首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Defining root death in studies of root dynamics is problematic because cell death occurs gradually and the resulting effects on root function are not well understood. In this study, metabolic activity of grape roots of different ages was assessed by excised root respiration and tetrazolium chloride reduction. We investigated changes in metabolic activity and patterns of cell death occurring with root age and changes in root pigmentation. Tetrazolium chloride reduction of roots of different ages was strongly correlated to respiration ( R 2 = 0.786). As roots aged, respiration and tetrazolium chloride reduction declined similarly, with minimum metabolic activity reached at six weeks. Tetrazolium chloride reduction indicated that the onset of root browning corresponded to a 77% reduction in metabolic activity ( P < 0.001). Anatomical examination of roots at each pigmentation stage showed that even though some cells in brown roots were still alive, these roots were functionally dead. The effect of using different definitions of root death in relation to root survivorship was determined in a study of 'Concord' grapes with two pruning treatments, using three criteria for root death: browning, blackening or shriveling, and disappearance. There was no effect of vine pruning on root life span when life span was defined as the time from first appearance to the onset of browning. However, if death was judged as the point when roots either became black or shriveled or disappeared, vine pruning decreased root life span by 34% and 40%, respectively ( P < 0.001), and also increased the decay constant for root decomposition by about 45% ( P < 0.001). We conclude that the discrepancy among determinations of root life span assessed with different definitions of death might be partly caused by the latter evaluations of root life span incorporating a portion of root decomposition in definitions of root death.  相似文献   

2.
Root growth and water uptake during water deficit and recovering in wheat   总被引:31,自引:0,他引:31  
Asseng  S.  Ritchie  J.T.  Smucker  A.J.M.  Robertson  M.J. 《Plant and Soil》1998,201(2):265-273
Root growth and soil water content were measured in a field experiment with wheat subjected to two periods of water deficit. The first period was induced early in the season between the early vegetative stage (22 DAS) and late terminal spikelet (50 DAS), the second period at mid-season between terminal spikelet (42 DAS) and anthesis (74 DAS). Total root growth was reduced under water deficit by a reduction in the top 30 cm, while the root system continued to grow in the deeper soil profile between 30 and 60 cm. Shortly after rewatering, the growth pattern reverted to fastest root growth rates in the shallow soil layers. In relative terms, the total root system increased in relation to the above ground dry matter under water shortage. The early-, the mid-season water deficit treatments, and the control treatment had total root length of 27.4, 19.4 and 30.6 km m-2, respectively, about 2 wk before maturity. Evapotranspiration declined under water deficit, but water uptake in deeper layers increased. Water uptake per unit root length was reduced with water deficit and was still low shortly after rewatering. Remarkable was the increase in water uptake at 2–3 weeks after rewatering, both deficit treatments exceeded the control by almost 100%. This increase in water uptake followed the burst of new root growth in the upper regions of the soil. However, water uptake rates subsequently declined towards maturity, being between 0.15 L km-1 d-1 and 0.17 L km-1 d-1 for the early and mid-season water deficit treatments, slightly higher than the control, 0.12 L km-1 d-1. The results showed that the crop subjected to early water deficit could compensate for some of the reductions in root growth during subsequent rewatering, but the impact of the mid-season water deficit treatment was more severe and permanent.  相似文献   

3.
Root competition for phosphate (P) in the field was calculated with maize i) as singly grown plants, ii) in pure cropping and iii) in mixed cropping with lupin. The experimentally determined parameters used for this purpose were thein situ root-distance pattern as registered by autoradiography and the P-depletion cylinder around a maize root as determined autoradiographically under radial diffusional flow. The results do not indicate any competition for P between roots of adjacently grown plants in either pure or mixed cropping. On the other hand, the P-depletion cylinders of approximately one third of the roots of an individual maize plant were found to overlap. However, when allowance was made for the concentration gradients within a depletion cylinder, the actual competition for phosphate was less than 1%.  相似文献   

