首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
Streptococcus faecalis ATCC 11700 uses agmatine as its sole energy source for growth. Agmatine deiminase and putrescine carbamoyltransferase are coinduced by growth on agmatine. Glucose and arginine were found to exert catabolite repression on the agmatine deiminase pathway. Four mutants unable to utilize agmatine as an energy source, isolated from the wild-type strain, exhibited three distinct phenotypes. Two of these strains showed essentially no agmatine deiminase, one mutant showed negligible activity of putrescine carbamoyltransferase, and one mutant was defective in both activities. Two carbamate kinases are present in S. faecalis, one belonging to the arginine deiminase pathway, the other being induced by growth on agmatine. These two enzymes have the same molecular weight, 82,000, and seem quite different in size from the kinases isolated from other streptococci.  相似文献   

2.
The ruminal bacterium Synergistes jonesii strain 78-1, which is able to degrade the pyridinediol toxin in the plant Leucaena leucephala, was studied for its ability to utilise amino acids. The organism used arginine, histidine and glycine from a complex mixture of amino acids, and both arginine and histidine supported growth in a semi-defined medium. The products of (U-14C)-arginine metabolism were CO2 acetate, butyrate, citrulline and ornithine. The labelling pattern of end products from (U-14C)-histidine metabolism differed in that carbon also flowed into formate and propionate. Arginine was catabolised by the arginine deiminase pathway which was characterised by the presence of arginine deiminase, ornithine transcarbamylase and carbamate kinase. This is the first report of a rumen bacterium that uses arginine and histidine as major energy yielding substrates.  相似文献   

3.
Enterococcus faecalis ATCC 11700 is able to use arginine and the diamine agmatine as a sole energy source. Via the highly homologous deiminase pathways, arginine and agmatine are converted into CO2, NH3, and the end products ornithine and putrescine, respectively. In the arginine deiminase pathway, uptake of arginine and excretion of ornithine are mediated by an arginine-ornithine antiport system. The translocation of agmatine was studied in whole cells grown in the presence of arginine, agmatine, or glucose. Rapid uncoupler-insensitive uptake of agmatine was observed only in agmatine-grown cells. A high intracellular putrescine pool was maintained by these cells, and this pool was rapidly released by external putrescine or agmatine but not by arginine or ornithine. Kinetic analysis revealed competitive inhibition for uptake between putrescine and agmatine. Agmatine uptake by membrane vesicles was observed only when the membrane vesicles were preloaded with putrescine. Uptake of agmatine was driven by the outwardly directed putrescine concentration gradient, which is continuously sustained by the metabolic process. Uptake of agmatine and extrusion of putrescine by agmatine-grown cells of E. faecalis appeared to be catalyzed by an agmatine-putrescine antiporter. This transport system functionally resembled the previously described arginine-ornithine antiport, which was exclusively induced when the cells were grown in the presence of arginine.  相似文献   

4.
In Aeromonas formicans two inducible catabolic pathways of L-arginine have been characterized. The arginine decarboxylase is induced by arginine which also induces the three enzymes of the arginine deiminase pathway but only in stress conditions such as a shift from aerobic growth conditions to very low oxygen tension. Addition of glucose to medium containing arginine leads to repression of the enzymes involved in the arginine deiminase pathway while exogenous cAMP prevents that repression of enzyme synthesis by glucose. This suggests that the induction of arginine deiminase pathway is regulated by carbon catabolite repression and the energetic state of the cell.  相似文献   

5.
Summary Pseudomonas aeruginosa mutants defective in agmatine utilization (agu) were isolated. The genes encoding agmatine deiminase (aguA) and N-carbamoylputrescine amidinohydrolase (aguB) were 98% cotransducible and mapped between gpu and ser-3 in the 30 min region of the chromosome. Constructed agu arc double mutants (blocked in the arginine decarboxylase and arginine deiminase pathways) used arginine efficiently as the sole carbon and nitrogen source. This suggests the existence of a further arginine catabolic pathway in P. aeruginosa. The mapping data of this study confirm that in P. aeruginosa the chromosomal genes with catabolic functions do not show supraoperonic clustering as found in P. putida.  相似文献   

