首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The life-history parameters reproduction rate, developmental time and age specific survival of the western flower thrips,Frankliniella occidentalis (Pergande) [Thysanoptera: Thripidae], were determined on susceptible and resistant cucumber (Cucumis sativus L.) genotypes. Both newly emerged andF. occidentalis females of mixed ages showed a substantial reduction (36 to 50%) of the reproduction rate on all resistant genotypes, in particular after the second day. On the resistant genotypes 9127 and 9140,F. occidentalis had a prolonged developmental period. This was primarily due to a prolongation of the second larval stage. On all resistant genotypes,F. occidentalis suffered from high (82 to 97%) preadult mortality, predominantly at the second larval stage. It is conclude that the resistant genotypes do not cause an immediate intoxication of adult nor preadult thrips stages.  相似文献   

2.
Abstract

The flavonoids 5,6,7,8,9-hydroxy chalcone, 3,7-hydroxy-4′methoxy flavone, 5,6,7,8-hydroxy-4′-methoxy flavone and 3,5,6,7,4′-hydroxy flavone can be detected only in non-mycorrhizal roots of white clover, but not in mycorrhizal roots, whereas the flavonoids acacetin, quercetin and rhamnetin are only present in mycorrhizal roots. We tested the effect of several concentrations of these compounds on spore germination, hyphal growth, hyphal branching, formation of clusters of auxiliary cells and of secondary spores of the arbuscular mycorrhizal fungi Gigaspora rosea, Gigaspora margarita, Glomus mosseae and Glomus intraradices. Our results indicate that depending on the flavonoid, the tested compounds are involved at different stages in the regulation of mycorrhization. This hypothesis is strengthened by their differing effect on several AM fungal growth parameters. Furthermore, our study provides more data on the AM fungus genus/species specificity of flavonoids.  相似文献   

3.
In order to characterise the effect of ectomycorrhiza on Na+-responses of the salt-sensitive poplar hybrid Populus × canescens, growth and stress responses of Paxillus involutus (strain MAJ) were tested in liquid cultures in the presence of 20 to 500 mM NaCl, and the effects of mycorrhization on mineral nutrient accumulation and oxidative stress were characterised in mycorrhizal and non-mycorrhizal poplar seedlings exposed to 150 mM NaCl. Paxillus involutus was salt tolerant, showing biomass increases in media containing up to 500 mM NaCl after 4 weeks growth. Mycorrhizal mantle formation on poplar roots was not affected by 150 mM NaCl. Whole plant performance was positively affected by the fungus because total biomass was greater and leaves accumulated less Na+ than non-mycorrhizal plants. Energy dispersive X-ray microanalysis using transmission electron microscopy analysis of the influence of mycorrhization on the subcellular localisation of Na+ and Cl in roots showed that the hyphal mantle did not diminish salt accumulation in root cell walls, indicating that mycorrhization did not provide a physical barrier against excess salinity. In the absence of salt stress, mycorrhizal poplar roots contained higher Na+ and Cl concentrations than non-mycorrhizal poplar roots. Paxillus involutus hyphae produced H2O2 in the mantle but not in the Hartig net or in pure culture. Salt exposure resulted in H2O2 formation in cortical cells of both non-mycorrhizal and mycorrhizal poplar and stimulated peroxidase but not superoxide dismutase activities. This shows that mature ectomycorrhiza was unable to suppress salt-induced oxidative stress. Element analyses suggest that improved performance of mycorrhizal poplar under salt stress may result from diminished xylem loading of Na+ and increased supply with K+.  相似文献   

4.
The effect of root colonization by Glomus mosseae on the qualitative and quantitative pattern of essential oils (EO) was determined in three oregano genotypes (Origanum sp.). To exclude a simple P-mediated effect through mycorrhization the effect of P application to plants on the EO accumulation was also tested. In two genotypes the leaf biomass was increased through mycorrhization. Root colonization by the arbuscular mycorrhizal fungus (AMF) did not have any significant effect on the EO composition in oregano; however, in two genotypes the EO concentration significantly increased. As EO levels in P-treated plants were not enhanced, we conclude that the EO increase observed in mycorrhizal oregano plants is not due to an improved P status in mycorrhizal plants, but depends directly on the AMF–oregano plant association.  相似文献   

