首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The myelin sheath insulates neuronal axons and markedly increases the nerve conduction velocity. In the peripheral nervous system (PNS), Schwann cell precursors migrate along embryonic neuronal axons to their final destinations, where they eventually wrap around individual axons to form the myelin sheath after birth. ErbB2 and ErbB3 tyrosine kinase receptors form a heterodimer and are extensively expressed in Schwann lineage cells. ErbB2/3 is thought to be one of the primary regulators controlling the entire Schwann cell development. ErbB3 is the bona fide Schwann cell receptor for the neuronal ligand neuregulin-1. Although ErbB2/3 is well known to regulate both Schwann cell precursor migration and myelination by Schwann cells in fishes, it still remains unclear whether in mammals, ErbB2/3 actually regulates Schwann cell precursor migration. Here, we show that knockdown of ErbB3 using a Schwann cell-specific promoter in mice causes delayed migration of Schwann cell precursors. In contrast, littermate control mice display normal migration. Similar results are seen in an in vitro migration assay using reaggregated Schwann cell precursors. Also, ErbB3 knockdown in mice reduces myelin thickness in sciatic nerves, consistent with the established role of ErbB3 in myelination. Thus, ErbB3 plays a key role in migration, as well as in myelination, in mouse Schwann lineage cells, presenting a genetically conservative role of ErbB3 in Schwann cell precursor migration.  相似文献   

2.
Adult spinal cord motor and dorsal root ganglion (DRG) sensory neurons express multiple neuregulin-1 (NRG-1) isoforms that act as axon-associated factors promoting neuromuscular junction formation and Schwann cell proliferation and differentiation. NRG-1 isoforms are also expressed by muscle and Schwann cells, suggesting that motor and sensory neurons are themselves acted on by NRG-1 isoforms produced by their peripheral targets. To test this hypothesis, we examined the expression of the NRG-1 receptor subunits erbB2, erbB3, and erbB4 in rat lumbar DRG and spinal cord. All three erbB receptors are expressed in these tissues. Sciatic nerve transection, an injury that induces Schwann cell expression of NRG-1, alters erbB expression in DRG and cord. Virtually all DRG neurons are erbB2- and erbB3-immunoreactive, with erbB4 also detectable in many neurons. In spinal cord white matter, erbB2 and erbB4 antibodies produce dense punctate staining, whereas the erbB3 antibody primarily labels glial cell bodies. Spinal cord dorsal and ventral horn neurons, including alpha-motor neurons, exhibit erbB2, erbB3, and erbB4 immunoreactivity. Spinal cord ventral horn also contains a population of small erbB3+/S100beta+/GFAP- cells (GFAP-negative astrocytes or oligodendrocytes). We conclude that sensory and motor neurons projecting into sciatic nerve express multiple erbB receptors and are potentially NRG-1 responsive.  相似文献   

3.
BACKGROUND: Myelin is critical for efficient axonal conduction in the vertebrate nervous system. Neuregulin (Nrg) ligands and their ErbB receptors are required for the development of Schwann cells, the glial cells that form myelin in the peripheral nervous system. Previous studies have not determined whether Nrg-ErbB signaling is essential in vivo for Schwann cell fate specification, proliferation, survival, migration, or the onset of myelination. RESULTS: In genetic screens for mutants with disruptions in myelinated nerves, we identified mutations in erbb3 and erbb2, which together encode a heteromeric tyrosine kinase receptor for Neuregulin ligands. Phenotypic analysis shows that both genes are essential for development of Schwann cells. BrdU-incorporation studies and time-lapse analysis reveal that Schwann cell proliferation and migration, but not survival, are disrupted in erbb3 mutants. We show that Schwann cells can migrate in the absence of DNA replication. This uncoupling of proliferation and migration indicates that erbb gene function is required independently for these two processes. Pharmacological inhibition of ErbB signaling at different stages reveals a continuing requirement for ErbB function during migration and also provides evidence that ErbB signaling is required after migration for proliferation and the terminal differentiation of myelinating Schwann cells. CONCLUSIONS: These results provide in vivo evidence that Neuregulin-ErbB signaling is essential for directed Schwann cell migration and demonstrate that this pathway is also required for the onset of myelination in postmigratory Schwann cells.  相似文献   