4.
Smith  D.M.  Jackson  N.A.  Roberts  J.M.  Ong  C.K. 《Plant and Soil》1999,211(2):191-205
Limited knowledge of root distributions in agroforestry systems has resulted in assumptions that various tree species are more suited to agroforestry than others, because they are presumed to have few superficial lateral roots. This assumption was tested for Grevillea robusta when grown with maize (Zea mays) in an agroforestry system in a semi-arid region of Kenya. At a site with a shallow soil, root lengths of both species between the soil surface and bedrock were quantified by soil coring, at intervals over four cropping seasons, in plots containing sole stands and mixtures of the trees and crop; the trees were 4–6 years old and they were severely pruned before the third season. Profiles of soil water content were measured using a neutron probe. Prior to pruning of the trees, recharge of soil water below the deepest maize roots did not occur, resulting in significant (P<0.05) suppression of maize root lengths and downward root growth. Maximum root length densities for both species occurred at the top of the soil profile, reaching 1.1–1.7 cm cm-3 for G. robusta, but only 0.5 cm cm-3 for maize grown with trees. Root populations in mixed plots were dominated by G. robusta at all times, all depths and all distances from trees and maize and, thus, there was no spatial separation of the rooting zones of the trees and crop. Competition between G. robusta and maize for soil water stored near the surface was unavoidable, although pruning reduced its impact; complementary use of water by the trees and crop would only have been possible if alternative sources of water were available. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
为探求林木幼苗生物量分配和根系生长对空气断根的响应,以侧柏(Platycladus Orientalis)实生苗为材料,设置空气断根(T)和不断根(CK)处理,研究了空气断根10、30 d和50 d后对侧柏生物量、根系形态特征及吸收面积的影响。结果表明:(1)T处理的侧柏幼苗地上生物量、根生物量、总生物量、根长、根表面积、根体积及根尖数在断根10、30 d和50 d后均大于CK,且显著扩大了根系总吸收面积和活跃吸收面积。(2)空气断根显著影响了侧柏实生苗的生物量分配格局,其根冠比在整个试验阶段呈先增大后减小的趋势,而CK逐渐减小。(3)两种处理的侧柏幼苗根系直径集中在0-0.5 mm。与CK相比,T处理侧柏随空气断根时间延长,单株根系直径在0-0.5 mm的根数量急剧增多,占总根尖数的79%,根平均长度、根表面积、根体积和根尖数显著增大。(4)生物量参数和根形态参数之间关系密切。根生物量与地上生物量及总生物量呈显著正相关(P0.05)。除根系平均直径外,根生物量、地上生物量和总生物量分别与根长、根表面积、根体积、根尖数呈显著正相关,根冠比与地上生物量呈负相关。因此,空气断根有效改善了侧柏幼苗的根系形态特征,提高了吸收面积,显著促进侧柏实生苗在生长早期快速发育。  相似文献   

6.
The minirhizotron technique has been used to study root development in a salt marsh in the western part of the Nationalpark Niedersächsisches Wattenmeer during a three-year period. The objective of our study was to evaluate root depth distribution and seasonal changes in growth activities of natural plant root systems. Root number was counted at monthly intervals in the top soil layer (0–0.2 m) for every 2 cm soil depth. The number of roots was regarded as an easily detectable parameter reflecting root growth and decay.In general, highest rooting intensity was found in the soil's subsurface layer (0–0.08 m). The number of roots significantly decreased in deeper horizons of the soil. There was also a significant increase and decrease in the number of roots in the course of a year. The highest rooting intensity was found in late winter to early spring, which substantially decreased towards mid summer when the plants were in their reproductive phase. The data indicate that there is a clear seasonal pattern of root growth of salt marsh species.  相似文献   