5.
 Twelve nodulation mutants (seven non-nodulating and five supernodulating) of soybean [Glycine max (L.) Mirr.] were screened for arbuscular mycorrhizal colonization in the presence of either Glomus etunicatum Becker and Gerdemann or Gigaspora margarita Becker and Hall. The cultivars showed variation in colonization parameters. The two supernodulating mutants En6500 and NOD1–3 had higher frequencies of colonization with 2.5–4.5 times higher arbuscular abundance than the respective wild types. The enhanced mycorrhization resulted in significant enhancement of P uptake by En6500. The non-nodulating mutants showed decreases in mycorrhizal parameters. Mutants En1282 and Harosoyexhibited aborted infection after formation of typical appressorium-like structures at some sites. However, none of these had the non-mycorrhizal phenotype. Growth and nutrient-uptake parameters should be considered while studying plant mutants for mycorrhization. Accepted: 7 July 2000  相似文献   

6.
【目的】西花蓟马是世界性害虫,利用西花蓟马对寄主植物嗜食性的差异,通过驱避作用防控西花蓟马,能够为绿色治理提供依据。【方法】在西花蓟马嗜食的甘蓝和非嗜食的大蒜上互喷汁液,采用黄瓜+甘蓝、黄瓜+大蒜2种相间种植方式,研究它们对西花蓟马寄主选择性的影响。【结果】在甘蓝上喷洒大蒜汁液后,甘蓝叶片上西花蓟马的虫量和产卵量均明显减少。大蒜汁液浓度越高,减少得越多;在大蒜上喷洒甘蓝汁液后,大蒜植株上西花蓟马的虫量和产卵量明显增加,且增加程度与甘蓝汁液的浓度呈正相关。黄瓜和甘蓝相间排列时,西花蓟马在黄瓜叶片上的数量与单作黄瓜叶片上无明显差异;但黄瓜和大蒜相间排列时,西花蓟马在黄瓜上的数量明显高于单作黄瓜上的虫数,多52.4%。【结论】在嗜食寄主植物上喷洒非嗜食植物汁液或间作非嗜食的寄主可以明显减少西花蓟马的选择性。研究结果为利用非嗜食植物挥发物防控西花蓟马提供了理论依据和新的方法。  相似文献   

7.
Vierheilig H  Lerat S  Piché Y 《Mycorrhiza》2003,13(3):167-170
The arbuscular mycorrhizal (AM) non-host plants mustard, sugar beet, lupin and the AM host plant cucumber were used as test plants. Cucumber plants were grown either in the absence of the AM fungus (AMF) Glomus mosseae or in a split-root system, with one side mycorrhizal and one side non-mycorrhizal. Root exudates of the AM non-host plants, the non-mycorrhizal cucumber plants and the mycorrhizal and the non-mycorrhizal side of the split-root system of mycorrhizal cucumber plants were collected and applied to cucumber plants inoculated with the AMF. Root exudates of non-mycorrhizal cucumber plants showed a significant stimulatory effect on root colonization, whereas root exudates from the mycorrhizal and the non-mycorrhizal sides of a split-root system of a mycorrhizal cucumber plant did not show this stimulatory effect and were even slightly inhibitory. Root exudates of the two AM non-host plants mustard and sugar beet significantly reduced root colonization in cucumber plants, whereas no such effect was observed when root exudates of the AM non-host plant lupin were applied.  相似文献   

8.
This study investigates behavioural responses of adult western flower thrips (Frankliniella occidentalis Pergande; Thysan., Thripidae) females to direct contact with repellent phenylpropanoid plant compounds (salicylaldehyde and methyl salicylate) applied on bean and cucumber leaves. The residence time of F. occidentalis females until take off was significantly shorter on bean or cucumber leaf discs treated with salicylaldehyde at 1% concentration compared with control leaf discs. A methyl salicylate (1%) treatment of cucumber resulted in shorter time periods until thrips took off the treated leaf discs compared with the control leaf discs. In a choice experiment thrips avoided to settle on a 1% salicylaldehyde treatment of bean and cucumber leaf discs for a maximum of 3 h, on a 1% methyl salicylate treatment for a 5‐h period. Within a 24‐h period neither the egg‐laying nor the feeding activity of F. occidentalis was affected after salicylaldehyde application (0.1%, 1%) on bean or cucumber. In contrast, methyl salicylate (1%) applied on bean and cucumber significantly prevented thrips females from oviposition and reduced the percentage of damaged area caused by their feeding activity for 24 h. As olfactory repellent plant volatiles applied on crop plants may elicit diverse post‐landing responses of F. occidentalis, short‐ and long‐term effects should be considered when evaluating the factual applicability of secondary plant compounds in a successful thrips management strategy.  相似文献   

