首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
We studied the effects of wheat (Triticum aestivum L.) seed presowing treatment with 0.05 mM salicylic acid (SA) on its endogenous content and the ratio of free to bound forms in seedling shoots and roots. During two-week-long seedling growth, we observed a gradual decrease in the total SA content in shoots but not in roots. In shoots, the content of conjugated SA increased and that of its free form reduced. Seed presowing treatment with SA reduced total content of endogenous SA in both seedling shoots and roots. The content of free SA reduced intensely in shoots and somewhat less in roots. Such reduction was supposed to occur due to the disturbance in SA biosynthesis. These were accompanied by the increases in the shoot and especially root biomass and length, stimulation of total dark respiration, and changes in the ratio between respiratory pathways. In the roots, we observed an increased proportion of cytochrome respiration, whereas in the shoots — alternative cyan-resistant respiration. We also observed changes in the plant antioxidant system. A degree of lipid peroxidation was stronger in shoots than in roots. Pretreatment with SA resulted in MDA 2.5-fold accumulation in shoots, whereas its content in roots reduced by 1.7 times. We concluded that the type and intensity of SA effects on plant growth, energetic balance, and antioxidant status were related to changes in its endogenous content and redistribution between free and conjugated forms.  相似文献   

2.
The role of salicylic acid (SA) in growth regulation and the change in the levels of phytohormones (IAA, ABA, and cytokinins) were studied in the wheat calli co-cultured with bunt pathogen Tilletia caries. Calli infection with T. caries resulted in the hypertrophied callus growth and simultaneous increase in phytohormone level. The addition of SA to the nutrient media decreased the callus growth induced by the pathogen, whereas the level of investigated phytohormones was not affected. In the SA-treated infected calli, the formation of necrotic lesions was observed in the zones of contact of the fungal mycelium with callus cells that limited pathogen growth. The authors suggest that the stabilization of the hormonal balance of plant cells at pathogenesis is one of the possible mechanisms of the SA protective action in vitro and in vivo. Hence, co-culturing wheat calli and T. caries fungus appeared to be a convenient model for assessing SA protective action.  相似文献   

3.
A study has been made on the influence of indole-3-acetic acid (IAA) on the ribonuclease (RNase) activity in wheat coleoptile sections and green pea stem sections. The hormonal effects on the enzyme activity, ribonncleic acid (RNA) metabolism and growth have been compared. Addition of 10?5M IAA to the plant sections causes their RNase activity to decrease and their elongation to increase. Removal of the added IAA results in increasing enzyme activity and decreasing growth. The altered enzyme activities are paralleled by opposite changes in the RNA net synthesis. Administration of crystalline RNase to the plant tissue depresses growth. There is thus evidence that the in vivo effect of IAA on the RNase activity is of importance for the hormonal regulation of RNA metabolism and growth. The IAA-induced reduction in the enzyme activity involves cellular metabolism. The effect can be suspended by means of p-chloromercuribenzoate. A possible mechanism for the reduction is discussed.  相似文献   

4.
Presowing treatment of wheat (Triticum aestivum L.) seeds with 10 or 100 μM salicylic acid (SA) reduced the inhibition of 14-day-old plant growth under soil drought. The same effect was caused by the spraying of 7-day-old seedlings with 0.5 or 2 mM nitrogen oxide donor (sodium nitroprusside, SNP) before drought. The protective effect was enhanced by the combination of seed treatment with 10 μM SA and plant spraying with 0.5 mM SNP, while their combinations in higher concentrations caused weaker effects. SA treatment in both concentrations and 0.5 mM SNP under drought conditions increased the antioxidant enzyme activity (superoxide dismutase, catalase, and guaiacol peroxidase) in leaves. This effect was especially significant when 10 μM SA was combined with 0.5 mM SNP. Spraying with 2 mM SNP and its combination with seed presowing with 100 μM SA did not significantly change the antioxidant enzyme activity; however, the proline content in the leaves increased. It is concluded that the SA stress-protective action on plants can be modified with exogenous nitrogen oxide.  相似文献   

