensitivity of airway and arteriole SMCs. The implication of these findings is that murine airway SMCs exploit a Ca2+-dependent mechanism to favor a default state of relaxation. The rate of SMC relaxation is determined principally by the rate of release of the latch-bridge state, which is predicted to be faster in airway than in arteriole. In addition, the model also predicts that oscillations in calcium concentration, commonly observed during agonist-induced smooth muscle contraction, cause a significantly greater contraction than an elevated steady calcium concentration.  相似文献   

5.
From 22 women undergoing hysterectomy at various stages of the menstrual cycle, strip preparations were dissected from the outer, longitudinal and the inner, circular smooth muscle layers of the ampullary-isthmic junction (AIJ). The strips were mounted in organ baths, and isometric tension was recorded. Spontaneous contractions were recorded mainly in circular muscle strips. Contractions were elicited by 127 mM-K+, 10(-6) M-noradrenaline and 10(-6) M-PGF-2 alpha. Potassium induced biphasic responses that were slightly different in the two tissues. In circular muscle strips, noradrenaline and PGF-2 alpha induced phasic contractions superimposed on a rise in tone. In longitudinal muscle specimens, the two compounds produced tonic responses. All types of mechanical activity were inhibited by removal of extracellular calcium. K+-induced responses and phasic contractions produced by noradrenaline and PGF-2 alpha could be abolished by 10(-6) M-nifedipine whereas the tonic contractions in the circular and longitudinal muscle were more resistant to the calcium antagonist. The results suggest that K+-induced responses in circular and longitudinal muscle of the human AIJ, and the phasic contractions in circular muscle, depend on calcium influx via potential-sensitive membrane channels. Receptor-operated calcium channels seem to be involved in the tonic contractions observed mainly in the longitudinal smooth muscle.  相似文献   

6.

Background/Aims

The pacemaker mechanisms activating phasic contractions of vaginal and cervical smooth muscle remain poorly understood. Here, we investigate properties of pacemaking in vaginal and cervical tissues by determining whether: 1) functional pacemaking is dependent on the phase of the estrus cycle or pregnancy; 2) pacemaking involves Ca2+ release from sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA) -dependent intracellular Ca2+ stores; and 3) c-Kit and/or vimentin immunoreactive ICs have a role in pacemaking.

Methodology/Principal Findings

Vaginal and cervical contractions were measured in vitro, as was the distribution of c-Kit and vimentin positive interstitial cells (ICs). Cervical smooth muscle was spontaneously active in estrus and metestrus but quiescent during proestrus and diestrus. Vaginal smooth muscle was normally quiescent but exhibited phasic contractions in the presence of oxytocin or the K+ channel blocker tetraethylammonium (TEA) chloride. Spontaneous contractions in the cervix and TEA-induced phasic contractions in the vagina persisted in the presence of cyclopiazonic acid (CPA), a blocker of the SERCA that refills intracellular SR Ca2+ stores, but were inhibited in low Ca2+ solution or in the presence of nifedipine, an inhibitor of L-type Ca2+channels. ICs were found in small numbers in the mouse cervix but not in the vagina.

Conclusions/Significance

Cervical smooth muscle strips taken from mice in estrus, metestrus or late pregnancy were generally spontaneously active. Vaginal smooth muscle strips were normally quiescent but could be induced to exhibit phasic contractions independent on phase of the estrus cycle or late pregnancy. Spontaneous cervical or TEA-induced vaginal phasic contractions were not mediated by ICs or intracellular Ca2+ stores. Given that vaginal smooth muscle is normally quiescent then it is likely that increases in hormones such as oxytocin, as might occur through sexual stimulation, enhance the effectiveness of such pacemaking until phasic contractile activity emerges.  相似文献   

