首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have used fluorescence lifetime imaging (FLIM) to study actin and plasma membrane dynamics in B16-F1 melanoma cells. In the absence of a FRET acceptor, significant changes in the fluorescence lifetime of GFP were induced simply by linking the fluorophore to different functional probes, including beta-actin, the PH domains of PLCdelta and Akt, the Ras farnesylation signal, and the neuromodulin palmitoylation signal (MEM). In contrast, the lifetime of GFP-actin was constant despite the many different local environments of G- and F-actin within the cell. Treatment with cytochalasin D but not latrunculin A significantly shortened the lifetime of GFP-beta-actin in the absence of a FRET acceptor. Robust lifetime shifts were observed using either a GFP-RFP chimera or co-transfection of GFP-MEM with RFP-MEM. In contrast to previous reports we observed a photobleaching-dependent change in the lifetime of GFP which could complicate the interpretation of FRET experiments. Of the membrane probes tested only the fluorescence lifetime of GFP-Akt was influenced by the presence of mRFP-actin, suggesting that the cortical actin meshwork is associated with a PIP3-enriched compartment of the plasma membrane. These results will aid in the design of new FRET-based approaches to study cytoskeletal interactions at the molecular level.  相似文献   

2.
Fluorescence lifetime imaging of calcium using Quin-2.   总被引:4,自引:0,他引:4  
We describe the use of a new imaging technology, fluorescence lifetime imaging (FLIM), for the imaging of the calcium concentrations based on the fluorescence lifetime of a calcium indicator. The fluorescence lifetime of Quin-2 is shown to be highly sensitive to [Ca2+]. We create two-dimensional lifetime images using the phase shift and modulation of the Quin-2 in response to intensity-modulated light. The two-dimensional phase and modulation values are obtained using a gain-modulated image intensifier and a slow-scan CCD camera. The lifetime values in the 2D image were verified using standard frequency-domain measurements. Importantly, the FLIM method does not require the probe to display shifts in the excitation or emission spectra, which may allow Ca2+ imaging using other Ca2+ probes not in current widespread use due to the lack of spectral shifts. Fluorescence lifetime imaging can be superior to stationary (steady-state) imaging because lifetimes are independent of the local probe concentration and/or intensity, and should thus be widely applicable to chemical imaging using fluorescence microscopy.  相似文献   

3.
The presence of lipid domains in cellular membranes and their characteristic features are still an issue of dividing discussion. Several recent studies implicate lipid domains in plasma membranes of mammalian cells as short lived and in the submicron range. Measuring the fluorescence lifetime of appropriate lipid analogues is a proper approach to detect domains with such properties. Here, the sensitivity of the fluorescence lifetime of1-palmitoyl-2-[6-[(7-nitro-2-1,3-benzoxadiazol-4-yl)amino]-hexanoyl]-sn-glycero-3-phospholipid (C6-NBD-phospholipid) analogues has been employed to characterize lipid domains in giant unilamellar vesicles (GUVs) and the plasma membrane of mammalian cells by fluorescence lifetime imaging (FLIM). Fluorescence decay of C6-NBD-phosphatidylcholine is characterized by a short and long lifetime. For GUVs forming microscopically visible lipid domains the longer lifetime in the liquid disordered (ld) and the liquid ordered (lo) phase was clearly distinct, being approximately 7 ns and 11 ns, respectively. Lifetimes were not sensitive to variation of cholesterol concentration of domain-forming GUVs indicating that the lipid composition and physical properties of those lipid domains are well defined entities. Even the existence of submicroscopic domains can be detected by FLIM as demonstrated for GUVs of palmitoyloleoyl phosphatidylcholine/N-palmitoyl-d-sphingomyelin/cholesterol mixtures. A broad distribution of the long lifetime was found for C6-NBD-phosphatidylcholine inserted in the plasma membrane of HepG2 and HeLa cells centered around 11 ns. FLIM studies on lipid domains forming giant vesicles derived from the plasma membrane of HeLa cells may suggest that a variety of submicroscopic lipid domains exists in the plasma membrane of intact cells.  相似文献   