4.
The axon sheath formation in the ventral and dorsal spinal roots of newborn rabbits is discussed. The mesaxon grows at a greater rate than the outer plasmalemma of the Schwann cell, thereby giving rise to folds in the mesaxon. The compact myelin spiral is formed by the apposition of 2-3 lamellae.  相似文献   

5.
J K Morris  W Lin  C Hauser  Y Marchuk  D Getman  K F Lee 《Neuron》1999,23(2):273-283
ErbB2 receptor tyrosine kinase plays a role in neuregulin signaling and is expressed in the developing nervous system. We genetically rescued the cardiac defect of erbB2 null mutant embryos, which otherwise died at E11. These rescued erbB2 mutant mice die at birth and display a severe loss of both motor and sensory neurons. Motor and sensory axons are severely defasciculated and aberrantly projected within their final target tissues. Schwann cells are completely absent in the peripheral nerves. Schwann cell precursors are present within the DRG and proliferate normally, but their ability to migrate is decreased. Acetylcholine receptors cluster within the central band of the mutant diaphragm muscle. However, these clusters are dispersed and morphologically different from those in control muscle. Our results reveal an important role for erbB2 during normal peripheral nervous system development.  相似文献   

6.
Neuregulins comprise a family of epidermal growth factor-like ligands that interact with ErbB receptor tyrosine kinases to control many aspects of neural development. One of the most dramatic effects of neuregulin-1 is on glial cell differentiation. The membrane-bound neuregulin-1 type III isoform is an axonal ligand for glial ErbB receptors that regulates the early Schwann cell lineage, including the generation of precursors. Recent studies have shown that the amount of neuregulin-1 type III expressed on axons also dictates the glial phenotype, with a threshold level triggering Schwann cell myelination. Remarkably, neuregulin-1 type III also regulates Schwann cell membrane growth to adjust myelin sheath thickness to match axon caliber precisely. Whether this signaling system operates in central nervous system myelination remains an open question of major importance for human demyelinating diseases.  相似文献   

7.
8.
Neuregulins signal cells by binding to an activating hetero- and homodimeric forms of the neuregulin receptors HER2 (erbB2), HER3 (erbB3), and HER4 (erbB4). Axonally derived neuregulin signals myelin forming cells of the central and peripheral nervous systems through different receptor complexes: oligodendrocytes through erbB2/erbB4 heterodimers and Schwann cells through erbB2/erbB3 heterodimers. Since the leading edge of myelinating cells interacts directly with the axonal surface, we were interested in determining if signaling molecules localized at the leading edge associate with activated neuregulin receptors. We found a novel association between neuregulin receptors and focal adhesion kinase (FAK) in primary cultures of Schwann cells. Following stimulation with ligand, maximal binding of FAK to HER2 occurred by 1 min whereas maximal binding to HER3 was delayed to approximately 7 min. FAK is localized in focal adhesions of Schwann cells. We have previously shown HER2 and HER3 are distributed evenly throughout the plasmalemma. Neuregulins thus use FAK to transmit intracellular signals and the differential kinetics of FAK association with individual neuregulin receptors, as well as its restricted subcellular localization, may play a role in specifying biologic responses.  相似文献   

9.
Development of oligodendrocytes and the generation of myelin internodes within the spinal cord depends on regional signals derived from the notochord and axonally derived signals. Neuregulin 1 (NRG)-1, localized in the floor plate as well as in motor and sensory neurons, is necessary for normal oligodendrocyte development. Oligodendrocytes respond to NRGs by activating members of the erbB receptor tyrosine kinase family. Here, we show that erbB2 is not necessary for the early stages of oligodendrocyte precursor development, but is essential for proligodendroblasts to differentiate into galactosylcerebroside-positive (GalC+) oligodendrocytes. In the presence of erbB2, oligodendrocyte development is normal. In the absence of erbB2 (erbB2-/-), however, oligodendrocyte development is halted at the proligodendroblast stage with a >10-fold reduction in the number of GalC+ oligodendrocytes. ErbB2 appears to function in the transition of proligodendroblast to oligodendrocyte by transducing a terminal differentiation signal, since there is no evidence of increased oligodendrocyte death in the absence of erbB2. Furthermore, known survival signals for oligodendrocytes increase oligodendrocyte numbers in the presence of erbB2, but fail to do so in the absence of erbB2. Of the erbB2-/- oligodendrocytes that do differentiate, all fail to ensheath neurites. These data suggest that erbB2 is required for the terminal differentiation of oligodendrocytes and for development of myelin.  相似文献   