9.
The effect of P applications and mycorrhizal inoculation on the growth and P nutrition of Anthyllis cytisoides L. (Fabaceae) and Brachypodium retusum (Pers.) Beauv. (Poaceae) was studied. Both plants are widely distributed and well adapted to semi-arid habitats in southern Spain. In all treatments, even with high P doses, mycorrhizal plants showed a higher concentration of phosphorus in their tissues than non-mycorrhizal plants. Mycorrhizal inoculation enhanced the growth of the plants when no P was applied. At high P addition, non-mycorrhizal plants showed higher growth than mycorrhizal plants. The response of each plant type to P application was somewhat different.  相似文献   

10.
Autoregulatory mechanisms have been reported in the rhizobial and the mycorrhizal symbiosis. Autoregulation means that already existing nodules or an existing root colonization by an arbuscular mycorrhizal fungus systemically suppress subsequent nodule formation/root colonization in other parts of the root system. Mutants of some legumes lost their ability to autoregulate the nodule number and thus display a supernodulating phenotype. On studying the effect of pre-inoculation of one side of a split-root system with an arbuscular mycorrhizal fungus on subsequent mycorrhization in the second side of the split-root system of a wild-type soybean (Glycine max L.) cv. Bragg and its supernodulating mutant nts1007, we observed a clear suppressional effect in the wild-type, whereas further root colonization in the split-root system of the mutant nts1007 was not suppressed. These data strongly indicate that the mechanisms involved in supernodulation also affect mycorrhization and support the hypothesis that the autoregulation in the rhizobial and the mycorrhizal symbiosis is controlled in a similar manner. The accumulation patterns of the plant hormones IAA, ABA and Jasmonic acid (JA) in non-inoculated control plants and split-root systems of inoculated plants with one mycorrhizal side of the split-root system and one non-mycorrhizal side, indicate an involvement of IAA in the autoregulation of mycorrhization. Mycorrhizal colonization of soybeans also resulted in a strong induction of ABA and JA levels, but on the basis of our data the role of these two phytohormones in mycorrhizal autoregulation is questionable.  相似文献   

11.
Symbiosis with mycorrhizal fungi substantially impacts secondary metabolism and defensive traits of colonised plants. In the present study, we investigated the influence of mycorrhization (Glomus intraradices) on inducible indirect defences against herbivores using the model legume Medicago truncatula. Volatile emission by mycorrhizal and non-mycorrhizal plants was measured in reaction to damage inflicted by Spodoptera spp. and compared to the basal levels of volatile emission by plants of two different cultivars. Emitted volatiles were recorded using closed-loop stripping and gas chromatography/mass spectrometry. The documented volatile patterns were evaluated using multidimensional scaling to visualise patterns and stepwise linear discriminant analysis to distinguish volatile blends of plants with distinct physiological status and genetic background. Volatile blends emitted by different cultivars of M. truncatula prove to be clearly distinct, whereas mycorrhization only slightly influenced herbivore-induced volatile emissions. Still, the observed differences were sufficient to create classification rules to distinguish mycorrhizal and non-mycorrhizal plants by the volatiles emitted. Moreover, the effect of mycorrhization turned out to be opposed in the two cultivars examined. Root symbionts thus seem to alter indirect inducible defences of M. truncatula against insect herbivores. The impact of this effect strongly depends on the genetic background of the plant and, hence, in part explains the highly contradictory results on tripartite interactions gathered to date.  相似文献   

12.
N. Allsopp  W. D. Stock 《Oecologia》1992,91(2):281-287
Summary The interaction of density and mycorrhizal effects on the growth, mineral nutrition and size distribution of seedlings of two perennial members of the Fabaceae was investigated in pot culture. Seedlings of Otholobium hirtum and Aspalathus linearis were grown at densities of 1, 4, 8 and 16 plants per 13-cm pot with or without vesicular-arbuscular (VA) mycorrhizal inoculum for 120 days. Plant mass, relative growth rates, height and leaf number all decreased with increasing plant density. This was ascribed to the decreasing availability of phosphorus per plant as density increased. O. hirtum was highly dependent on mycorrhizas for P uptake but both mycorrhizal and non-mycorrhizal A. linearis seedlings were able to extract soil P with equal ease. Plant size distribution as measured by the coefficient of variation (CV) of shoot mass was greater at higher densities. CVs of mycorrhizal O. hirtum plants were higher than those of non-mycorrhizal plants. CVs of the facultatively mycorrhizal A. linearis were similar for both mycorrhizal and non-mycorrhizal plants. Higher CVs are attributed to resource preemption by larger individuals. Individuals in populations with high CVs will probably survive stress which would result in the extinction of populations with low CVs. Mass of mycorrhizal plants of both species decreased more rapidly with increasing density than did non-mycorrhizal plant mass. It is concluded that the cost of being mycorrhizal increases as plant density increases, while the benefit decreases. The results suggest that mycorrhizas will influence density-dependent population processes of faculative and obligate mycorrhizal species.  相似文献   