4.
Detection of the fluorescent properties of Laurdan has been proven to be an efficient tool to investigate membrane packing and ordered lipid phases in model membranes and living cells. Traditionally the spectral shift of Laurdan’s emission from blue in the ordered lipid phase of the membrane (more rigid) toward green in the disordered lipid phase (more fluid) is quantified by the generalized polarization function. Here, we investigate the fluorescence lifetime of Laurdan at two different emission wavelengths and find that when the dipolar relaxation of Laurdan’s emission is spectrally isolated, analysis of the fluorescence decay can distinguish changes in membrane fluidity from changes in cholesterol content. Using the phasor representation to analyze changes in Laurdan’s fluorescence lifetime we obtain two different phasor trajectories for changes in polarity versus changes in cholesterol content. This gives us the ability to resolve in vivo membranes with different properties such as water content and cholesterol content and thus perform a more comprehensive analysis of cell membrane heterogeneity. We demonstrate this analysis in NIH3T3 cells using Laurdan as a biosensor to monitor changes in the membrane water content during cell migration.  相似文献   

5.
We applied fluorescence lifetime imaging microscopy to map the microenvironment of the myosin essential light chain (ELC) in permeabilized skeletal muscle fibers. Four ELC mutants containing a single cysteine residue at different positions in the C-terminal half of the protein (ELC-127, ELC-142, ELC-160, and ELC-180) were generated by site-directed mutagenesis, labeled with 7-diethylamino-3-((((2-iodoacetamido)ethyl)amino)carbonyl)coumarin, and introduced into permeabilized rabbit psoas fibers. Binding to the myosin heavy chain was associated with a large conformational change in the ELC. When the fibers were moved from relaxation to rigor, the fluorescence lifetime increased for all label positions. However, when 1% stretch was applied to the rigor fibers, the lifetime decreased for ELC-127 and ELC-180 but did not change for ELC-142 and ELC-160. The differential change of fluorescence lifetime demonstrates the shift in position of the C-terminal domain of ELC with respect to the heavy chain and reveals specific locations in the lever arm region sensitive to the mechanical strain propagating from the actin-binding site to the lever arm.  相似文献   

6.
Membranes of living cells are characterized by laser-assisted fluorescence microscopy, in particular a combination of microspectrofluorometry, total internal reflection fluorescence microscopy (TIRFM), fluorescence lifetime imaging (FLIM) and Forster resonance energy transfer (FRET) spectroscopy. The generalized polarization (GP, characterizing a spectral shift which depends on the phase of membrane lipids) as well as the effective fluorescence lifetime (tau(eff)) of the membrane marker laurdan were revealed to be appropriate parameters for membrane stiffness and fluidity. GP decreased with temperature, but increased during cell growth and was always higher for the plasma membrane than for intracellular membranes. Microdomains of different fluorescence lifetimes tau(eff) were observed at temperatures above 30 degree C and disappeared during cell aging. Non-radiative energy transfer was used to detect laurdan selectively in close proximity to a molecular acceptor (DiI) and may present a possibility for measuring membrane dynamics in specific microenvironments.  相似文献   

7.
We have monitored the membrane-bound channel and nonchannel conformations of gramicidin utilizing red-edge excitation shift (REES), and related fluorescence parameters. In particular, we have used fluorescence lifetime, polarization, quenching, chemical modification, and membrane penetration depth analysis in addition to REES measurements to distinguish these two conformations. Our results show that REES of gramicidin tryptophans can be effectively used to distinguish conformations of membrane-bound gramicidin. The interfacially localized tryptophans in the channel conformation display REES of 7 nm whereas the tryptophans in the nonchannel conformation exhibit REES of 2 nm which highlights the difference in their average environments in terms of localization in the membrane. This is supported by tryptophan penetration depth measurements using the parallax method and fluorescence lifetime and polarization measurements. Further differences in the average tryptophan microenvironments in the two conformations are brought out by fluorescence quenching experiments using acrylamide and chemical modification of the tryptophans by N-bromosuccinimide. In summary, we report novel fluorescence-based approaches to monitor conformations of this important ion channel peptide. Our results offer vital information on the organization and dynamics of the functionally important tryptophan residues in gramicidin.  相似文献   