10.
Previous studies by a number of workers have shown that the axon membrane in normal mature myelinated fibres is highly differentiated, with the nodal axolemma exhibiting characteristics different to those of the internodal axolemma. However, the development of this axolemmal heterogeneity has not been previously explored. In the present study we used cytochemical methods to examine the development of nodal axolemma during the differentiation of myelinated fibres in rat spinal roots. The staining properties characteristic of normal nodal membrane appear in the axon, at gaps between Schwann cells, before the development of mature compact myelin or well defined paranodal axon--Schwann cell specializations close to the region of nodal axolemmal differentiation. These results are consistent with the hypothesis that the axon membrane differentiates into nodal and internodal regions before, or early in the process of, myelination, and suggest that the differentiation of the axon membrane may provide a signal demarcating the region to be covered by the myelin-forming cell.  相似文献   

11.
Structural properties of proteins specific to the myelin sheath   总被引:1,自引:0,他引:1  
Kursula P 《Amino acids》2008,34(2):175-185
Summary. The myelin sheath is an insulating membrane layer surrounding myelinated axons in vertebrates, which is formed when the plasma membrane of an oligodendrocyte or a Schwann cell wraps itself around the axon. A large fraction of the total protein in this membrane layer is comprised of only a small number of individual proteins, which have certain intriguing structural properties. The myelin proteins are implicated in a number of neurological diseases, including, for example, autoimmune diseases and peripheral neuropathies. In this review, the structural properties of a number of myelin-specific proteins are described. Author’s address: Dr. Petri Kursula, Department of Biochemistry, University of Oulu, FIN-90014 Oulu, Finland  相似文献   

12.
Adult neural progenitor cells (NPC) co-grafted with fibroblasts replace cystic lesion defects and promote cell-contact-mediated axonal regeneration in the acutely injured spinal cord. Fibroblasts are required as a platform to maintain NPC within the lesion; however, they are suspected to create an inhospitable milieu for regenerating central nervous system (CNS) axons. Therefore, we thought to replace fibroblasts by primary Schwann cells, which might serve as a superior scaffold to maintain NPC within the lesion and might further enhance axon regrowth and remyelination following spinal cord injury. Adult rats underwent a cervical dorsal column transection immediately followed by transplantation of either NPC/Schwann cell or NPC/Schwann cell/fibroblast co-grafts. Animals receiving Schwann cell or fibroblast grafts alone, or Schwann cell/fibroblast co-grafts served as controls. At 3 weeks after injury/transplantation, histological analysis revealed that only fibroblast-containing grafts were able to replace the cystic lesion defect. In both co-cultures and co-grafts, Schwann cells and NPC were segregated. Almost all NPC migrated out of the graft into the adjacent host spinal cord. As a consequence, only peripheral-type myelin, but no CNS-type myelin, was detected within co-grafts containing NPC/Schwann cells. Corticospinal axon regeneration into Schwann-cell-containing co-grafts was reduced. Taken together, Schwann cells within NPC grafts contribute to remyelination. However, Schwann cells fail as a supporting platform to maintain NPC within the graft and impair CNS axon regeneration; this makes them an unfavorable candidate to support/augment NPC grafts following spinal cord injury.This work was supported by the Institute International de Recherche en Paraplégie Geneva, on behalf of an anonymous donation, and ReForM-Program, University of Regensburg, School of Medicine.  相似文献   

13.
Abstract: The myelin specific protein, P2, was localized immunocytochemically in electron micrographs of 4-day-old rat peripheral nerve by a preembedding technique. P2 staining was restricted to Schwann cells that had established a one-to-one relationship with an axon. P2 antiserum produced a diffuse staining throughout the entire cytosol of myelinating Schwann cells. In addition, the cytoplasmic side of Schwann cell plasma membranes and the membranes of cytoplasmic organelles that were exposed to cytosol were stained by P2 antiserum. This cytoplasmic localization of P2 protein is similar to that described for soluble or peripheral membrane proteins that are synthesized on free ribosomes. P2 antiserum stained the cytoplasmic side of Schwann cell membranes that formed single or multiple loose myelin spirals around an axon. In the region of the outer mesaxon, P2 antiserum stained the major dense line of compact myelin. These results demonstrate that P2 protein is located on the cytoplasmic side of compact myelin membranes and are consistent with biochemical studies demonstrating P2 to be a peripheral membrane protein.  相似文献   

