首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Triacontanol (TRIA) increases the dry weight and alters the metabolism of rice (Oryza sativa L.) seedlings within 10 min of application to either the shoots or roots. This activity is prevented if octacosanol (OCTA, C28 primary alcohol) is applied with the TRIA on the roots or shoots. Triacontanol activity is also stopped if the OCTA is applied at least 1 min before the TRIA on the opposite part of the seedling.Triacontanol rapidly elicits a second messenger that moves rapidly throughout the plant resulting in stimulation of growth (dry-weight increase) and water uptake. Octacosanol also produces a second messenger that inhibits TRIA activity. We have named the putative secondary messengers elicited by TRIA and OCTA, TRIM and OCTAM, respectively. The water-soluble TRIM extracted from plants treated with TRIA increases the growth of rice seedlings about 50% more than extracts from untreated plants, within 24 h of application. Both OCTAM and OCTA inhibit the activity of TRIA but not of TRIM.The TRIA messenger was isolated from rice roots within 1 min of a foliar application of TRIA. The TRIM elicited by TRIA will pass through a 4-mm column of water connecting cut rice shoots with their roots and can also be recovered from water in which cut stems of TRIA-treated plants have been immersed. Triacontanol applied to oat (Avena sativa L.) or tomato (Lycopersicon esculentum Mill.) shoots connected to rice roots by a 4-mm water column also results in the appearance of TRIM in rice roots.Abbreviations OCTA octacosanol - OCTAM second messenger elicited by OCTA - TAS tallow alkyl sulfate - TRIA triacontanol - TRIM second messenger elicited by TRIA Michigan Agricultural Experiment Station Journal Article No. 12001  相似文献   

2.
Ries S 《Plant physiology》1991,95(4):986-989
Triacontanol (TRIA), a common constituent of plant waxes, was first shown in 1977 to be an active growth substance which at nanomolar concentrations increased the growth and yield of crops. TRIA is used to increase crop yields on millions of hectares, particularly in Asia. Many investigators have shown that it affects several basic metabolic processes including photosynthesis, nutrient uptake, and enzyme activity. However, the initial site of action has not been elucidated. TRIA rapidly elicits a second messenger (TRIM) in rice (Oryza sativa L.), which at nanomolar concentrations causes plants to respond in a manner similar to TRIA. TRIM has been identified as 9-β-l(+)-adenosine (9H-purin-6-amine, 9-β-l-ribofuranosyl). During the process of isolating and identifying 9-β-l(+)-adenosine, it was shown that this enantiomer, which previously has not been reported as occurring in nature, made up about 1% of the total adenosine pool in roots from untreated rice seedlings.  相似文献   

3.
The effect of several analogs of 1-triacontanol (TRIA), differing in C-chain length (16–32), the position of the hydroxyl group and the terminal functional group, were tested alone and in combination with TRIA on the growth of rice (Oryza sativa L.), maize (Zea mays L.) and tomato (Lycopersicon esculentum Mill.) seedlings. Applied alone, none of the compounds caused an increase in growth; thus, chain length (30 C) and presence and position (terminal) of the hydroxyl group appear to be specific for the growth-promoting activity of TRIA. When applied simultaneously with TRIA, all analogs inhibited the response to the latter in all three test plants, whether applied in the nutrient solution, as foliar spray or by seed soaking. 1-Octacosanol inhibited the response of rice seedlings to 2.3 x 10-8 M TRIA at concentrations as low as 2.4 x 10-12 M. Thus preparations of TRIA and application equipment must be free from trace amounts of other long-chain compounds if they are to be used to increase plant growth.Abbreviation TRIA 1-triacontanol  相似文献   

4.
Triacontanol (TRIA) has been realized as a potent plant growth promoting substance for a number of agricultural and horticultural crops. Out of a large number of essential oil bearing plants, mint (Mentha arvensis L.) constitutes the most important source of therapeutic agents used in the alternative systems of medicine. The mint plant has marvelous medicinal properties. In view of enhancing growth, yield and quality of this medicinally important plant, a pot experiment was conducted according to simple randomized block design. The experiment was aimed at studying the effect of four concentrations of TRIA (10−0, 10−7, 10−6 and 10−5 M) on the performance of mint with regard to growth and other physiological attributes, crop yield and quality attributes and the yield and contents of active constituents of the plant. The growth and other physiological parameters as well as yield and quality attributes were studied at 100 and 120 DAP. The foliar application of TRIA at 10−6 M concentration significantly enhanced most of the growth and other physiological attributes, crop herbage yield and the yield and content of active constituents (menthol, l-methone, isomenthone and menthyl acetate) of mint at both the stages. However, the next higher concentration of TRIA (10−5 M) exhibited slightly negative effect and did not further increase the values of the attributes studied, but it proved significantly better than the control. Application of TRIA significantly enhanced the yield and content of all the active constituents determined by GLC technique.  相似文献   