5.
The effect of malonate and sedaxane, a compound with the fungicidal effect which act as succinate dehydrogenase inhibitors, on the resistance of etiolated wheat seedlings (Triticum aestivum L.) to osmotic stress caused by 12% PEG 6000 solution, was studied. The presowing treatment of seeds with 0.3 mM sedaxane solution significantly reduced the inhibitory effect of osmotic stress on seedling growth. The protective effect of 10 mM malonate was significant when it was added to the incubation medium of the roots; the effect of preseeding treatment with malonate was less significant. Unlike malonate, malate had no positive effect on seedling growth under osmotic stress. The activity of succinate dehydrogenase and the hydrogen peroxide content decreased in seedlings after the treatment of roots with malonate and sedaxane. Pretreatment with sedaxane and the addition of malonate to the incubation medium of roots prevented the accumulation of a lipid peroxidation product, malondialdehyde, which is caused by osmotic stress, and increased peroxidase activity. It was concluded that the stress-protective effect of sedaxane and malonate on wheat seedlings might be due to the inhibition of succinate dehydrogenase-dependent formation of reactive oxygen species and the prevention of oxidative cell damage.  相似文献   

6.
Summary The allelopathic effect of alfalfa (Medicago media Pers.) and red clover (Trifolium pratense L.) root saponins on winter wheat seedling growth and the fate of these chemicals in soil environments were studied. Seed germination, seedling and test fungus growth were suppressed by water and by alcohol extracts of alfalfa roots, and by crude saponins of alfalfa roots, indicating that medicagenic acid glycosides are the inhibitor. Powdered alfalfa roots inhibited wheat seedling growth when added to sand. At concentrations as low as 0.25% (w/w) the root system was completely destroyed whereas seedling shoots suffered little damage. Red clover roots caused some wheat growth inhibition when incorporated to sand, but their effect was much lower than in the alfalfa root treatment. Soil textures had a significant influence on the inhibitory effect of alfalfa roots. The inhibition of seedling growth was more pronounced on light than on heavy soils. This was attribted to the higher sorption of inhibitors by heavy soils. Incubation of alfalfa roots mixed into loose sand, coarse sand, loamy sand and clay loam for a period of 0–8 days resulted in decreased toxicity to bothT. viride and wheat seedlings. This decrease occurred more quickly in heavier soils than in loose sand, due to the hydrolysis of glycosides by soil microorganisms. Soil microbes were capable of detoxifying medicagenic acid glycosides by partial hydrolysis of sugar chain to aglycone. These findings illustrate the importance of medicagenic acid glycosides as an inhibitor of wheat seedling growth, and of their fate in different soil environments.  相似文献   

7.
The hormonal control of axillary bud growth was investigated in cultured stem segments of Phaseolus vulgaris L. When the stem explants were excised and implanted with their apical end in a solid nutrient medium, outgrowth of the axillary buds-located at the midline of the segment-was induced. However, if indoleacetic acid (IAA) or naphthaleneacetic acid (NAA) was included in the medium, bud growth was inhibited. The exposure of the apical end to IAA also caused bud abscission and prevented the appearance of new lateral buds.In contrast to apically inserted segments, those implanted in the control medium with their basal end showed much less bud growth. In these segments, the auxin added to the medium either had no effect or caused a slight stimulation of bud growth.The IAA transport inhibitor N-1-naphthylphthalamic acid (NPA) relieved bud growth inhibition by IAA. This suggests that the effect of IAA applied at the apical end requires the transport of IAA itself rather than a second factor. With the apical end of the segment inserted into the IAA-containing medium, simultaneous basal application of IAA relieved to some extent the inhibitory effect of the apical IAA treatment. These results, together with data presented in a related article [Lim R and Tamas I (1989) Plant Growth Regul 8: 151–164], show that the polarity of IAA transport is a critical factor in the control of axillary bud growth.Of the IAA conjugates tested for their effect on axillary bud growth, indoleacetyl alanine, indoleacetic acid ethyl ester, indoleacetyl-myo-inositol and indoleacetyl glucopyranose were strongly inhibitory when they were applied to the apical end of the stem explants. There was a modest reduction of growth by indoleacetyl glycine and indoleacetyl phenylalanine. Indoleacetyl aspartic acid and indoleglyoxylic acid had no effect.In addition to IAA and its conjugates, a number of other plant growth substances also affected axillary bud growth when applied to the apical end of stem segments. Myo-inositol caused some increase in the rate of growth, but it slightly enhanced the inhibitory effect of IAA when the two substances were added together. Gibberellic acid (GA3) caused some stimulation of bud growth when the explants were from younger, rather than older plants. The presence of abscisic acid (ABA) in the medium had no effect on axillary bud growth. Both kinetin and zeatin caused some inhibition of axillary buds from younger plants but had the opposite effect on buds from older ones. Kinetin also enhanced the inhibitory effect of IAA when the two were applied together.In conclusion, axillary buds of cultured stem segments showed great sensitivity to auxins and certain other substances. Their growth responded to polarity effects and the interaction among different substances. Therefore, the use of cultured stem segments seems to offer a convenient, sensitive and versatile test system for the study of axillary bud growth regulation.  相似文献   