7.
Kosterin  S. O. 《Neurophysiology》2003,35(3-4):187-200
Calcium ions play a crucial role in the excitation/contraction coupling in smooth muscles. I would like to interpret the biochemical mechanisms underlying Ca2+ exchange and dynamics of such an exchange in the smooth muscles. Particular emphasis is laid on the examination of kinetic, energetic, and catalytic properties of the membrane-linked energy-dependent Ca2+-transporting systems involved in regulation of the intracellular Ca2+ concentration in smooth muscle cells (SMC). It was suggested that the Mg2+,ATP-dependent plasma membrane calcium pump (Ca2+,Mg2+-ATPase) plays a key role in regulation of the Ca2+ concentration in SMC. The purpose of this review is to analyze some of our own results concerning kinetic, energetic, and catalytic properties of the calcium pump of the SMC plasma membrane. In our experiments, we used different biochemical models (namely, fractions of the membrane subcellular structures, highly purified Ca2+,Mg2+-ATPase of the SMC plasma membrane solubilized and reconstituted in the lyposomes, and suspension of digitonin-treated SMC) and a number of methods (including preparative biochemistry, enzymology, membranology, tracer 45Ca2+ flux analysis, and chemical and enzymological kinetics). We have shown that sodium azide-insensitive Mg2+,ATP-dependent Ca2+ accumulation in ureter smooth muscle microsomes is determined by two components. One component represents the Mg2+,ATP-dependent calcium pump of the sarcoplasmic reticulum functionally potentiated by Ca2+-precipitating permeating anions, oxalate or phosphate and inhibited by thapsigargin or cyclopiazonic acid, the highly selective inhibitors of the calcium pump of sarco(endo)plasmic rerticulum. Another component represents the Mg2+,ATP-dependent calcium pump of the plasma membrane functionally potentiated by phosphate. This pump is not inhibited by thapsigargin and cyclopiazonic acid. The effects of temperature, dielectric permeability (D), and ionic strength on the activity of purified Ca2+,Mg2+-ATPase solubilized from the myometrial sarcolemma were studied. The results suggest that changes in the polarity of the incubation medium markedly affect the activity of transport Ca2+,Mg2+-ATPase, and electrostatic interactions between the enzyme activity center and specific ligands (Mg·ADP-, in particular) significantly contribute to the energetics of ATP hydrolysis. Therefore, our data show that changes in the incubation medium polarity significantly affects the ATP-hydrolase activity of Ca2+,Mg2+-ATPase solubilized from the SMC plasma membranes, and electrostatic interactions between the enzyme active sites and reactants (in particular, Mg·ADP-) contribute to a significant extent to the energetics of ATP hydrolysis. We cannot rule out that under physiological conditions the local D values of the myoplasm may differ from that of water, and, moreover, may change (especially near the membrane surface) depending on the metabolic level of SMC. We suppose that local changes in the cytoplasmic D value will affect the plasma membrane calcium pump and, consequently, the efficiency of control of intracellular Ca2+ homeostasis in smooth muscle. So, our biochemical models are suitable experimental objects for studying the kinetic, energetic, and catalytic properties of the Mg2+,ATP-dependent calcium pump of the SMC plasma membrane. In addition, our data might be useful for screening of the mechanisms underlying the action of different physico-chemical factors involved in modulation of the contraction/relaxation cycle.  相似文献   

8.
Ureteric peristalsis, which occurs via alternating contraction and relaxation of ureteric smooth muscle, ensures the unidirectional flow of urine from the kidney to the bladder. Understanding of the molecular mechanisms underlying ureteric excitation–contraction coupling, however, is limited. To address these knowledge deficits, and in particular to test the hypothesis that Ca2+ sensitization via activation of the RhoA/Rho-associated kinase (ROK) pathway plays an important role in ureteric smooth muscle contraction, we carried out a thorough characterization of the electrical activity, Ca2+ signaling, MYPT1 (myosin targeting subunit of myosin light chain phosphatase, MLCP) and myosin regulatory light chain (LC20) phosphorylation, and force responses to membrane depolarization induced by KCl (electromechanical coupling) and carbachol (CCh) (pharmacomechanical coupling). The effects of ROK inhibition on these parameters were investigated. We conclude that the tonic, but not the phasic component of KCl- or CCh-induced ureteric smooth muscle contraction is highly dependent on ROK-catalyzed phosphorylation of MYPT1 at T855, leading to inhibition of MLCP and increased LC20 phosphorylation.  相似文献   

9.
1. The K+-induced contracture consists of a phasic and a sustained component. Both were eliminated in Ca2+-free saline, but the sustained component recovered on the addition of Ca2+ to the muscle.2. Procaine mainly inhibited the phasic component. 3. Unlike the sustained component, the phasic component was inhibited by nifedipine in a concentration dependent manner.4. Divalent cations such as Mn2+, Co2+ and Ni2+ markedly increased the sustained component at low concentrations, but decreased it at high concentrations. The cations also modified the phasic component differentially, but to a lesser extent. High concentration abolished the phasic component.5. Ouabain markedly enhanced the sustained component.6. Caffeine contracture was a phasic type. Its duration and amplitude were augmented by pre-soaking the muscle in Na+-reduced salines. Immediate pre-treatment with caffeine eliminated the phasic component of the 160mM K+-induced contracture.7. These results suggest that a Na-Ca exchange mechanism may play a role in excitation-contraction coupling in insect muscle. Calcium ions flowing into the cell upon membrane depolarization may specifically activate the phasic component by way of a calcium-induced calcium releasing mechanism.  相似文献   