5.
Knowles NR  Ries SK 《Plant physiology》1981,68(6):1279-1284
Triacontanol (TRIA) increased fresh and dry weight and total reducible nitrogen (total N) of rice (Oryza sativa L.) seedlings within 40 minutes. Increases in total N in the supernatants from homogenates of corn (Zea mays L.) and rice leaves treated with TRIA for one minute before grinding occurred within 30 and 80 minutes, respectively. The source for the increase was investigated utilizing atmospheric substitution and enrichment and depletion studies with 15N. The increase in total N in seedlings was shown to be independent of method of N analysis and the presence of nitrate in the plants. Automated Kjeldahl determinations showing apparent increases in N composition due to TRIA were shown to be correlated with hand Kjeldahl, elemental analysis, and chemiluminescent analysis in three independent laboratories. TRIA did not alter the nitrate uptake or endogenous levels of nitrate in corn and rice seedlings. Enrichment experiments revealed that the total N increases in rice seedlings, in vivo, and in supernatants of corn leaf homogenates, in vitro, are not due to atmospheric N2. TRIA increased the soluble N pools of the plants, specifically the free amino acid and soluble protein fractions. No differences in depletion or enrichment of 15N incorporated into soluble and insoluble N fractions of rice seedlings could be detected on an atom per cent 15N basis. The apparent short-term total N increases cannot be explained by current knowledge of major N assimilation pathways. TRIA may stimulate a change in the chemical composition of the seedlings, resulting in interference with standard methods of N analysis.  相似文献   

6.
The effect of endophytic and rhizospheric bacteria was studied on salt stress in a local paddy rice (Oryza sativa L.) variety GJ-17. Plants inoculated with endophytic bacterium Pseudomonas pseudoalcaligenes showed significantly higher concentration of glycine betaine-like quaternary compounds and higher shoot biomass at lower salinity levels. While at higher salinity levels, mixture of both P. pseudoalcaligenes and Bacillus pumilus showed better response against the adverse effects of salinity. However, accumulation of proline showed an opposite trend against plant growth promoting rhizobacteria (PGPR) treatment in salinity stress. Proline concentration increased with salinity but decreased in plants inoculated with either of the PGPRs or mixture of both P. pseudoalcaligenes and B. pumilus. The present study shows that inoculation of paddy rice (Oryza sativa L.) with a mixture of endophytic and rhizospheric bacteria could serve as a useful tool for alleviating salinity stress.  相似文献   

7.
Rice (Oryza sativa L.) seedlings inhibited the growth of hypocotyls and roots of cress (Lepidium sativum L.) seedlings when both seedlings were grown together. Two growth inhibiting substances were found in the culture solution in which rice seedlings were hydroponically grown for 14 d. One growth inhibitor was further purified. This suggests that the rice seedlings may produce growth inhibiting substances, acting as allelochemicals to other plants, and release them from their roots into the environment.  相似文献   

8.
The effect of applying brassinosteroids to seeds on growth, pigment levels and nitrate reductase activity of rice (Oryza sativa L.) plants grown on saline substratum was investigated. Brassinosteroids reduced the impact of salt stress on growth, considerably restored pigment levels and increased of nitrate reductase activity.  相似文献   

9.

Background & Aims

The effects of an alfalfa plant (Medicago sativa L.) hydrolysate-based biostimulant (EM) containing triacontanol (TRIA) and indole-3-acetic acid (IAA) were tested in salt-stressed maize plants.

Methods

Plants were grown for 2 weeks in the absence of NaCl or in the presence (25, 75 and 150 mM). On the 12th day, plants were supplied for 48 h with 1.0 mg L?1 EM or 11.2 μM TRIA.

Results

EM and TRIA stimulated the growth and nitrogen assimilation of control plants to a similar degree, while NaCl reduced plant growth, SPAD index and protein content. EM or TRIA increased plant biomass under salinity conditions. Furthermore, EM induced the activity of enzymes functioning in nitrogen metabolism. The activity of antioxidant enzymes and the synthesis of phenolics were induced by salinity, but decreased after EM treatment. The enhancement of phenylalanine ammonia-lyase (PAL) activity and gene expression by EM was consistent with the increase of flavonoids.