8.
Growth retardant activity of paclobutrazol enantiomers in wheat seedlings   总被引:2,自引:0,他引:2  
The resolved enantiomers of paclobutrazol appeared to have different primary modes of action as plant growth retardants in rht3 (tall) wheat seedlings. 2S,3S-Paclobutrazol reduced shoot growth more effectively than root growth, whereas the opposite was the case with the 2R,3R-enantiomer. Low concentrations (0.03–1.0 M) of 2S,3S-paclobutrazol specifically inhibited gibberellin A1 (GA1) production in Rht3 (dwarf) seedlings without affecting shoot growth, confirming that inhibition of GA biosynthesis is the primary mode of action of this enantiomer. Reductions in shoot growth of rht3 (tall) wheat treated with 2S,3S-paclobutrazol were associated with reductions in GA1 content, an effect that could be reversed by gibberellic acid (GA3) application, showing that GAs are important regulators of light-grown shoot growth in wheat. The inhibition of root growth of wheat seedlings following treatment with 2R,3R-paclobutrazol was associated with a decline in de novo synthesis of major sterols, a decrease in stigmasterol: sitosterol ratio and an accumulation of the 14-methyl sterol, obtusifoliol. Concentrations >3 M 2S,3S-paclobutrazol also affected de novo sterol production in wheat roots, suggesting that root growth is more responsive to interference with sterol than GA biosynthesis. There was a decline in abscisic acid (ABA) content in Rht3 (dwarf) shoots treated with relatively high concentrations of 2S,3S-paclobutrazol but no effect with its optical isomer.  相似文献   

9.
The effect of presowing treatment of wheat seeds by exogenous wheat lectin on endogenous activity of lectin as well as on RNA content in vegetative organs of wheat was investigated. The variability of lectin activity in the seedling and leaves of wheat plants was obtained. Both endogenous activity of lectin and RNA amount increase under the effect of exogenous lectin. This effect was partially inhibited by the hapten of the wheat lectin. The possibility of induction of modifications in both endogenous lectin pool and functional activity of plant genome by exogenous lectin is under discussion.  相似文献   

10.
Lactic acid is a versatile chemical that can be produced via fermentation of lignocellulosic materials. The heterolactic strain Lactobacillus pentosus CECT 4023 T, that can consume glucose and xylose, was studied to produce lactic acid from steam exploded wheat straw prehydrolysate. The effect of temperature and pH on bacterial growth was analyzed. Besides, the effect of oxygen on lactic acid production was tested and fermentation yields were compared in different scenarios. This strain showed very high tolerance to the inhibitors contained in the wheat straw prehydrolysate. The highest lactic acid yields based on present sugar, around 0.80 g g−1, were obtained from glucose in presence of 25%, 50%, and 75% v v−1 of prehydrolysate in strict anaerobiosis. Lactic fermentation of wheat straw hydrolysate obtained after enzymatic hydrolysis of the prehydrolysate yielded 0.39 g of lactic acid per gram of released sugars, which demonstrated the high potential of L. pentosus to produce lactic acid from hemicellulosic hydrolysates. Results presented herein not only corroborated the ability of L. pentosus to grow using mixtures of sugars, but also demonstrated the suitability of this strain to be applied as an efficient lactic acid producer in a lignocellulosic biorefinery approach. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2739, 2019  相似文献   