14.
Signaling by laminins and axonal neuregulin has been implicated in regulating axon sorting by myelin-forming Schwann cells. However, the signal transduction mechanisms are unknown. Focal adhesion kinase (FAK) has been linked to alpha6beta1 integrin and ErbB receptor signaling, and we show that myelination by Schwann cells lacking FAK is severely impaired. Mutant Schwann cells could interdigitate between axon bundles, indicating that FAK signaling was not required for process extension. However, Schwann cell FAK was required to stimulate cell proliferation, suggesting that amyelination was caused by insufficient Schwann cells. ErbB2 receptor and AKT were robustly phosphorylated in mutant Schwann cells, indicating that neuregulin signaling from axons was unimpaired. These findings demonstrate the vital relationship between axon defasciculation and Schwann cell number and show the importance of FAK in regulating cell proliferation in the developing nervous system.  相似文献   

15.

Background

A major class of axon growth-repulsive molecules associated with CNS scar tissue is the family of chondroitin sulphate proteoglycans (CSPGs). Experimental spinal cord injury (SCI) has demonstrated rapid re-expression of CSPGs at and around the lesion site. The pharmacological digestion of CSPGs in such lesion models results in substantially enhanced axonal regeneration and a significant functional recovery. The potential therapeutic relevance of interfering with CSPG expression or function following experimental injuries seems clear, however, the spatio-temporal pattern of expression of individual members of the CSPG family following human spinal cord injury is only poorly defined. In the present correlative investigation, the expression pattern of CSPG family members NG2, neurocan, versican and phosphacan was studied in the human spinal cord.

Methods

An immunohistochemical investigation in post mortem samples of control and lesioned human spinal cords was performed. All patients with traumatic SCI had been clinically diagnosed as having "complete" injuries and presented lesions of the maceration type.

Results

In sections from control spinal cord, NG2 immunoreactivity was restricted to stellate-shaped cells corresponding to oligodendrocyte precursor cells. The distribution patterns of phosphacan, neurocan and versican in control human spinal cord parenchyma were similar, with a fine reticular pattern being observed in white matter (but also located in gray matter for phosphacan). Neurocan staining was also associated with blood vessel walls. Furthermore, phosphacan, neurocan and versican were present in the myelin sheaths of ventral and dorsal nerve roots axons. After human SCI, NG2 and phosphacan were both detected in the evolving astroglial scar. Neurocan and versican were detected exclusively in the lesion epicentre, being associated with infiltrating Schwann cells in the myelin sheaths of invading peripheral nerve fibres from lesioned dorsal roots.

Conclusion

NG2 and phosphacan were both present in the evolving astroglial scar and, therefore, might play an important role in the blockade of successful CNS regeneration. Neurocan and versican, however, were located at the lesion epicentre, associated with Schwann cell myelin on regenerating peripheral nerve fibres, a distribution that was unlikely to contribute to failed CNS axon regeneration. The present data points to the importance of such correlative investigations for demonstrating the clinical relevance of experimental data.  相似文献   

16.
During peripheral nerve development, each segment of a myelinated axon is matched with a single Schwann cell. Tight regulation of Schwann cell movement, proliferation and differentiation is essential to ensure that these glial cells properly associate with axons. ErbB receptors are required for Schwann cell migration, but the operative ligand and its mechanism of action have remained unknown. We demonstrate that zebrafish Neuregulin 1 (Nrg1) type III, which signals through ErbB receptors, controls Schwann cell migration in addition to its previously known roles in proliferation and myelination. Chimera analyses indicate that ErbB receptors are required in all migrating Schwann cells, and that Nrg1 type III is required in neurons for migration. Surprisingly, expression of the ligand in a few axons is sufficient to induce migration along a chimeric nerve constituted largely of nrg1 type III mutant axons. These studies also reveal a mechanism that allows Schwann cells to fasciculate axons regardless of nrg1 type III expression. Time-lapse imaging of transgenic embryos demonstrated that misexpression of human NRG1 type III results in ectopic Schwann cell migration, allowing them to aberrantly enter the central nervous system. These results demonstrate that Nrg1 type III is an essential signal that controls Schwann cell migration to ensure that these glia are present in the correct numbers and positions in developing nerves.  相似文献   