Conclusion

The present study proves that the EM increases plant biomass even when plants are grown under salinity conditions. This was likely because EM stimulated plant nitrogen metabolism and antioxidant systems. Therefore, EM may be proposed as bioactive product in agriculture to help plants overcome stress situations.  相似文献   

10.

Soil salinity is one among the common environmental threats to agriculture. It adversely affects the physio-biochemical processes of plants that eventually lead to the reduction in growth, development and crop productivity. To cope with such adverse conditions, plants develop certain internal mechanisms, but under severe conditions these mechanisms fail to tolerate the salt stress. To overcome this problem, various strategies have been employed that help plants to mitigate salinity effects. Among the various strategies, the application of plant growth regulators (PGRs) has gained significant attention to induce salt tolerance in plants. A number of PGRs have been used so far. Among these, triacontanol (TRIA), a new PGR is gaining a lot of importance to enhance the plant growth, productivity and salinity tolerance in different crops. The utility of TRIA is dependent on its applied concentration. Its lower concentrations generally alleviate the salinity effects. However, the knowledge of its biosynthesis, signalling and its role particularly to mitigate salinity effect remains scanty. In the present article, the focus has been given on the role of exogenous applications of TRIA in the regulation of physio-biochemical characteristics especially plant growth, photosynthesis, nutrient acquisition, oxidative stress, antioxidant systems, compatible solutes, yield attributes and its mode of action in plants under salinity conditions. The salient features of the review may provide new insights on the role of TRIA in countering the ill effect of salinity in different crop plants.

  相似文献   

11.
Improvements in plant productivity (biomass) and yield have centered on increasing the efficiency of leaf CO2 fixation and utilization of products by non-photosynthetic sink organs. We had previously demonstrated a correlation between photosynthetic capacity, plant growth, and the extent of leaf starch synthesis utilizing starch-deficient mutants. This finding suggested that leaf starch is used as a transient photosynthetic sink to recycle inorganic phosphate and, in turn, maximize photosynthesis. To test this hypothesis, Arabidopsis thaliana and rice (Oryza sativa L.) lines were generated with enhanced capacity to make leaf starch with minimal impact on carbon partitioning to sucrose. The Arabidopsis engineered plants exhibited enhanced photosynthetic capacity; this translated into increased growth and biomass. These enhanced phenotypes were displayed by similarly engineered rice lines. Manipulation of leaf starch is a viable alternative strategy to increase photosynthesis and, in turn, the growth and yields of crop and bioenergy plants.  相似文献   

12.
In this study, triacontanol (TRIA) and nitric oxide (NO) interaction on arsenic (As)-induced oxidative stress tolerance in coriander (Coriandrum sativum L.) plants was investigated. The results showed that As had a significant adverse effect on the plant’s biomass. The seedlings pretreated with TRIA and NO significantly increased growth reduction induced by the metalloid. The obtained results indicated that the application of TRIA and sodium nitroprusside (SNP) generally reduced oxidative markers such as of electrolyte leakage percentage, malondialdehyde and H2O2 contents under As toxicity, while application of As treatment without TRIA?+?SNP increased these oxidative parameters compared to the control. The non-enzymatic antioxidant contents such as total phenol, anthocyanin, carotenoid, ascorbic acid and reduced glutathione (GSH) were extracted and assayed from both control and treated plants. It was found that TRIA?+?SNP treatments have a profound effect on the antioxidant metabolism and caused an enhancement in non-enzymatic antioxidant potentials under As toxicity in coriander. Moreover, the results revealed a mutually amplifying reaction between TRIA and NO in reducing As-induced damages.  相似文献   

13.

The rice (Oryza sativa L.) BAHD acyltransferase gene OsAt10 affects growth and metabolism of cells and regulates cell response to environmental stress. However, influence of the OsAt10 gene on low-temperature stress tolerance has not been evaluated in plant cells. Here, cell suspension cultures of plant species Arabidopsis (Arabidopsis thaliana L.), cotton (Gossypium hirsutum L.), white pine (Pinus strobus L.), and rice (Oryza sativa L.) were used to generate transgenic cell lines via Agrobacterium tumefaciens-mediated genetic transformation to examine the effects of OsAt10 on cold stress tolerance. OsAt10 transgenic cell lines of A. thaliana, G. hirsutum, P. strobus, and O. sativa were confirmed by molecular analyses including Southern blotting ND northern blotting, following by physiological and biochemical analyses under cold stress. The experimental results demonstrated that growth rate, cell viability, lipid peroxidation, ion leakage, antioxidative enzyme activity, polyamines level, and cell morphology were changed in transgenic cells under cold stress, compared to the controls. In transgenic A. thaliana cells, overexpression of the OsAt10 gene increases expression of polyamines biosynthesis genes under cold stress. In transgenic A. thaliana plants, overexpression of the OsAt10 gene increased cold stress tolerance by regulating expression of stress marker genes, TBARS content, ion leakage level, antioxidant enzymes activity, and polyamines content, indicating that the OsAt10 gene could be economically important for improving low-temperature stress tolerance in plants.