7.
8.
Pruning or total removal of in vitro formed roots of grape (Vitis vinifera L.) plantlets at planting offered considerable ease and time economy compared to control plantlets with intact roots. The ex vitro establishment was unaffected by the practice with 90% or higher establishment in each treatment. When observed at 4 weeks from planting, growth was slightly affected by root pruning and significantly by root removal. However, both these treatments showed better adventitious root regeneration at the base compared to control plants, which showed elongation of in vitro formed roots with fewer new roots. Root pruning and root removal treatments reduced the influence of the number of in vitro formed roots on vigour of ex vitro plants since the number of new roots formed was independent of the roots initially present. Consequently, these plants showed more uniformity compared to control plants. With a better root system, root pruned plants showed faster subsequent growth. Root pruning at planting is recommended for easier handling and more uniform plants. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
马守臣  徐炳成  李凤民  黄占斌 《生态学报》2008,28(12):6172-6179
通过田间试验研究了不同时期根修剪处理对冬小麦(Triticum aestivum)根系大小与分布、根系效率、水分利用效率及产量形成的影响。设置4个根修剪处理:越冬期小剪根(WS)、越冬期大剪根(WB),返青期小剪根(GS)、返青期大剪根(GB),未剪根小麦作为对照(CK)。结果表明,到花期时,各根修剪处理小麦的在0~120cm总根量均显著小于对照。与对照相比各根修剪处理主要是显著地减少了上层土壤中的根量。但WS和GS两小剪根处理和对照相比在中层土壤中有较大的根量;花后各处理小麦旗叶的气孔导度和蒸腾速率均显著大于对照。这说明根修剪处理减少了小麦表层的根量,从而削弱了表土干旱信号对作物与外界气体交换的抑制作用。花期时各根修剪小麦的净光合速率均显著高于对照,而单位面积上的根呼吸速率均显著小于对照,根修剪处理提高了小麦的根系效率,使更多的光合产物用于籽粒生产,从而提高了小麦的收获指数。根修剪还提高了小麦的水分利用效率,其中WS、WB、GS处理的水分利用效率显著高于对照。但是GB处理的水分利用效率却没有显著提高。因此,本研究进一步证明了由不同年代品种得到的推测,认为在旱地农业中,通过遗传育种或采用适当农艺措施优化根系分布,既可以减少生长前期作物对水分的过度消耗,又能够削弱花后表土过度干旱对作物生长抑制作用,同时降低根系对同化产物的消耗,对作物产量及水分利用效率的提高具有积极的作用。  相似文献   

10.
The development of alley cropping systems is based on the assumption that leguminous trees planted in hedgerows influence the yield of associated crops favourably by means of the additional nutrient pool applied to the soil through tree prunings. An on-station field study (split-plot design in a randomised block design) was conducted on an Eutric Cambisol under humid premontane climate conditions in Costa Rica in order to evaluate the ability of Erythrina poeppigiana, Calliandra calothyrsus and Gliricidia sepium to increase bean (Phaseolus vulgaris) yields compared to sole cropping. Soil tillage was applied as a sub-treatment in order to evaluate if soil preparation would additionally alter soil fertility and bean yield. After seven years with pruning twice per year, the size of both the total N and P pool in the pruned tree material was about three times higher for Erythrina prunings than for Calliandra and Gliricidia prunings. Two and five weeks after mulch application 50–150% higher inorganic N pools were measured in the soil from Erythrina plots, the bean shoot biomass at harvest was increased by 65–100% and the bean yield was 15–50% higher than in plots with beans alone. Hence, of the three tree species, Erythrina was the best choice for alley cropping systems in the pedoclimatic environment studied. Soil tillage reduced bean yield, soil organic matter, total soil N content and soil microbial biomass N in the top soil and is not recommended for similar soils in humid premontane climates.  相似文献   

11.
Joslin  J. Devereux  Wolfe  Mark H. 《Plant and Soil》1998,204(2):165-174
In order to examine the below ground response of a mature upland hardwood forest in the southeastern U.S., to increases and decreases in water inputs, the gross production, mortality, and net production of fine roots were examined over the first and third years of a long-term water manipulation experiment (Throughfall Displacement Experiment). Treatments involved a 33% decrease (DRY), 33% increase (WET), and ambient (AMB) levels of throughfall to the forest floor, begun in July, 1993. Video images of roots appearing on minirhizotron faces installed on both upper and lower slopes were recorded biweekly to a depth of 90 cm from April through October of 1994 and of 1996. Comparisons were made between treatments in amounts of new root elongation, root mortality, and calculated net root production. Minirhizotron observations during 1994 growing season, immediately following winter 1994 installation, revealed a strong effect of installation disturbance and were therefore not considered valid reflections of the response of the stand to the treatments. The 1996 data, on the other hand, exhibited absence of installation biases inherent in 1994 data because of a longer period since treatment initiation (2 2/3 yr vs. 8 mths), and favorable root growth conditions in all treatments during a greater portion of the year. The 1996 data were, therefore, considered realistic measures of below ground treatment responses. During 1996, net root production at 0-30 cm depth, at the upper slope positions, was significantly greater in DRY than in WET and AMB. Net root production was also greater at the lower slope position, but not significantly so. Treatment differences were the result of gross root production, as patterns of mortality did not differ across treatments. Nor were there significant treatment differences at depths below 30 cm. Whether trees in DRY produced more roots to replace root biomass lost during a previous drought year, or whether a new root:shoot ratio was beginning to develop in response to treatments, will require observations from the response of the stand in future years to be determined.  相似文献   