8.
Clathrin-coated vesicles carry traffic from the plasma membrane to endosomes. We report here the first real-time visualization of cargo sorting and endocytosis by clathrin-coated pits in living cells. We have visualized the formation of coats by monitoring the incorporation of fluorescently tagged clathrin or its adaptor AP-2 (adaptor protein 2), and have followed clathrin-mediated uptake of transferrin, single LDL (low-density lipoprotein) and single reovirus particles. The intensity of a cargo-loaded clathrin cluster grows steadily during its lifetime, and the time required to complete assembly is proportional to the size of the cargo particle. These results are consistent with a nucleation-growth mechanism and an approximately constant growth rate. There are no preferred nucleation sites. A proportion of the nucleation events appear to be abortive. Cargo incorporation occurs primarily or exclusively in a newly formed coated pit, and loading appears to commit that pit to finish assembly. Our data led to a model in which coated pits initiate randomly, but collapse with high likelihood unless stabilized, presumably by cargo capture.  相似文献   

9.
BACKGROUND: Wide-field frequency-domain fluorescence lifetime imaging microscopy (FLIM) is an established technique to determine fluorescence lifetimes. Disadvantage of wide-field imaging is that measurements are compromised by out-of-focus blur. Conventional scanning confocal typically means long acquisition times and more photo bleaching. An alternative is spinning-disc confocal whereby samples are scanned simultaneously by thousands of pinholes, resulting in a virtually instantaneous image with more than tenfold reduced photo bleaching. METHODS: A spinning disc unit was integrated into an existing FLIM system. Measurements were made of fluorescent beads with a lifetime of 2.2 ns against a 5.3 ns fluorescent background outside the focal plane. In addition, living HeLa cells were imaged with different lifetimes in the cytosol and the plasma membrane. RESULTS: In spinning-disc mode, a lifetime of the beads of 2.8 ns was measured, whereas in wide field a lifetime of 4.1 ns was measured. Lifetime contrast within living HeLa cells could be resolved with the spinning-disc unit, where this was impossible in wide field. CONCLUSIONS: Integration of a spinning-disc unit into a frequency-domain FLIM instrument considerably reduces artifacts, while maintaining the advantages of wide field. For FLIM on objects with 3D lifetime structure, spinning-disc is by far preferable over wide-field measurements.  相似文献   

10.
The function of membrane receptors in the nervous system depends on physicochemical characteristics of neuronal membranes such as membrane order and phase. In this work, we have monitored the changes in hippocampal membrane order and related parameters by cholesterol and protein content utilizing a Nile Red-based phase-sensitive fluorescent membrane probe NR12S. Since alteration of membrane cholesterol is often associated with membrane phase change, the phase-sensitive nature of NR12S fluorescence becomes useful in these experiments. Our results show that fluorescence spectroscopic parameters such as emission maximum, anisotropy, and lifetime of NR12S display characteristic dependence on membrane cholesterol content. Interestingly, cholesterol-dependent red edge excitation shift is displayed by NR12S under these conditions. Hippocampal membranes exhibited reduction in liquid-ordered phase upon cholesterol depletion. These results provide insight into changes in hippocampal membrane order in the overall context of cholesterol and protein modulation.  相似文献   

11.
The discovery that the lipids constituting the plasma membrane are not randomly distributed, but instead are able to form laterally segregated lipid domains with different properties has given hints how the formation of such lipid domains influences and regulates many processes occurring at the plasma membrane. While in model systems these lipid domains can be easily accessed and their properties studied, it is still challenging to determine the properties of cholesterol rich lipid domains, the so called “Rafts”, in the plasma membrane of living cells due to their small size and transient nature. One promising technique to address such issues is fluorescence lifetime imaging (FLIM) microscopy, as spatially resolved images make the visualization of the lateral lipid distribution possible, while at the same time the fluorescence lifetime of a membrane probe yields information about the bilayer structure and organization of the lipids in lipid domains and various properties like preferential protein-protein interactions or the enrichment of membrane probes. This review aims to give an overview of the techniques underlying FLIM probes which can be applied to investigate the formation of lipid domains and their respective properties in model membrane and biological systems. Also a short technical introduction into the techniques of a FLIM microscope is given.  相似文献   