10.
Nitric oxide (NO) and calcium channel blockers are two agents that can affect gastrointestinal motility. The goal of this work was to study the rabbit intestinal smooth muscle contraction response to (1) sodium nitroprusside (SNP), the NO donor, and its potential mechanism of action, and (2) nifedipine, the l-type Ca2+ channel blocker; to clarify the degree of participation by extra- and intracellular Ca2+ in smooth muscle contraction. We used standard isometric tension and intracellular micro-electrode recordings. To record the activity of the longitudinal smooth muscle of the ileum, segments of 1.5?cm length of the ileum were suspended vertically in organ baths of Krebs solution. The mechanical activity of the isolated ileal longitudinal muscle was recorded. Different substances were added, and the changes produced on spontaneous contraction were recorded. We found that SNP produced significant decrease, while nitric oxide synthase inhibitor produced significant increase in the amplitude of spontaneous contractions. Both apamin, the Ca2+-dependent K+ channel blocker, and methylene blue, the inhibitor of soluble guanylate cyclase, alone, partially decreased relaxation induced by SNP. Addition of both methylene blue and apamine together abolished the inhibitory effect produced by SNP on spontaneous contractions. Nifedipine produced significant decrease in the amplitude of spontaneous contractions. In conclusion, in longitudinal muscle of rabbit ileum, calcium channels blocker are potent inhibitors of spontaneous activity. However, both extracellular and intracellular Ca2+ participates in the spontaneous contractions. NO also has inhibitory effect on spontaneous activity, and this effect is mediated by cGMP generation system and Ca2+-dependent K+ channels.  相似文献   

11.
In mouse intestine, caveolae and caveolin‐1 (Cav‐1) are present in smooth muscle (responsible for executing contractions) and in interstitial cells of Cajal (ICC; responsible for pacing contractions). We found that a number of calcium handling/dependent molecules are associated with caveolae, including L‐type Ca2+ channels, Na+‐Ca2+ exchanger type 1 (NCX1), plasma membrane Ca2+ pumps and neural nitric oxide synthase (nNOS), and that caveolae are close to the peripheral endo‐sarcoplasmic reticulum (ER‐SR). Also we found that this assemblage may account for recycling of calcium from caveolar domains to SR through L‐type Ca + channels to sustain pacing and contractions. Here we test this hypothesis further comparing pacing and contractions under various conditions in longitudinal muscle of Cav‐1 knockout mice (lacking caveolae) and in their genetic controls. We used a procedure in which pacing frequencies (indicative of functioning of ICC) and contraction amplitudes (indicative of functioning of smooth muscle) were studied in calcium‐free media with 100 mM ethylene glycol tetra‐acetic acid (EGTA). The absence of caveolae in ICC inhibited the ability of ICC to maintain frequencies of contraction in the calcium‐free medium by reducing recycling of calcium from caveolar plasma membrane to SR when the calcium stores were initially full. This recycling to ICC involved primarily L‐type Ca2+ channels; i.e. pacing frequencies were enhanced by opening and inhibited by closing these channels. However, when these stores were depleted by block of the sarco/endoplasmic reticulum Ca2+‐ATPase (SERCA) pump or calcium release was activated by carbachol, the absence of Cav‐1 or caveolae had little or no effect. The absence of caveolae had little impact on contraction amplitudes, indicative of recycling of calcium to SR in smooth muscle. However, the absence of caveolae slowed the rate of loss of calcium from SR under some conditions in both ICC and smooth muscle, which may reflect the loss of proximity to store operated Ca channels. We found evidence that these channels were associated with Cav‐1. These changes were all consistent with the hypothesis that a reduction of the extracellular calcium associated with caveolae in ICC of the myenteric plexus, the state of L‐type Ca2+ channels or an increase in the distance between caveolae and SR affected calcium handling.  相似文献   