12.
在土柱栽培条件下研究膜下滴灌土壤深层水对棉花根系生长的影响及与植株地上部生长的关系,设置土壤(60~120 cm)有深层水和无深层水2个处理,每处理设2个生育期间灌溉处理,分别为田间持水量70%和55%.结果表明:棉花总根质量密度、40~120 cm土层根长密度、根系活力等与地上部干质量间均具有显著的相关关系.生育期间耕层70%田间持水量条件下,土壤有深层水处理的总根质量密度与无深层水处理无明显差异,但40~120 cm土层的根长密度增加,根系活力增强,提高了土壤贮备水消耗量,增加了地上部干质量,最终获得较高的经济产量及水分利用效率.土壤有深层水条件下,生育期间耕层55%田间持水量处理的根冠比较大,40~120 cm土层根长密度和80~120 cm土层根系活力相对较高,土壤贮备水消耗量大幅提高,但仍无法弥补生育期间水分亏缺对根系及地上部生物量造成的负面影响,导致经济产量显著低于70%田间持水量处理.综上,充足的土壤深层水配合生育期间耕层65%~75%田间持水量,可促进棉花根系向下生长,有利于实现膜下滴灌棉花节水高产高效生产.  相似文献   

13.
Aims Root interactions between neighbour plants represent a fundamental aspect of the competitive dynamics in pure stand and mixed cropping systems. The comprehension of such phenomena places big methodological challenges, and still needs clarification. The objectives of this work were (i) to test if a species with coloured roots can be used to examine the interaction in a legume-non-legume intercropping system; (ii) to verify the importance of initial root growth on the successive root development of mixture component plants; (iii) to test if the root interaction in the shallow layers has consequences for deep root growth and (iv) to compare the effect of intraspecific and interspecific competition on root development and biomass growth.Methods A detailed study on root growth and interaction was carried out using rhizotron tubes where two legume species were grown in pure stands or were intercropped with red beet, a variety of Beta vulgaris L. with clear red roots. Within the rhizotrons, the three species were grown either without competitors, with two plants of the same species to measure intraspecific competition or with one legume and one red beet plant to study interspecific competition. The use of mixtures where one component has clearly coloured roots, together with several scalar measurements of root depth and proliferation, allowed the measurement of the root system of each species when grown in the mixtures.Important findings The use of rhizotron tubes coupled with species with coloured roots represented a valuable method to study the belowground interaction in mixed cropping systems. The initial root growth was a very important feature for the subsequent dominance of a species and it was not related to seed dimension. Initial root growth was also important because the root interactions in the shallower soil layers were found to influence the root growth in deeper soil. The root system of the red beet showed much faster and deeper growth than that of the legumes, and made red beet the dominant component in the mixtures while the legume root system was confined to the shallower soil layer. Intraspecific competition was well tolerated by the legumes, but it was limiting for the highly competitive red beet. The outcome of root interaction between neighbour plants was confirmed to be species-specific as it changed according to the intensity of the competitive effect/response of each species of the mixture: both legumes were slightly affected by the intraspecific and highly affected by interspecific competition while red beet was more affected by intraspecific competition but strongly dominant when intercropped with legumes.  相似文献   