13.
Mycorrhizal fungus colonization of roots may modify plant metal acquisition and tolerance. In the present study, the contribution of the extraradical mycelium of an arbuscular mycorrhizal (AM) fungus, Glomus mosseae (BEG 107), to the uptake of metal cations (Cu, Zn, Cd and Ni) by cucumber (Cucumis sativus) plants was determined. The influence of the amount of P supplied to the hyphae on the acquisition and partitioning of metal cations in the mycorrhizal plants was also investigated. Pots with three compartments were used to separate root and root-free hyphal growing zones. The shoot concentration of Cd and Ni was decreased in mycorrhizal plants compared to non-mycorrhizal plants. In contrast, shoot Zn and Cu concentrations were increased in mycorrhizal plants. High P supply to hyphae resulted in decreased root Cu concentrations and shoot Cd and Ni concentrations in mycorrhizal plants. These results confirm that some elements required for plant growth (P, Zn, Cu) are taken up by mycorrhizal hyphae and are then transported to the plants. Conversely, Cd and Ni were transported in much smaller amounts by hyphae to the plant, so that arbuscular mycorrhizal fungus colonization could partly protect plants from toxic effects of these elements. Selective uptake and transport of plant essential elements over non-essential elements by AM hyphae, increased growth of mycorrhizal plants, and metal accumulation in the root may all contribute to the successful growth of mycorrhizal plants on metal-rich substrates. These effects are stimulated when hyphae can access sufficient P in soil.  相似文献   

14.
The effect of root exudates from mycorrhizal and non-mycorrhizal tomato plants on microconidia germination of the tomato pathogen Fusarium oxysporum f. sp. lycopersici was tested. Microconidia germination was enhanced in the presence of root exudates from mycorrhizal tomato plants. Tomato plants were colonised by the arbuscular mycorrhizal fungus Glomus fasciculatum, indicating that alterations of the exudation pattern depended on the degree of root AM colonisation. Testing the exudates from plants with a high and a low P level revealed that the alterations of the root exudates from mycorrhizal plants, resulting in a changed effect on microconidia germination, are not due to an improved P status of mycorrhizal plants.  相似文献   

15.
Seedlings of the rootstocks Pineapple sweet orange (SwO), Carrizo citrange (CC), and sour orange (SO) were grown in low phosphorus (P) sandy soil and either inoculated with the vesicular-arbuscular mycorrhizal (VAM) fungus,Glomus intraradices, or were non-mycorrhizal (NM) and fertilized with P. VAM and NM seedings of similar shoot size and adequate P-status were selected for study of salinity and flooding stress. One-third of each of the VAM and NM plants were given 150 mM NaCl for a period of 24 days. One-third of the plants were placed into plastic bags and flooded for 21 days while the remaining third were non-stressed controls. In general, neither stress treatment affected mycorrhizal colonization. Salinity stress reduced the hydraulic conductivity of roots, leaf water potential, stomatal conductance and net assimilation of CO2 (ACO2) of mycorrhizal and non-mycorrhizal seedlings to a similar extent. VAM plants of CC and SO accumulated more Cl in leaves than NM plants. Cl was higher in non-mycorrhizal roots of SwO and CC than in mycorrhizal roots. Flooding the root zone for 3 weeks did not produce visible symptoms in the shoot but did influence plant water relations and reduce ACO2 of all 3 rootstocks. VAM and NM plants of each rootstock were affected similarly by flooding. Comparable reduction in nitrogen and P content of both mycorrhizal and non-mycorrhizal plants suggested that flooding stress was primarily affecting root rather than hyphal nutrient uptake. Florida Agricultural Experimental Station Journal Series No. 7773.  相似文献   

16.
The effect of root exudates from mycorrhizal and non-mycorrhizal tomato plants on microconidia germination of the tomato pathogen Fusarium oxysporum f. sp. lycopersici was tested. Microconidia germination was enhanced in the presence of root exudates from mycorrhizal tomato plants. The more tomato plants were colonized by the arbuscular mycorrhizal fungus Glomus mosseae, the more microconidia germination was increased, indicating that alterations of the exudation pattern depended on the degree of root AM colonization. Moreover, alterations of the exudation pattern of mycorrhizal plants are not only local, but also systemic. Testing the exudates from plants with a high and a low P level revealed that the alterations of the root exudates from mycorrhizal plants, resulting in a changed effect on microconidia germination, are not due to an improved P status of mycorrhizal plants.  相似文献   