12.
BACKGROUND: The programmable array microscopes (PAMs) are a family of instruments incorporating arbitrary control of the patterns of illumination and/or detection. The PAM can be used in sectioning and nonsectioning modes, thereby constituting a useful platform for fluorescence lifetime imaging. METHODS AND RESULTS: We used a PAM for acquisition of optically sectioned and widefield fluorescence lifetime images, in which contrast was increased predominantly by suppressing out-of-focus light contributions. We simulate, display, and discuss the effects of blurring and fluorophore heterogeneity on lifetime imaging in widefield and confocal configurations. CONCLUSION: Sectioning improves the quality of lifetime images of samples with multiple fluorophores or spatially varying F?rster resonance energy transfer.  相似文献   

13.
The organization and dynamics of the hydrophobic fluorescent probe Nile Red incorporated in DOPC vesicles containing varying amounts of cholesterol has been monitored utilizing fluorescence-based approaches which include the red edge excitation shift (REES) approach and the parallax method for depth determination. Our results show that the fluorescence emission maximum, intensity, polarization, and lifetime of Nile Red vary with the cholesterol content of the membrane. Interestingly, Nile Red exhibits significant REES independent of the presence of cholesterol. This indicates that Nile Red is localized in a motionally restricted environment in the membrane. This is supported by analysis of membrane penetration depth of Nile Red using the parallax method which points out to a membrane interfacial localization of Nile Red. These results could be useful in analyzing membrane organization and heterogeneity in natural membranes using Nile Red.  相似文献   

14.
The organization and dynamics of the hydrophobic fluorescent probe Nile Red incorporated in DOPC vesicles containing varying amounts of cholesterol has been monitored utilizing fluorescence-based approaches which include the red edge excitation shift (REES) approach and the parallax method for depth determination. Our results show that the fluorescence emission maximum, intensity, polarization, and lifetime of Nile Red vary with the cholesterol content of the membrane. Interestingly, Nile Red exhibits significant REES independent of the presence of cholesterol. This indicates that Nile Red is localized in a motionally restricted environment in the membrane. This is supported by analysis of membrane penetration depth of Nile Red using the parallax method which points out to a membrane interfacial localization of Nile Red. These results could be useful in analyzing membrane organization and heterogeneity in natural membranes using Nile Red.  相似文献   

15.
We describe a new fluorescence imaging methodology in which the image contrast is derived from the fluorescence lifetime at each point in a two-dimensional image and not the local concentration and/or intensity of the fluorophore. In the present apparatus, lifetime images are created from a series of images obtained with a gain-modulated image intensifier. The frequency of gain modulation is at the light-modulation frequency (or a harmonic thereof), resulting in homodyne phase-sensitive images. These stationary phase-sensitive images are collected using a slow-scan CCD camera. A series of such images, obtained with various phase shifts of the gain-modulation signal, is used to determine the phase angle and/or modulation of the emission at each pixel, which is in essence the phase or modulation lifetime image. An advantage of this method is that pixel-to-pixel scanning is not required to obtain the images, as the information from all pixels is obtained at the same time. The method has been experimentally verified by creating lifetime images of standard fluorophores with known lifetimes, ranging from 1 to 10 ns. As an example of biochemical imaging we created life-time images of Yt-base when quenched by acrylamide, as a model for a fluorophore in distinct environments that affect its decay time. Additionally, we describe a faster imaging procedure that allows images in which a specific decay time is suppressed to be calculated, allowing rapid visualization of unique features and/or regions with distinct decay times. The concepts and methodologies of fluorescence lifetime imaging (FLIM) have numerous potential applications in the biosciences. Fluorescence lifetimes are known to be sensitive to numerous chemical and physical factors such as pH, oxygen, temperature, cations, polarity, and binding to macromolecules. Hence the FLIM method allows chemical or physical imaging of macroscopic and microscopic samples.  相似文献   