14.
15.
Root production and turnover were studied using sequential core sampling and observations in permanent minirhizotrons in the field in three dry heathland stands dominated by the evergreen dwarfshrub Calluna vulgaris and the grasses Deschampsia flexuosa and Molinia caerulea, respectively. Root biomass production, estimated by core sampling, amounted to 160 (Calluna), 180 (Deschampsia) and 1380 (Molinia) g m-2 yr-1, respectively. Root biomass turnover rate in Calluna (0.64 yr-1) was lower compared with the grasses (Deschampsia: 0.96 yr-1; Molinia 1.68yr-1)). Root length turnover rate was 0.75–0.77 yr-1 (Deschampsia) and 1.17–1.49 yr-1 (Molinia), respectively. No resorption of N and P from senescing roots was observed in either species. Input of organic N into the soil due to root turnover, estimated using the core sampling data, amounted to 1.8 g N m-2 yr-1(Calluna), 1.7 g N m-2 yr-1 (Deschampsia) and 19.7 g N m-2 yr-1 (Molinia), respectively. The organic P input was 0.05, 0.07 and 0.55 g P M-2 yr-1, respectively. Using the minirhizotron turnover estimates these values were20–22% (Deschampsia) and 11–30% (Molinia) lower.When the biomass turnover data were used, it appeared that in the Molinia stand root turnover contributed 67% to total litter production, 87% to total litter nitrogen loss and 84% to total litter phosphorus loss. For Calluna and Deschampsia these percentages were about three and two times lower, respectively.This study shows that (1) Root turnover is a key factor in ecosystem C, N, and P cycling; and that (2) The relative importance of root turnover differs between species.  相似文献   

16.
采用多年大田试验研究了小麦-大豆(A1)、小麦-甘薯(A2)、玉米(A3)、小麦/玉米/大豆(A4)和小麦/玉米/甘薯(A5)5种种植模式的根际环境变化特征和根系生长特性.结果表明:与A1、A2、A3和A5相比,A4提高了小麦、玉米、大豆在开花期和成熟期的生物量、根系活力和根干质量,提高了各作物根际土壤细菌、真菌和放线菌数量.各种植模式之间,植株生物量和根际微生物数量的变化规律为套作>单作、大豆茬口>甘薯茬口、边行>中行.小麦/玉米/大豆(A4)套作模式通过改善3种作物的根际环境,促进了作物地下部根系生长和地上部生物量的增加,从而实现作物增产.  相似文献   

17.
Background and Aims Examination of plant growth below ground is relatively scant compared with that above ground, and is needed to understand whole-plant responses to the environment. This study examines whether the seasonal timing of fine root growth and the spatial distribution of this growth through the soil profile varies in response to canopy manipulation and soil temperature.Methods Plasticity in the seasonal timing and vertical distribution of root production in response to canopy and soil water manipulation was analysed in field-grown walnut (Juglans regia ‘Chandler’) using minirhizotron techniques.Key Results Root production in walnuts followed a unimodal curve, with one marked flush of root growth starting in mid-May, with a peak in mid-June. Root production declined later in the season, corresponding to increased soil temperature, as well as to the period of major carbohydrate allocation to reproduction. Canopy and soil moisture manipulation did not influence the timing of root production, but did influence the vertical distribution of roots through the soil profile. Water deficit appeared to promote root production in deeper soil layers for mining soil water. Canopy removal appeared to promote shallow root production.Conclusions The findings of this study add to growing evidence that root growth in many ecosystems follows a unimodal curve with one marked flush of root growth in coordination with the initial leaf flush of the season. Root vertical distribution appeared to have greater plasticity than timing of root production in this system, with temperature and/or carbohydrate competition constraining the timing of root growth. Effects on root distribution can have serious impacts on trees, with shallow rooting having negative impacts in years with limited soil water or positive impacts in years with wet springs, and deep rooting having positive impacts on soil water mining from deeper soil layers but negative impacts in years with wet springs.  相似文献   