6.
The formation of the arginine deiminase pathway enzymes in Streptococcus faecalis ATCC 11700 was investigated. The addition of arginine to growing cells resulted in the coinduction of arginine diminase (EC 3.5.3.6), ornithine carbamoyltransferase (EC 2.1.3.3), and carbamate kinase (EC 2.7.2.3). Growth on glucose-arginine or on glucose-fumarate-arginine produced a decrease in the specific activity of the arginine fermentation system. Aeration had a weak repressing effect on the arginine deiminase pathway enzymes in cells growing on arginine as the only added substrate. By contrast, depending on the growth phase, a marked repression of the pathway by oxygen was observed in cells growing on glucose-arginine. We hypothesize that, in S. faecalis, the ATP pool is an important signal in the regulation of the arginine deiminase pathway. Mutants unable to utilize arginine as an energy source, isolated from the wild type, exhibited four distinct phenotypes. In group I the three enzymes of the arginine deiminase pathway were present and probably affected in the arginine uptake system. Group II mutants had no detectable arginine deiminase, whereas group III mutants had low levels of ornithine carbamoyltransferase. Group IV mutants were defective for all three enzymes of the pathway.  相似文献   

7.
L-arginine utilization by Pseudomonas species   总被引:7,自引:0,他引:7  
The utilization of arginine was studied in several different Pseudomonas species. The arginine decarboxylase and agmatine deiminase pathways were found to be characteristic of Pseudomonas species of group I as defined by Palleroni et al. (1974). Pseudomonas putida strains had three distinct arginine catabolic pathways initiated by arginine decarboxylase, arginine deiminase and arginine oxidase, respectively. The two former routes were also present in P. fluorescens and P. mendocina and in P. aeruginosa which also used arginine by a further unknown pathway. None of these pathways occurred in P. cepacia strains; agmatine catabolism seemed to follow an unusual route involving guanidinobutyrate as intermediate.  相似文献   

8.
Enterococcus faecalis makes ATP from agmatine in three steps catalyzed by agmatine deiminase (AgDI), putrescine transcarbamylase (PTC), and carbamate kinase (CK). An antiporter exchanges putrescine for agmatine. We have cloned the E. faecalis ef0732 and ef0734 genes of the reported gene cluster for agmatine catabolism, overexpressed them in Escherichia coli, purified the products, characterized them functionally as PTC and AgDI, and crystallized and X-ray diffracted them. The 1.65-Angstroms-resolution structure of AgDI forming a covalent adduct with an agmatine-derived amidine reactional intermediate is described. We provide definitive identification of the gene cluster for agmatine catabolism and confirm that ornithine is a genuine but poor PTC substrate, suggesting that PTC (found here to be trimeric) evolved from ornithine transcarbamylase. N-(Phosphonoacetyl)-putrescine was prepared and shown to strongly (K(i) = 10 nM) and selectively inhibit PTC and to improve PTC crystallization. We find that E. faecalis AgDI, which is committed to ATP generation, closely resembles the AgDIs involved in making polyamines, suggesting the recruitment of a polyamine-synthesizing AgDI into the AgDI pathway. The arginine deiminase (ADI) pathway of arginine catabolism probably supplied the genes for PTC and CK but not those for the agmatine/putrescine antiporter, and thus the AgDI and ADI pathways are not related by a single "en bloc" duplication event. The AgDI crystal structure reveals a tetramer with a five-blade propeller subunit fold, proves that AgDI closely resembles ADI despite a lack of sequence identity, and explains substrate affinity, selectivity, and Cys357-mediated-covalent catalysis. A three-tongued agmatine-triggered gating opens or blocks access to the active center.  相似文献   

9.
The enzymes of the arginine dihydrolase pathway were demonstrated in Tritrichomonas foetus and their subcellular localization determined for both T. foetus and Trichomonas vaginalis. Ornithine carbamyltransferase (anabolic and catabolic activities), ornithine decarboxylase and carbamate kinase activity were localized predominately (56–80%) in the non sedimentable fraction of both species. A large proportion (35–40%) of the arginine deiminase was, however, recovered in the large granular fraction, and this distribution was unchanged by increasing the ionic strength of the buffer. Upon density gradient centrifugation the particles containing arginine deiminase activity had an isopycnic density of 1.09 g/ml in percoll, and separated from hydrogenosomes (1.18 g/ml) and lysosomes (1.12 g/ml). Arginine deiminase was also the only enzyme of the dihydrolase pathway which demonstrated latency upon treatment of the 1.09 g/ml fraction with non-ionic detergents. The results demonstrate the presence of the arginine dihydrolase pathway in T. foetus and indicate that at least a portion of the arginine deiminase in trichomonads is membrane associated.  相似文献   