11.
The effects of wheat germ agglutinin (WGA) and phytohemagglutinin (PHA) at the concentration of 1 mg/l on the rate of cell division in the root apical meristem of wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), rice (Oryza sativa L.), and common bean (Phaseolus vulgaris L.) seedlings were compared. WGA enhanced cell division in the roots of barley and rice approximately similarly as in wheat roots but did not affect division of meristematic cells in the roots of common bean seedlings. In contrast PGA enhanced mitotic activity in the root apical meristem of common bean seedlings but did not affect division in the wheat and barley roots. Seedling treatment with lectins shifted the hormonal balance in them toward accumulation of growth activators (IAA and cytokinins). The relationship between lectin and hormonal systems in the control of cell division is discussed.  相似文献   

12.
The effects of presowing seed treatment with different concentrations of cytokinins (kinetin and benzylaminopurine; 100, 150, and 200 mg/L) on growth, photosynthetic capacity, and ion homeostasis were investigated in two spring wheat (Triticum aestivum L.) cultivars, namely MH-97 (salt sensitive) and Inqlab- 91 (salt tolerant). Primed and non-primed seeds were sown in a field in which NaC1 salinity of 15 dS/m was developed. Of the different concentrations of priming agents tested, the effect of a moderate concentration of kinetin (150 mg/L) was very pronounced, particularly in improving growth and grain yield, in both cultivars. In addition, priming with kinetin alleviated the adverse effect of salt stress on gaseous exchange characteristics (net CO2 assimilation rate and water use efficiency) in both cultivars. Seed priming with a moderate concentration of kinetin also altered the pattern of accumulation of Na^+ and Clˉ in the shoots, irrespective of the wheat cultivar, under conditions of salt stress. However, all other priming agents at the different concentrations tested did not show any consistent effect on ion levels, except hydropriming, which increased K^+ levels in the shoots of both cultivars under salt stress. In conclusion, a moderate concentration of kinetin showed a consistent effect in altering the growth and grain yield of both wheat cultivars, which was related to the beneficial effects of kinetin priming on water use efficiency and photosynthetic rate under conditions of salt stress.  相似文献   

13.
Effect of grain soaking presowing in 1 mM salicylic acid (SA) and NaCl (0, 50, 100, 150 and 200 mM) on barley (Hordeum vulgare cv Gerbel) was studied. Increasing of NaCl level reduced the germination percentage, the growth parameters (fresh and dry weight), potassium, calcium, phosphorus and insoluble sugars content in both shoots and roots of 15-day old seedlings. Leaf relative water content (RWC) and the photosynthetic pigments (Chl a, b and carotenoids) contents also decreased with increasing NaCl concentration. On the other hand, Na, soluble sugars, soluble proteins, free amino acids including proline content and lipid peroxidation level and peroxidase activity were increased in the two plant organs with increasing of NaCl level. Electrolyte leakage from plant leaves was found to increase with salinity level. SA-pretreatment increased the RWC, fresh and dry weights, water, photosynthetic pigments, insolube saccharides, phosphorus content and peroxidase activity in the stressed seedlings. On the contrary, Na+, soluble proteins content, lipid peroxidation level, electrolyte leakage were markedly reduced under salt stress with SA than without. Under stress conditions, SA-pretreated plants exhibited less Ca2+ and more accumulation of K+, and soluble sugars in roots at the expense of these contents in the plant shoots. Exogenous application (Grain soaking presowing) of SA appeared to induce preadaptive response to salt stress leading to promoting protective reactions to the photosynthetic pigments and maintain the membranes integrity in barley plants, which reflected in improving the plant growth.  相似文献   

14.
Potato (Solanum tuberosum L.) plants were grown in a greenhouse using zinc- and boron-deficient soil. The effects of seed-tuber treatment with 3 mM zinc sulfate and 8 mM boric acid on the content and ratio of phytohormones in the leaves and mature tubers, the indices of photosynthetic activity, the rate and NaF-sensitivity of respiration, and the tuber growth were studied. Zinc-sulfate treatment shifted the hormonal balance toward a substantial increase in the cytokinin content and the cytokinin/ABA ratio, as well as a decrease in the IAA/cytokinin ratio. Boric-acid treatment resulted in an increase in the IAA content and IAA/cytokinin ratio. Zinc-sulfate treatment abolished the apical dominance and increased the tuber weight due to their increased number and the number of phellem (cork) cell layers. Boric-acid treatment increased cell diameter in the tuber perimedullary zone; an increase in tuber weight per plant was related to tuber growth. A relationship between changes in the plant hormonal status induced by zinc-sulfate and boric-acid treatments and the activity of physiological processes is discussed.  相似文献   