16.
In this article, a fluorescence lifetime imaging system for small animals is presented. Data were collected by scanning a region of interest with a measurement head, a linear fiber array with fixed separations between a single source fiber and several detection fibers. The goal was to localize tumors and monitor their progression using specific fluorescent markers. We chose a near-infrared contrast agent, Alexa Fluor 750 (Invitrogen Corp., Carlsbad, CA). Preliminary results show that the fluorescence lifetime for this dye was sensitive to the immediate environment of the fluorophore (in particular, pH), making it a promising candidate for reporting physiologic changes around a fluorophore. To quantify the intrinsic lifetime of deeply embedded fluorophores, we performed phantom experiments to investigate the contribution of photon migration effects on observed lifetime by calculating the fluorescence intensity decay time. A previously proposed theoretical model of migration, based on random walk theory, is also substantiated by new experimental data. The developed experimental system has been used for in vivo mouse imaging with Alexa Fluor 750 contrast agent conjugated to tumor-specific antibodies (trastuzumab [Herceptin]). Three-dimensional mapping of the fluorescence lifetime indicates lower lifetime values in superficial breast cancer tumors in mice.  相似文献   

17.
The kinetics of water exchange across the membrane of class II chloroplasts has been studied by two NMR methods. Both methods utilize Dy(en)3+ (en = ethylenediamine) to induce a transmembranal chemical shift the order of 40 Hz in the water proton resonance. The shift reagent is impermeant to the chloroplast membrane, inert as a redox reagent, soluble at millimolar concentrations at neutral pH, and associated with a large, virtually temperature independent molar shift (0.10-0.12 ppm/mM). Water exchange across the membrane is monitored by two independent experiments. In the first, chemical exchange causes line broadening in the water proton resonance in the high-resolution spectrum. Measurement of the incremental linewidth as a function of transmembranal chemical shift determines the exchange kinetics as well as the fractions of water protons in internal and external media. In the second experiment, chemical exchange causes the transverse relaxation time, as measured by the Carr-Purcell-Gill-Meiboom technique, to be dependent on the 180 degree pulse spacing. The two experiments, while independent of each other, depend on the same set of theoretical parameters. These parameters are overdetermined by simultaneous analysis of both experiments. The mean lifetime of a water proton in the inner thylakoid space is found to be 1.1 +/- 0.8 ms at 25 degrees C and 2.75 +/- 0.4 ms at 3 degrees C in NH2OH/EDTA-treated chloroplasts. Values derived from dark-adapted chloroplasts that are active with respect to oxygen evolution are 1.1 +/- 0.3 ms (25 degrees C) and 1.75 +/- 0.4 ms (3 degrees C). The internal thylakoid volume is also determined in principle by the data, but uncertainties in the membrane volume and the transmembranal chemical shift severely limits the accuracy of this measurement.  相似文献   

18.
Lipid rafts in the plasma membrane, domains rich in cholesterol and sphingolipids, have been implicated in a number of important membrane functions. Detergent insolubility has been used to define membrane “rafts” biochemically. However, such an approach does not directly contribute to the understanding of the size and the lifetime of rafts, dynamics of the raft-constituent molecules, and the function of rafts in the membrane in situ. To address these issues, we have developed pulse EPR spin labeling and single molecule tracking optical techniques for studies of rafts in both artificial and cell membranes. In this review, we summarize our results and perspectives obtained by using these methods. We emphasize the importance of clearly distinguishing small/unstable rafts (lifetime shorter than a millisecond) in unstimulated cells and stabilized rafts induced by liganded and oligomerized (GPI-anchored) receptor molecules (core receptor rafts, lifetime over a few minutes). We propose that these stabilized rafts further induce temporal, greater rafts (signaling rafts, lifetime on the order of a second) for signaling by coalescing other small/unstable rafts, including those in the inner leaflet of the membrane, each containing perhaps one molecule of the downstream effector molecules. At variance with the general view, we emphasize the importance of cholesterol segregation from the liquid-crystalline unsaturated bulk-phase membrane for formation of the rafts, rather than the affinity of cholesterol and saturated alkyl chains. In the binary mixture of cholesterol and an unsaturated phospholipid, cholesterol is segregated out from the bulk unsaturated liquid-crystalline phase, forming cholesterol-enriched domains or clustered cholesterol domains, probably due to the lateral nonconformability between the rigid planar transfused ring structure of cholesterol and the rigid bend of the unsaturated alkyl chain at C9-C10. However, such cholesterol-rich domains are small, perhaps consisting of only several cholesterol molecules, and are short-lived, on the order of 1-100 ns. We speculate that these cholesterol-enriched domains may be stabilized by the presence of saturated alkyl chains of sphingomyelin or glycosphingolipids, and also by clustered raft proteins. In the influenza viral membrane, one of the simplest forms of a biological membrane, the lifetime of a protein and cholesterol-rich domain was evaluated to be on the order of 100 μs, again showing the short lifetime of rafts in an unstimulated state. Finally, we propose a thermal Lego model for rafts as the basic building blocks for signaling pathways in the plasma membrane.  相似文献   