10.
The three enzymes of the arginine deiminase pathway in Pseudomonas aeruginosa strain PAO were induced strongly (50- to 100-fold) by a shift from aerobic growth conditions to very low oxygen tension. Arginine in the culture medium was not essential for induction, but increased the maximum enzyme levels twofold. The induction of the three enzymes arginine deiminase (EC 3.5.3.6), catabolic ornithine carbamoyltransferase (EC 2.1.3.3), and carbamate kinase (EC 2.7.2.3) appeared to be coordinate. Catabolic ornithine carbamoyltransferase was studied in most detail. Nitrate and nitrite, which can replace oxygen as terminal electron acceptors in P. aeruginosa, partially prevented enzyme induction by low oxygen tension in the wild-type strain, but not in nar (nitrate reductase-negative) mutants. Glucose was found to exert catabolite repression of the deiminase pathway. Generally, conditions of stress, such as depletion of the carbon and energy source or the phosphate source, resulted in induced synthesis of catabolic ornithine carbamoyltransferase. The induction of the deiminase pathway is thought to mobilize intra- and extracellular reserves of arginine, which is used as a source of adenosine 5'-triphosphate in the absence of respiration.  相似文献   

11.
The cloning, expression and characterization of plant agmatine iminohydrolase (AIH, also known as agmatine deiminase, EC 3.5.3.12) is described. Recombinant AIH of Arabidopsis thaliana forms dimers and catalyzes the specific conversion of agmatine to N-carbamoylputrescine and ammonia. Biochemical data suggested that cysteine side chains are involved in catalysis. However, site-directed mutagenesis of the two highly conserved cysteine residues of AIH showed that these cysteines are important but not essential for activity, arguing against a thioester substrate-enzyme intermediate during catalysis. This work represents the completion of the cloning of the arginine decarboxylase pathway genes of higher plants.  相似文献   

12.
Arginine metabolism in lactic streptococci.   总被引:35,自引:14,他引:21       下载免费PDF全文
Streptococcus lactis metabolizes arginine via the arginine deiminase pathway producing ornithine, ammonia, carbon dioxide, and ATP. In the four strains of S. lactis examined, the specific activities of arginine deiminase and ornithine transcarbamylase were 5- to 10-fold higher in galactose-grown cells compared with glucose- or lactose-grown cells. The addition of arginine increased the specific activities of these two enzymes with all growth sugars. The specific activity of the third enzyme involved in arginine metabolism (carbamate kinase) was not altered by the composition of the growth medium. In continuous cultures arginine deiminase was not induced, and arginine was not metabolized, until glucose limitation occurred. In batch cultures the metabolism of glucose and arginine was sequential, whereas galactose and arginine were metabolized concurrently, and the energy derived from arginine metabolism was efficiently coupled to growth. No arginine deiminase activity was detected in the nine Streptococcus cremoris strains examined, thus accounting for their inability to metabolize arginine. All nine strains of S. cremoris had specific activities of carbamate kinase similar to those found in S. lactis, but only five S. cremoris strains had ornithine transcarbamylase activity.  相似文献   

13.
Agmatine is the decarboxylation product of arginine and a number of bacteria have devoted enzymatic pathways for its metabolism. Pseudomonas aeruginosa harbours the aguBA operon that metabolizes agmatine to putrescine, which can be subsequently converted into other polyamines or shunted into the TCA cycle for energy production. We discovered an alternate agmatine operon in the P. aeruginosa strain PA14 named agu2ABCA′ that contains two genes for agmatine deiminases (agu2A and agu2A′). This operon was found to be present in 25% of clinical P. aeruginosa isolates. Agu2A′ contains a twin‐arginine translocation signal at its N‐terminus and site‐directed mutagenesis and cell fractionation experiments confirmed this protein is secreted to the periplasm. Analysis of the agu2ABCA′ promoter demonstrates that agmatine induces expression of the operon during the stationary phase of growth and during biofilm growth and agu2ABCA′ provides only weak complementation of aguBA, which is induced during log phase. Biofilm assays of mutants of all three agmatine deiminase genes in PA14 revealed that deletion of agu2ABCA′, specifically its secreted product Agu2A′, reduces biofilm production of PA14 following addition of exogenous agmatine. Together, these findings reveal a novel role for the agu2ABCA′ operon in the biofilm development of P. aeruginosa.  相似文献   