12.
Agonists such as those acting at muscarinic receptors are thought to induce contraction of smooth muscle primarily through inositol 1,4,5-trisphosphate production and release of Ca2+ from sarcoplasmic reticulum. However, the additional Ca2+-mobilizing messengers cyclic adenosine diphosphate ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP) may also be involved in this process, the former acting on the sarcoplasmic reticulum, the latter acting on lysosome-related organelles. In this study, we provide the first systematic analysis of the capacity of inositol 1,4,5-trisphosphate, cADPR, and NAADP to cause contraction in smooth muscle. Using permeabilized guinea pig detrusor and taenia caecum, we show that all three Ca2+-mobilizing messengers cause contractions in both types of smooth muscle. We demonstrate that cADPR and NAADP play differential roles in mediating contraction in response to muscarinic receptor activation, with a sizeable role for NAADP and acidic calcium stores in detrusor muscle but not in taenia caecum, underscoring the heterogeneity of smooth muscle signal transduction systems. Two-pore channel proteins (TPCs) have recently been shown to be key components of the NAADP receptor. We show that contractile responses to NAADP were completely abolished, and agonist-evoked contractions were reduced and now became independent of acidic calcium stores in Tpcn2−/− mouse detrusor smooth muscle. Our findings provide the first evidence that TPC proteins mediate a key NAADP-regulated tissue response brought about by agonist activation of a cell surface receptor.  相似文献   

13.
Neurotransmitter receptors are formed during chick embryo development in the amnion, an avascular extraembryonic membrane devoid of innervation. Carbachol induces phasic and tonic contractions mediated by M3 cholinoceptors in an amniotic membrane strip isolated from 11–14-day-old chick embryo. The carbachol effect on the amnion contractile activity was studied in normal physiological salt solution, during depolarization by K+, exposure to nifedipine, and in calcium-free medium. Voltage-dependent and receptor-operated Ca2+ channels as well as calcium from intracellular stores are involved in the contractile response to carbachol. Phasic contractions of the amnion are mainly induced by calcium ions entering through voltage-dependent calcium channels, while tonic contractions are also maintained by receptor-operated channels. Ca2+-activated potassium channels can serve as a negative feedback factor in regulation of the amnion contractile responses.  相似文献   

14.
The ryanodine receptor (RyR)/Ca2+ release channel is an essential component of excitation–contraction coupling in striated muscle cells. To study the function and regulation of the Ca2+ release channel, we tested the effect of caffeine on the full-length and carboxyl-terminal portion of skeletal muscle RyR expressed in a Chinese hamster ovary (CHO) cell line. Caffeine induced openings of the full length RyR channels in a concentration-dependent manner, but it had no effect on the carboxyl-terminal RyR channels. CHO cells expressing the carboxyl-terminal RyR proteins displayed spontaneous changes of intracellular [Ca2+]. Unlike the native RyR channels in muscle cells, which display localized Ca2+ release events (i.e., “Ca2+ sparks” in cardiac muscle and “local release events” in skeletal muscle), CHO cells expressing the full length RyR proteins did not exhibit detectable spontaneous or caffeine-induced local Ca2+ release events. Our data suggest that the binding site for caffeine is likely to reside within the amino-terminal portion of RyR, and the localized Ca2+ release events observed in muscle cells may involve gating of a group of Ca2+ release channels and/or interaction of RyR with muscle-specific proteins.  相似文献   

15.
The smooth muscle cell is the principal component responsible for involuntary control of visceral organs, including vascular tonicity, secretion, and sphincter regulation. It is known that the neurotransmitters released from nerve endings increase the intracellular Ca2+ level in smooth muscle cells followed by muscle contraction. We herein report that femtosecond laser pulses focused on the diffraction‐limited volume can induce intracellular Ca2+ increases in the irradiated smooth muscle cell without neurotransmitters, and locally increased intracellular Ca2+ levels are amplified by calcium‐induced calcium‐releasing mechanisms through the ryanodine receptor, a Ca2+ channel of the endoplasmic reticulum. The laser‐induced Ca2+ increases propagate to adjacent cells through gap junctions. Thus, ultrashort‐pulsed lasers can induce smooth muscle contraction by controlling Ca2+, even with optical stimulation of the diffraction‐limited volume. This optical method, which leads to reversible and reproducible muscle contraction, can be used in research into muscle dynamics, neuromuscular disease treatment, and nanorobot control. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
《Life sciences》1996,59(23):PL359-PL364
The effects of tetrandrine (TET) on the contractile responses of rat aortic rings and perfused rat mesenteric arteries to phenylephrine (PE) were investigated. TET inhibited the maximal contraction to PE in a concentration-dependent manner. TET significantly inhibited the transient contraction in Ca2+-free medium presumably due to release of intracellular Ca2+ after activation of α1-adrenoceptors. However, it caused a stronger inhibition of the sustained contraction in Ca2+-containing medium presumably the result of Ca2+ influx. TET has no inhibitory effect on caffeine-induced transient contraction. Radioligand receptor binding study using isolated dog aortic muscle membranes indicated that TET inhibited the binding of 3H-prazosin in a competitive manner, hence showing that TET interacted directly with the α1-adrenoceptors. Thus, TET affected PE-induced aortic contractions by multiple mechanisms, inhibiting interaction of PE with α1-adrenoceptors and interfering with PE-induced responses involving both Ca2+ entry and release.  相似文献   