15.
Cytokinins are often considered abscisic acid (ABA) antagonists and auxins antagonists/synergists in various processes in plants. Seed enhancement (seed priming) with cytokinins is reported to increase plant salt tolerance. It was hypothesized that cytokinins could increase salt tolerance in wheat plants by interacting with other plant hormones, especially auxins and ABA. The present studies were therefore conducted to assess the effects of pre-sowing seed treatment with varying concentrations (100, 150 and 200 mg l−1) of cytokinins (kinetin and benzylaminopurine (BAP)) on germination, growth, and concentrations of free endogenous auxins and ABA in two hexaploid spring wheat (Triticum aestivum L.) cultivars. The primed and non-primed seeds of MH-97 (salt-intolerant) and Inqlab-91 (salt-tolerant) were sown in both Petri dishes in a growth room and in the field after treatment with 15 dS m−1 NaCl salinity. Both experiments were repeated during 2002 and 2003. Among priming agents, kinetin was effective in increasing germination rate in the salt-intolerant and early seedling growth in the salt-tolerant cultivar when compared with hydropriming under salt stress. Thus, during germination and early seedling growth, the cytokinin-priming induced effects were cultivar specific. In contrast, kinetin-priming showed a consistent promoting effect in the field and improved growth and grain yield in both cultivars under salt stress. The BAP-priming did not alleviate the inhibitory effects of salinity stress on the germination and early seedling growth in both cultivars. The increase in growth and grain yield in both cultivars was positively correlated with leaf indoleacetic acid concentration and negatively with ABA concentration under both saline and non-saline conditions. The decrease in ABA concentration in the plants raised from kinetin-primed seeds might reflect diminishing influence of salt stress. However, the possibility of involvement of other hormonal interactions is discussed.  相似文献   

16.
The effect of flooding on the growth parameters and hormonal dynamics (anxins, abscisic acid, cytokinins, gibberellins, and ethylene) has been studied in a vegetation experiment on the leaves of wheat (Triticum aestivum L.) and oat (Avena sativa L.). Growth inhibition during flooding in both species was due to the accumulation of abscisic acid and ethylene, while the repair processes were due to the increased level of auxins, cytokinins, and gibberellins. The difference in the hormonal response in wheat and oat to flooding, in particular, the degree and timing of accumulation of abscisic and indoleacetic acids and different dynamics of the level of cytokinins and gibberellins, induced their different physiological response, which determined the level of their resistance. The growth control of cereals during flooding as well as the hormonal dynamics are proposed to rely on the strategy of plant ontogenetic adaptation.  相似文献   

17.
酸雨是中国重要的环境问题,为研究酸雨对小麦籽粒品质的可能影响,以小麦品种扬麦15和汶农17为材料开展盆栽试验,研究了不同酸度(pH2.5、p H4.0和p H5.6)酸雨对小麦花后氮硫代谢关键酶活性和籽粒蛋白质含量及组分的影响。结果显示:酸雨处理抑制叶片硝酸还原酶(NR)活性,提高了扬麦15整个灌浆期及汶农17灌浆中后期叶片谷氨酰胺合成酶(GS)活性,促进了叶片蛋白的降解,降低了叶片可溶性蛋白含量。不同酸度酸雨提高了成熟期籽粒中蛋白质含量,酸度越强,增加幅度越大,籽粒中各蛋白组分含量和大部分氨基酸含量也有明显提高。酸雨提高了扬麦15叶片丝氨酸乙酰转移酶(SAT)和O-乙酰丝氨酸硫裂解酶(OAS-TL)活性,但对汶农17硫代谢关键酶活性影响较小,酸雨处理还提高了籽粒中二硫键和含硫氨基酸含量。可见酸雨对小麦氮硫代谢有不同程度影响,进而影响了小麦籽粒蛋白质含量和组成,酸度越强影响越大,但不同品种对酸雨响应有一定差异。  相似文献   