14.
《Anaerobe》2001,7(4):209-217
The specificity of amino acid consumption by Porphyromonas gingivalis, well known as an important pathogen of adult periodontitis, is described. P. gingivalis is an asaccharolytic, black-pigmented and gram-negative anaerobe and produces several types of proteases including cysteine proteases such as arg-gingipain and trypsin-like enzyme. This suggests that arginine is a possible energy source for its growth. When P. gingivalis was grown anaerobically in brain–heart infusion broth, several free amino acids such as lysine, glycine and glutamic acid increased in the culture supernatant with the bacterial growth; but free arginine increased first and then started to decrease after the early log phase. Citrulline and ornithine increased to late log phase in contrast to the decrease of arginine. The total arginine in the medium decreased steadily with the growth of P. gingivalis. In relation to the arginine consumption, cell extracts of P. gingivalis clearly demonstrated enzyme activities for the arginine deiminase pathway and adenosine triphosphate production. The arginine deiminase pathway was also presumed from the presence of putative homologue corresponding to the other bacterial arginine deiminase pathway relating enzymes in the unfinished P. gingivalis W83 genome. These results suggest that P. gingivalis catabolizes arginine which is released from proteins and/or peptides by several types of proteases, and obtains energy through the arginine deiminase pathway.  相似文献   

15.
Pseudomonas aeruginosa PAO was able to grow in the absence of exogenous terminal electron acceptors, provided that the medium contained 30 to 40 mM L-arginine and 0.4% yeast extract. Under strictly anaerobic conditions (O2 at less than 1 ppm), growth could be measured as an increase in protein and proceeded in a non-exponential way; arginine was largely converted to ornithine but not entirely consumed at the end of growth. In the GasPak anaerobic jar (Becton Dickinson and Co.), the wild-type strain PAO1 grew on arginine-yeast extract medium in 3 to 5 days; mutants could be isolated that were unable to grow under these conditions. All mutants (except one) were defective in at least one of the three enzymes of the arginine deiminase pathway (arcA, arcB, and arcC mutants) or in a novel function that might be involved in anaerobic arginine uptake (arcD mutants). The mutations arcA (arginine deiminase), arcB (catabolic ornithine carbamoyltransferase), arcC (carbamate kinase), and arcD were highly cotransducible and mapped in the 17-min chromosome region. Some mutations in the arc cluster led to low, noninducible levels of all three arginine deiminase pathway enzymes and thus may affect control elements required for induction of the postulated arc operon. Two fluorescent pseudomonads (P. putida and P. fluorescens) and P. mendocina, as well as one PAO mutant, possessed an inducible arginine deiminase pathway and yet were unable to grow fermentatively on arginine. The ability to use arginine-derived ATP for growth may provide P. aeruginosa with a selective advantage when oxygen and nitrate are scarce.  相似文献   

16.
The adaptation of Lactobacillus sakei to a meat environment is reflected in its metabolic potential. For instance, the ability to utilize arginine through the arginine deiminase (ADI) pathway, resulting in additional ATP, represents a competitive benefit. In L. sakei CTC 494, the arc operon (arcABCTDR) shows the same gene order and organization as that in L. sakei 23K, the genome sequence of which is known. However, differences in relative gene expression were found, and these seemed to be optimal in different growth phases, namely, the highest relative gene expression level was in the end exponential growth phase in the case of L. sakei CTC 494 and in the mid-exponential growth phase of L. sakei 23K. Also, the environmental pH influenced the relative expression level of the arc operon, as shown for L. sakei CTC 494, with the highest relative expression level occurring at the optimal pH for growth (pH 6.0). Deviations from this optimal pH (pH 5.0 and pH 7.0) resulted in an overall decline of the relative expression level of all genes of the arc operon. Furthermore, a differential relative expression of the individual genes of the arc operon was found, with the highest relative gene expression occurring for the first two genes of the arc operon (arcA and arcB). Finally, it was shown that some L. sakei strains were able to convert agmatine into putrescine, suggesting an operational agmatine deiminase pathway in these strains, a metabolic trait that is undesirable in meat fermentations. This study shows that this metabolic trait is most probably encoded by a previously erroneously annotated second putative arc operon.  相似文献   