17.
In Ca-free EGTA-containing solution serotonin induced a transient contraction of rabbit pulmonary artery smooth muscle which decayed to nearly steady-state level accounted for 17.7 +/- 1.6% of original contraction in Krebs solution. Both phasic and tonic components of this contraction were effectively inhibited by verapamil and Cd2+. Caffeine induced no contraction of muscle strips if it was applied after withdrawal of serotonin. But when the sequence of these drugs application was reversed, serotonin still evoked contraction with reduced phasic component. The results obtained in these experiments suggest, that serotonin-induced contraction of pulmonary artery smooth muscle is partly (less than 20%) due to mobilization of bound calcium from at least two stores located on the opposite sides of the cell membrane. Calcium released from external store site enters the cell via receptor-operated calcium channels.  相似文献   

18.
Responses of a holothurian smooth muscle to a range of muscarinic (M1 to M5) acetylcholine receptor (mAChR) agonists and antagonists were surveyed using calcium (Ca2+)-selective electrodes and a mechanical recording technique. Most of the mAChR agonists and antagonists tested increased both contractility and net Ca2+ efflux, with M1-specific agents like oxotremorine M being the most potent in their action. To investigate the possible sources of Ca2+ used during mAChR activation, agents that disrupt intracellular Ca2+ ion sequestration [cyclopiazonic acid (CPA), caffeine, ryanodine], the phosphoinositide signaling pathway [lithium chloride (LiCl)], and L-type Ca2+ channels (diltiazem and verapamil) were used to challenge contractions induced by oxotremorine M. These contractions were blocked by treatment with CPA, caffeine, LiCl, and by channel blockers, diltiazem and verapamil, but were unaltered by ryanodine. Our data suggest that this smooth muscle had an M1,3,5-like receptor that was associated with the phosphoinositide signaling pathway that relied on intracellular Ca2+ stores, but secondarily used extracellular Ca2+ via the opening of L-type channels.  相似文献   

19.
Membrane Cholesterol Regulates Smooth Muscle Phasic Contraction   总被引:1,自引:0,他引:1  
The regulation of contractile activity in smooth muscle cells involves rapid discrimination and processing of a multitude of simultaneous signals impinging on the membrane before an integrated functional response can be generated. The sarcolemma of smooth muscle cells is segregated into caveolar regions-largely identical with cholesterol-rich membrane rafts—and actin-attachment sites, localized in non-raft, glycerophospholipid regions. Here we demonstrate that selective extraction of cholesterol abolishes membrane segregation and disassembles caveolae. Simultaneous measurements of force and [Ca2+]i in rat ureters demonstrated that extraction of cholesterol resulted in inhibition of both force and intracellular Ca2+ signals. Considering the major structural reorganization of cholesterol-depleted sarcolemma, it is intriguing to note that decreased levels of membrane cholesterol are accompanied by a highly specific inhibition of phasic, but not tonic contractions. This implies that signalling cascades that ultimately lead to either phasic or tonic response may be spatially segregated in the plane of the sarcolemma. Replenishment of cholesterol restores normal contractile behavior. In addition, the tissue function is re-established by inhibiting the large-conductance K+-channel. Sucrose gradient ultracentrifugation in combination with Western blotting analysis demonstrates that its -subunit is associated with detergent-resistant membranes, suggesting that the channel might be localized within the membrane rafts in vivo. These findings are important in understanding the complex signalling pathways in smooth muscle and conditions such as premature labor and hypertension.  相似文献   

20.
Different interacting signaling modules involving Ca2+/calmodulin-dependent myosin light chain kinase, Ca2+-independent regulatory light chain phosphorylation, myosin phosphatase inhibition, and actin filament-based proteins are proposed as specific cellular mechanisms involved in the regulation of smooth muscle contraction. However, the relative importance of specific modules is not well defined. By using tamoxifen-activated and smooth muscle-specific knock-out of myosin light chain kinase in mice, we analyzed its role in tonic airway smooth muscle contraction. Knock-out of the kinase in both tracheal and bronchial smooth muscle significantly reduced contraction and myosin phosphorylation responses to K+-depolarization and acetylcholine. Kinase-deficient mice lacked bronchial constrictions in normal and asthmatic airways, whereas the asthmatic inflammation response was not affected. These results indicate that myosin light chain kinase acts as a central participant in the contractile signaling module of tonic smooth muscle. Importantly, contractile airway smooth muscles are necessary for physiological and asthmatic airway resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号