  相似文献   

14.
Application of picomole quantities of (+)-adenosine, a plant growth-regulating second messenger elicited by triacontanol, to tomato (Lycopersicon esculentum Mill.), maize (Zea mays L.), and cucumber (Cucumis sativa L.) foliage, increased Ca2+, Mg2+, and K+ concentrations in the exudate from the stumps of excised plants by 20 to 60% within 5 s after treatment. The change in ionic concentration of the exudate was transitory. When L(+)-adenosine and triacontanol were applied to different tomato plants at the same time, the L(+)-adenosine caused an increase in Ca2+ flux within 3 s, whereas a significant increase from triacontanol was not detectable until 5 min after application. This was expected because triacontanol elicits the formation of L(+)-adenosine. The enantiomer of L(+)-adenosine, D(-)-adenosine, had no effect on the cation concentration in tomato and inhibited the effect of L(+)-adenosine at equimolar or lower concentrations. These observations suggest that L(+)-adenosine acts by eliciting a rapidly propagated signal that increases the concentration of several ions in the apoplast. We postulate that modulations in apoplastic ion concentration, especially increases in Ca2+ concentration, constitute a mechanism by which plants regulate metabolic activity and growth in response to certain stimuli.  相似文献   

15.

Triacontanol (TRIA) being an endogenous plant growth regulator facilitates numerous plant metabolic activities leading to better growth and development. Moreover, TRIA plays essential roles in alleviating the stress-accrued alterations in crop plants via modulating the activation of the stress tolerance mechanisms. The present article critically focuses on the role of exogenously applied TRIA in morpho-physiology and biochemistry of plants for example, in terms of growth, photosynthesis, enzymatic activity, biofuel synthesis, yield and quality under normal and stressful conditions. This article also enlightens the mode of action of TRIA and its interaction with other phytohormones in regulating the physio-biochemical processes in counteracting the stress-induced damages in plants.

  相似文献   

16.
Abstract

An experiment was conducted to assess the effect of pre-sowing seed treatment with triacontanol (TRIA) in canola (Brassica napus L.) cultivar (RBN-3060) under saline stress. Canola seeds were soaked in three levels of TRIA (0, 0.5, and 1 mg L?1) for 12 hours. Three levels of salt stress (0, 100, and 150 mM NaCl) in full strength Hoagland's nutrient solution were applied to 56-days-old plants. Salt stress caused a significant reduction in growth, gas exchange, photochemical quenching (qP), and shoot and root K+ contents, while increased leaf glycine betaine, free proline, and shoot Na+ contents. Pre-sowing seed treatment with TRIA increased shoot fresh weight, number of seeds per plant, photosynthetic rate, transpiration rate, ratio of chlorophyll a/b, qP, electron transport rate, shoot and root K+ contents, and free proline and glycine betaine contents of canola plants at various TRIA levels under nonsaline or saline conditions.  相似文献   

17.
Certain legume crops, including white lupin (Lupinus albus L.), mobilise soil-bound phosphorus (P) through root exudates. The changes in the rhizosphere enhance P availability to these crops, and possibly to subsequent crops growing in the same soil. We conducted a pot experiment to compare phosphorus acquisition of three legume species with that of wheat, and to determine whether the legume crops influence growth and P uptake of a subsequent wheat crop. Field pea (Pisum sativum L.), faba bean (Vicia faba L.), white lupin (Lupinus albus L.) and wheat (Triticum aestivum L.) were grown in three different soils to which we added no or 20 mg P kg–1 soil (P0, P20). Growth, P content and rhizosphere carboxylates varied significantly amongst crops, soils and P levels. Total P content of the plants was increased with applied phosphorus. Phosphorus content of faba bean was 3.9 and 8.8 mg/pot, at P0 and P20, respectively, which was about double that of all other species at the respective P levels. Field pea and white lupin had large amounts of rhizosphere carboxylates, whereas wheat and faba bean had negligible amounts in all three soils at both P levels. Wheat grew better after legumes than after wheat in all three soils. The effect of the previous plant species was greater when these previous species had received P fertiliser. All the legumes increased plant biomass of subsequent wheat significantly over the unplanted pots in all the soils. Faba bean was unparalleled in promoting subsequent wheat growth on all fertilised soils. This experiment clearly demonstrated a residual benefit of the legume crops on the growth of the subsequent wheat crop due to enhanced P uptake. Faba bean appeared to be a suitable P-mobilising legume crop plant for use in rotations with wheat.  相似文献   