17.
Arginase, ornithine carbamoyl transferase (OCT) and arginine deiminase activities were found in cell-free extracts of Nostoc PCC 73102, a free-living cyanobacterium originally isolated from the cycad Macrozamia. Addition of either arginine, ornithine or citrulline to the growth medium induced significant changes in their in vitro activities. Moreover, growth in darkness, compared to in light, induced higher in vitro activities. The in vitro activities of arginase and arginine deiminase, two catabolic enzymes primarily involved in the breakdown of arginine, increased substantially by a combination of growth in darkness and addition of either arginine, or ornithine, to the growth medium. The most significant effects on the in vitro OCT activities where observed in cells grown with the addition of ornithine. Cells grown in darkness exhibited about 6% of the in vivo nitrogenase activity observed in cells grown in light. However, addition of external carbon (glucose and fructose) to cells grown in darkness resulted in in vivo nitrogenase activity levels similar to, or even higher than, cells grown in light. Growth with high in vivo nitrogenase activity or in darkness with the addition of external carbon, resulted in repressed levels of in vitro arginase and arginine deiminase activities. It is suggested that nitrogen starvation induces a mobilization of the stored nitrogen, internal release of the amino compound arginine, and an induction of two catabolic enzymes arginase and arginine deiminase. A similar and even more pronunced induction can be observed by addition of external arginine to the growth medium.  相似文献   

18.
A subcellular fractionation study was carried out onStreptococcus mitis ATCC 9811 to determine the location of the arginine deiminase pathway. Arginine deiminase activity was detected in the cell wall fraction, ornithine carbamoyltransferase activity was recovered in both the cell wall and cytoplasmic fractions, and carbamate kinase activity was detected in the cytoplasmic fraction.  相似文献   

19.
Arginine dihydrolase pathway in Lactobacillus buchneri: a review   总被引:1,自引:0,他引:1  
The arginine dihydrolase system was studied in homo- and hetero-fermentative lactic acid bacteria. This system is widely distributed in Betabacteria lactobacilli subgroup (group II in Bergey's Manual). It is generally absent in the Thermobacterium lactobacilli subgroup (group IA in Bergey's Manual) and also in the Streptobacterium subgroup (group IB in Bergey's Manual). It is present in some species of the genus Streptococcus (groups II, III and IV in Bergey's Manual). In Lactobacillus buchneri NCDO110 the 3 enzymes of the arginine dihydrolase pathway, arginine deiminase, ornithine transcarbamylase and carbamate kinase, were purified and characterized. Arginine deiminase was partially purified (68-fold); ornithine transcarbamylase was also partially purified (14-fold), while carbamate kinase was purified to homogeneity. The apparent molecular weight of the enzymes was 199,000, 162,000 and 97,000 for arginine deiminase, ornithine transcarbamylase and carbamate kinase respectively. For arginine deiminase, maximum enzymatic activity was observed at 50 degrees C and pH 6; for ornithine transcarbamylase it was observed at 35 degrees C and pH 8.5, and for carbamate kinase at 30 degrees C and pH 5.4. The activation energy of the reactions was determined. For arginine deiminase, delta G* values were: 8,700 cal mol-1 below 50 degrees C and 380 cal mol-1 above 50 degrees C; for ornithine transcarbamylase, the values were: 9,100 cal mol-1 below 35 degrees C and 4,300 cal mol-1 above 35 degrees C; for carbamate kinase, the activation energy was: 4,078 cal mol-1 for the reaction with Mn2+ and 3,059 cal mol-1 for the reaction with Mg2+.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The present study describes the distribution and properties of enzymes involved in arginine metabolism in Riftia pachyptila, a tubeworm living around deep sea hydrothermal vents and known to be engaged in a highly specific symbiotic association with a bacterium. The results obtained show that the arginine biosynthetic enzymes, carbamyl phosphate synthetase, ornithine transcarbamylase, and argininosuccinate synthetase are present in all of the tissues of the worm and in the bacteria. Thus, Riftia and its bacterial endosymbiont can assimilate nitrogen and carbon via this arginine biosynthetic pathway. The kinetic properties of ornithine transcarbamylase strongly suggest that neither Riftia nor the bacteria possess the catabolic form of this enzyme belonging to the arginine deiminase pathway, the absence of this pathway being confirmed by the lack of arginine deiminase activity. Arginine decarboxylase and ornithine decarboxylase are involved in the biosynthesis of polyamines such as putrescine and agmatine. These activities are present in the trophosome, the symbiont-harboring tissue, and are higher in the isolated bacteria than in the trophosome, indicating that these enzymes are of bacterial origin. This finding indicates that Riftia is dependent on its bacterial endosymbiont for the biosynthesis of polyamines that are important for its metabolism and physiology. These results emphasize a particular organization of the arginine metabolism and the exchanges of metabolites between the two partners of this symbiosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号