17.
Defective ensheathment of motoric nerves in the Splotch mutant mouse   总被引:3,自引:0,他引:3  
T Franz 《Acta anatomica》1990,138(3):246-253
Mouse embryos, homozygous for mutations at the Splotch locus, are afflicted with spina bifida and disturbances of neural-crest-derived tissues, e.g. spinal ganglia and pigment cells. The development of Schwann cells is affected in homozygotes to a varying degree along the rostrocaudal axis. In cervical motoric roots, nerves are associated with apparently normal Schwann cells. At the thoracic level, nerve-associated cells become more scarce and resemble the surrounding mesenchymal cells. They are not enveloped by a basal lamina and frequently show wide gaps between neighbouring cells. Lumbar motoric roots are mostly devoid of any associated cells. The Splotch mutant embryo is proposed to be a new animal model for the study of peripheral nerve ensheathment. The implications for Schwann-cell-mediated axon guidance are discussed.  相似文献   

18.
Autoradiographic studies combined with digestion tests of incorporated 3H-uridine showed that the peripheral nerve of Triturus contains ribonucleic acid. Localization studies revealed the presence of RNA in the axon, in the myelin and Schwann sheath, and in the Schwann cell body. Similar experiments on nerve separated by transection from its neuronal cell bodies yielded the same results. They showed that RNA of the nerve can be synthesized without the intervention of the neuronal cell body. The results strongly suggest that the radioactive substance, precursor or RNA, is transported inward from the Schwann cell to be deposited in the myelin sheath and axon. The route of passage and the possible sites of origin of the RNA in the nerve are discussed. A significant role is suggested for the Schmidt-Lantermann cleft because of its relations with the adaxonal layer of Schwann cytoplasm and with the myelin leaflets.  相似文献   

19.
A time-sequence study of the incorporation and distribution of cholesterol in peripheral nerve myelin was carried out by electron microscope autoradiography. [1,2-3H]Cholesterol was injected into 10-day old mice and the sciatic nerves were dissected out at 10, 20, 40, 60, 90, 120, and 180 min after the injection. 20 min after injection the higher densities of grains due to the presence of [3H]cholesterol were confined to the outer and inner edges of the myelin sheath. Practically no cholesterol was detected in the midzone of the myelin sheath. 1 ½ h after injection, cholesterol showed a wider distribution within the myelin sheath, the higher densities of grains occurring over the two peripheral myelin bands, each approximately 3,100 Å wide. Cholesterol was also present in the center of the myelin sheath but to a considerably lesser extent. 3 h after injection cholesterol appeared homogeneously distributed within the myelin sheath. Schwann cell and axon compartments were also labeled at each time interval studied beginning 20 min postinjection. These observations indicate that preformed cholesterol enters myelin first and almost simultaneously through the inner and outer edges of the sheath; only after 90 min does the density of labeled cholesterol in the central zone of myelin reach the same density as that in the outer and inner zones. These findings suggest that cholesterol used by the nerve fibers in the formation and maintenance of the myelin sheath enters the lamellae from the Schwann cell cytoplasm and from the axon. The possibility of a bidirectional movement of molecules, i.e. from the Schwann cell to the axon and from the axon to the Schwann cell through the myelin sheath, is noted. The results are discussed in the light of recent observations on the exchange, reutilization, and transaxonal movement of cholesterol.  相似文献   

20.
In peripheral nerves, Schwann cells form the myelin sheath that insulates axons and allows rapid propagation of action potentials. Although a number of regulators of Schwann cell development are known, the signaling pathways that control myelination are incompletely understood. In this study, we show that Gpr126 is essential for myelination and other aspects of peripheral nerve development in mammals. A mutation in Gpr126 causes a severe congenital hypomyelinating peripheral neuropathy in mice, and expression of differentiated Schwann cell markers, including Pou3f1, Egr2, myelin protein zero and myelin basic protein, is reduced. Ultrastructural studies of Gpr126-/- mice showed that axonal sorting by Schwann cells is delayed, Remak bundles (non-myelinating Schwann cells associated with small caliber axons) are not observed, and Schwann cells are ultimately arrested at the promyelinating stage. Additionally, ectopic perineurial fibroblasts form aberrant fascicles throughout the endoneurium of the mutant sciatic nerve. This analysis shows that Gpr126 is required for Schwann cell myelination in mammals, and defines new roles for Gpr126 in axonal sorting, formation of mature non-myelinating Schwann cells and organization of the perineurium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号