19.
Lipid rafts in the plasma membrane, domains rich in cholesterol and sphingolipids, have been implicated in a number of important membrane functions. Detergent insolubility has been used to define membrane "rafts" biochemically. However, such an approach does not directly contribute to the understanding of the size and the lifetime of rafts, dynamics of the raft-constituent molecules, and the function of rafts in the membrane in situ. To address these issues, we have developed pulse EPR spin labeling and single molecule tracking optical techniques for studies of rafts in both artificial and cell membranes. In this review, we summarize our results and perspectives obtained by using these methods. We emphasize the importance of clearly distinguishing small/unstable rafts (lifetime shorter than a millisecond) in unstimulated cells and stabilized rafts induced by liganded and oligomerized (GPI-anchored) receptor molecules (core receptor rafts, lifetime over a few minutes). We propose that these stabilized rafts further induce temporal, greater rafts (signaling rafts, lifetime on the order of a second) for signaling by coalescing other small/unstable rafts, including those in the inner leaflet of the membrane, each containing perhaps one molecule of the downstream effector molecules. At variance with the general view, we emphasize the importance of cholesterol segregation from the liquid-crystalline unsaturated bulk-phase membrane for formation of the rafts, rather than the affinity of cholesterol and saturated alkyl chains. In the binary mixture of cholesterol and an unsaturated phospholipid, cholesterol is segregated out from the bulk unsaturated liquid-crystalline phase, forming cholesterol-enriched domains or clustered cholesterol domains, probably due to the lateral nonconformability between the rigid planar transfused ring structure of cholesterol and the rigid bend of the unsaturated alkyl chain at C9-C10. However, such cholesterol-rich domains are small, perhaps consisting of only several cholesterol molecules, and are short-lived, on the order of 1-100 ns. We speculate that these cholesterol-enriched domains may be stabilized by the presence of saturated alkyl chains of sphingomyelin or glycosphingolipids, and also by clustered raft proteins. In the influenza viral membrane, one of the simplest forms of a biological membrane, the lifetime of a protein and cholesterol-rich domain was evaluated to be on the order of 100 micro, again showing the short lifetime of rafts in an unstimulated state. Finally, we propose a thermal Lego model for rafts as the basic building blocks for signaling pathways in the plasma membrane.  相似文献   

20.
We propose an excitation technique for observing single and two photon excitation in those molecules for which such transitions are forbidden by the selection rules. This is possible by the application of an external electric field that perturbs the molecular orbitals, thereby resulting in a significant shift of energy levels. Such a shift of energy levels may bring those levels in resonance with the radiation field which is normally forbidden by selection rules. Further, parity of the these states may significantly improve the emission process. The external electric field results in the mixing of excited (short lifetime) and metastable states (long lifetime), thus reducing the lifetime of metastable (or near metastable) states. This may provide an effective channel for allowing transition from the metastable states. An application of electric field may result in the excitation of poorly excitable biomolecules. This excitation technique may find applications in single- and multi-photon fluorescence microscopy, bioimaging and optical devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号