18.
Development of marker‐free and transgene insertion site‐defined (MFTID) transgenic plants is essential for safe application of transgenic crops. However, MFTID plants have not been reported for wheat (Triticum aestivum). Here, we prepared a RNAi cassette for suppressing lipoxygenase (LOX) gene expression in wheat grains using a double right border T‐DNA vector. The resultant construct was introduced into wheat genome via Agrobacterium‐mediated transformation, with four homozygous marker‐free transgenic lines (namely GLRW‐1, ‐3, ‐5 and ‐8) developed. Aided by the newly published wheat genome sequence, the T‐DNA insertion sites in GLRW‐3 and GLRW‐8 were elucidated at base‐pair resolution. While the T‐DNA in GLRW‐3 inserted in an intergenic region, that of GLRW‐8 inactivated an endogenous gene, which was thus excluded from further analysis. Compared to wild ‐type (WT) control, GLRW‐1, ‐3 and ‐5 showed decreased LOX gene expression, lower LOX activity and less lipid peroxidation in the grains; they also exhibited significantly higher germination rates and better seedling growth after artificial ageing treatment. Interestingly, the three GLRW lines also had substantially increased contents of several fatty acids (e.g., linoleic acid and linolenic acid) in their grain and flour samples than WT control. Collectively, our data suggest that suppression of grain LOX activity can be employed to improve the storability and fatty acid content of wheat seeds and that the MFTID line GLRW‐3 is likely of commercial value. Our approach may also be useful for developing the MFTID transgenic lines of other crops with enhanced grain storability and fatty acid content.  相似文献   

19.
The effect of a new strain ofPropionibacterium shermanii (PAB), applied at ensiling, on the aerobic stability of wheat and sorghum silages was studied in several experiments under laboratory conditions. In the one experiment with wheat and in those with sorghum a lactic acid bacteria (LAB) inoculant (Lactobacillus plantarum andPediococcus cerevisiae) was also included. After treatment, the chopped forages were ensiled in 1.5-L anaerobic jars which were sampled in triplicate on predetermined dates to follow fermentation dynamics. At the end of the experiments, the silages were subjected to an aerobic stability test. The PAB inoculant improved the aerobic stability only in one experiment with wheat, in which the decrease in pH was very slow; the final pH remained relatively high (4.5). The PAB-treated silages contained 19.5±2.0 g of propionic acid per kg of dry matter. In the experiments with sorghum, the control and PAB-inoculated silages were stable, whereas LAB-inoculated silages deteriorated. The results suggest that PAB can survive in and improve the aerobic stability of only slow-fermenting silages which are prone to aerobic deterioration.  相似文献   

20.
To obtain information on the importance of a functional mevalonate synthesis for plant growth and development, we investigated the effect of mevinolin, a highly specific inhibitor of 3-hydroxy-3-methylglutaryl (HMG) coenzyme A reductase (the mevalonate-producing enzyme) on growth, sterol accumulation and pigment formation of radish seedlings (Raphanus sativus L. cv. Saxa Treib) and in part also wheat seedlings (Triticum aestivum L. cv. Kolibri). Mevinolin applied during germination inhibits root elongation and development of lateral roots in etiolated and light-grown radish seedlings. This effect cannot be overcome by exogenous GA3, but by addition of mevalonic acid, the product of the internally inhibited reaction. This emphazises the specifity of the mevinolin effect and indicates that the biosynthesis of mevalonic acid is a mandatory requirement for root growth. In light-grown radish seedlings mevinolin also affects hypocotyl length-growth and inhibits sterol accumulation, but has little effect on the chlorophyll and carotenoid accumulation in the chloroplasts of the cotyledons. This indicates the possible presence of an independent mevalonate synthesizing pathway within the plastids and suggests a low transport rate of mevinolin from the radish roots to the cotyledons. When mevinolin is directly applied to the leaves at higher concentrations, it also reduces the light-induced chlorophyll and carotenoid accumulation as has been shown with etiolated primary leaves of wheat. This inhibition is age-dependent and proceeds to a higher extent in older than in younger etiolated leaf tissue. From our results we conclude that plastids possess an independent HMG-CoA reductase. In the cotyledons of radish, mevinolin seems to induce a senescence retardation and sun-type growth response, as has been evaluated by measuring the fast and slow chlorophyll fluorescence induction kinetics (Kautsky effect). These responses may be due to inhibitor-induced changes in the intracellular phytohormone balance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号