18.
盐胁迫下3种滨海盐生植物的根系生长和分布   总被引:14,自引:0,他引:14  
弋良朋  王祖伟 《生态学报》2011,31(5):1195-1202
我国广大滨海地区的盐土上发育着大量的盐生植物,这些植物的根系对维持土壤稳定性,减小风蚀和水蚀具有重要作用。在水培条件下,针对碱蓬、盐角草和盐地碱蓬3种滨海盐生植物,研究它们在不同盐浓度条件下根系分布的差异。结果表明:一定浓度的盐分可以促进3种盐生植物生长,但较高浓度的盐抑制其生长,特别是对根系生长的抑制作用更大。在同样盐浓度下,盐地碱蓬的生长最快,生物量也最大。在盐分浓度较低时,3种盐生植物的主根长和总根长都有所增加,与对照相比,盐角草增加的幅度较大,但高浓度的盐会抑制根系总长度的增加,其中盐角草较碱蓬和盐地碱蓬抑制的程度轻。盐分对3种植物的根系平均直径没有显著的影响,但有减小的趋势。在水培条件下,碱蓬和盐角草的根系上、中、下部分布的较均匀,而盐地碱蓬的根系中部比上部和下部有显著的增加,盐分对每种植物的根系的分布没有显著的影响。从根系的分布特征可以推断:盐角草比碱蓬和盐地碱蓬具有较强的抗盐性和耐瘠薄能力;碱蓬的耐盐能力较其它两种植物差,盐角草的耐盐性最强。根据3种滨海盐生植物的根系生长和分布特征,证明这3种植物的根系分属于2种功能型,碱蓬是浅根系功能型,盐角草和盐地碱蓬是深根系功能型。根系分布的参数表明3种滨海盐生植物中盐地碱蓬是用来加强土壤稳定性最好的植物。  相似文献   

19.
叶片被取食会导致树木生长发育和生理代谢发生显著的变化。目前对细根动态如何对叶片损失做出响应的了解仍然有限。以生物量分配和高生长策略不同的水曲柳(Fraxinus mandschurica)和落叶松(Larix gmelinii)苗木为研究对象, 进行了不同强度的人为去叶处理(叶面积去除0% (对照)、40%和80%), 采用微根管技术对细根(直径≤2 mm)生产和死亡的季节动态进行了定量观测, 同期测定了地上部分(苗高和地径)的生长。结果表明: 1)去叶降低了两树种苗高(统计上均不显著)和地径的生长, 但是对苗高生长的影响小于地径。随着去叶强度的提高, 苗木地上生长受到的影响加大, 生长季末期水曲柳苗高比对照降低3.3%-12.1%, 地径降低5.7%-23.1%; 而落叶松苗高和地径降低相对较少(< 12%)。2)去叶显著地减少了水曲柳和落叶松细根现存量(p< 0.001), 其相对增长量((去叶后现存量高峰-去叶当日现存量)/去叶当日现存量)随着去叶强度的加大而降低。3)与对照相比, 去叶后两树种细根生产量显著减少(p< 0.05), 而细根死亡量在不同处理间没有显著差异。综合来看, 去叶对水曲柳地上部分(特别是地径)生长影响较大, 而对落叶松地下部分(主要是新根)生长影响较大。研究结果为理解冠层碳供应对根系动态影响的种间差异及其机制提供了必要的理论依据。  相似文献   

20.
Plants may respond to herbivore attacks by changing their chemical profile. Such induced responses occur both locally and systemically throughout the plant. In this paper we studied how Brassica nigra (L.) Koch (Brassicaceae) plants respond to two different root feeders, the endoparasitic nematode Pratylenchus penetrans Cobb (Tylenchida: Pratylenchidae) and the larvae of the cabbage root fly Delia radicum L. (Diptera: Anthomyiidae). We tested whether the activities of the root feeders affected the survival and development of the shoot feeding crucifer specialist Pieris rapae (L.) (Lepidoptera: Pieridae) via systemically induced changes in the shoots. Overall, P. rapae larvae grew slower and produced fewer pupae on plants that were infested with root feeders, especially on plants infested with P. penetrans. This effect could not be attributed to lower water or protein levels in these plants, as the percentage of water in the controls and root infested shoots was similar, and protein content was even higher in root infested plants. Both glucosinolate as well as phenolic levels were affected by root feeding. Initially, glucosinolate levels were the lowest in root infested plants, but on P. penetrans infested plants they increased more rapidly after P. rapae started feeding than in controls or D. radicum infested plants. Plants with D. radicum feeding on their roots had the highest phenolic levels at all harvest dates. Our results indicate that root feeding can significantly alter the nutritional quality of shoots by changes in secondary metabolite levels and hence the performance of a specialist shoot feeder.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号