18.
Potassium and phosphorus transport and signaling in plants   总被引:2,自引:0,他引:2  
Nitrogen(N), potassium(K), and phosphorus(P) are essential macronutrients for plant growth and development, and their availability affects crop yield. Compared with N, the relatively low availability of K and P in soils limits crop production and thus threatens food security and agricultural sustainability. Improvement of plant nutrient utilization efficiency provides a potential route to overcome the effects of K and P deficiencies. Investigation of the molecular mechanisms underlying how plants sense, absorb, transport, and use K and P is an important prerequisite to improve crop nutrient utilization efficiency. In this review, we summarize current understanding of K and P transport and signaling in plants, mainly taking Arabidopsis thaliana and rice(Oryza sativa) as examples. We also discuss the mechanisms coordinating transport of N and K, as well as P and N.  相似文献   

19.

Nickel (Ni), an essential micronutrient and a prime component of the plant enzyme urease, has an indispensable role in plants. Triacontanol (TRIA) is a conspicuous plant growth regulator in agriculture, which proved advantageous in enhancing the overall production of plants. Therefore, an experiment was laid down to understand the effects of Ni toxicity on the menthol mint (Mentha arvensis L.) and its mitigation by exogenously applied TRIA. The different treatments applied to the plants were 0 (control), TRIA (10−6 M), Ni (60 mg kg−1), Ni (80 mg kg−1), TRIA (10−6 M) + Ni (60 mg kg−1), and TRIA (10−6 M) + Ni (80 mg kg−1). This work was evaluated on the basis of various growth, biochemical, physiological, yield and quality parameters. Nickel applied at 80 mg kg−1 of soil exhibited maximum inhibition in the parameters studied. Application of TRIA improved all the growth parameters such as plant height, fresh and dry weights as well as herbage yield under non stress and stressed conditions. The levels of carbonic anhydrase (CA) activity, photosynthetic parameters (chlorophyll and carotenoids), and chlorophyll fluorescence of the plants were also stimulated by TRIA under Ni stress. Exogenous TRIA also displayed positive effects on the cellular antioxidant defense mechanism of Ni-affected plants as it increased the levels of proline (PRO), electrolytic leakage (EL), and activities of antioxidant enzymes, viz. superoxide dismutase (SOD), catalase (CAT), and peroxidase (POX), therefore, restrained the triggering of the oxidative burst (reactive oxygen species) in the plant cells. Moreover, TRIA improved the overall production (in terms of yield and content) of EO in the plants and maintained the leaf ultrastructure and root morphology under Ni treatment. GC–MS analysis revealed that TRIA upregulated the level of menthone and menthyl acetate over their respective controls and under Ni-stressed condition.

  相似文献   

20.
Bread wheat (Triticum aestivum L.) is cultivated on more land than any other crop and produces a fifth of the calories consumed by humans. Wheat endosperm is rich in starch yet contains low concentrations of dietary iron (Fe) and zinc (Zn). Biofortification is a micronutrient intervention aimed at increasing the density and bioavailability of essential vitamins and minerals in staple crops; Fe biofortification of wheat has proved challenging. In this study we employed constitutive expression (CE) of the rice (Oryza sativa L.) nicotianamine synthase 2 (OsNAS2) gene in bread wheat to up‐regulate biosynthesis of two low molecular weight metal chelators – nicotianamine (NA) and 2′‐deoxymugineic acid (DMA) – that play key roles in metal transport and nutrition. The CE‐OsNAS2 plants accumulated higher concentrations of grain Fe, Zn, NA and DMA and synchrotron X‐ray fluorescence microscopy (XFM) revealed enhanced localization of Fe and Zn in endosperm and crease tissues, respectively. Iron bioavailability was increased in white flour milled from field‐grown CE‐OsNAS2 grain and positively correlated with NA and DMA concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号