17.
Plant growth enhancing effects of arbuscular mycorrhizal (AM) fungi are suitably quantified by comparisons of mycorrhizal and non-mycorrhizal plant growth responses to added phosphorus (P). The ratio between the amounts of added P required for the same yield of mycorrhizal and non-mycorrhizal plants is termed the relative effectiveness of the mycorrhiza. Variation in this relative effectiveness was examined for subterranean clover grown on a high P-fixing soil. Plants were either left non-mycorrhizal or inoculated with one of three AM fungal species with well-characterised differences in external hyphal spread. With no P added, plants from all treatments produced <10% of their maximum growth achieved at non-limiting P supply. The growth response of non-mycorrhizal plants was markedly sigmoid. Mycorrhizal growth responses were not sigmoid but their shape was two-phased. The first phase was an asymptotic approach to 25–30% of maximum growth, followed by a second asymptotic rise to maximum growth. Growth effects of Glomus invermaium and Acaulospora laevis were quite similar. Plants in these treatments produced up to four times greater shoot dry biomass than non-mycorrhizal plants. Scutellospora calospora was less effective. The relative effectiveness of AM fungi varied with the level of P application. This is expected to apply to all soils on which a sigmoid response is obtained for growth of non-mycorrhizal plants. In a simple approximation the relative effectiveness was calculated to range from 1.46 to 15.57. Shoot P contents were increased by up to 25 times by A. laevis, significantly more than by the other two fungi. The further mycelial spread of this fungus is thought to have contributed to its relatively greater effect on plant P content.  相似文献   

18.
In the present work, the following hypotheses were tested: (1) the negative effects of mycorrhization over host plant productivity in N-limited conditions are due to N retention by the fungal partner and not due to excessive C drainage; (2) If mycorrhization results in decreased N uptake, the host plant decreases its C investment in fungal growth. The effects of mycorrhization over a wide range of combinations between N availability, N concentration in plant tissues, and degree of mycorrhizal colonization were studied in Pinus pinaster L. mycorrhizal with Pisolithus tinctorius. Several plant productivity parameters, the seedlings’ N status, chl a fluorescence (JIP test), and mycorrhizal colonization were measured. N was always limiting. A gradient of mycorrhizal effects over the host plant’s growth and vitality was successfully obtained. The mycorrhizal effects on plant growth and N uptake were very strongly and positively correlated, and no evidence was found of a C limitation to growth, confirming hypothesis 1. Indications were found that the plants continued to provide C to the fungus although the N supplied by it was increasingly lower, denying hypothesis 2. A new index, the mycorrhizal N demand–supply balance, was found to efficiently explain, and to have a curvilinear relation with, the variation in response to mycorrhization. The mycorrhizal effect on host plant growth was not related to a negative effect on its photosynthetic performance and, therefore, reflected changes in resource allocation between host plant and mycorrhizal fungus, not in plant vitality.  相似文献   

19.
The beneficial effect of mycorrhization on photosynthetic gas exchange of host plants under drought conditions could be related to factors other than changes in phosphorus nutrition and water uptake. Our objective was to study the influence of drought on phytohormones and gas exchange parameters in Medicago sativa L. cv. Aragón associated with or in the absence of arbuscular mycorrhizal (AM) fungi and/or nitrogen-fixing bacteria. Four treatments were used: (1) plants inoculated with Glomus fasciculatum (Taxter sensu Gerd.) Gerdemann and Trappe and Rhizobium meliloti 102 F51 strain (MR); (2) plants inoculated with only Rhizobium (R); (3) plants inoculated with only mycorrhizae (M); and (4) non-inoculated plants (N). When endophytes were well established, treatments received different levels of phosphorus and nitrogen in the nutrient solution in order to obtain plants similar in size. Sixty days after planting, plants were subjected to two cycles of drought and recovery. Midday leaf water potential (Ψ), CO2 exchange rate (CER), leaf conductance (gw) and transpiration (T), as well as leaf and root abscisic acid (ABA) and cytokinin concentrations were measured after the second drought period. Gas exchange parameters were determined by infrared gas analysis. Cytokinins and ABA levels in tissues were analysed by ELISA and HPLC, respectively. Nodulated R and MR plants had the lowest ABA concentrations in roots under well-watered conditions. Water stress increased ABA concentrations in leaves of N, R and MR plants, while ABA concentration in M plants did not change. The highest production of ABA under water deficit was in the roots of non-mycorrhizal plants. The ratio of ABA to cytokinin concentration strongly increased in leaves and roots of non-mycorrhizal plants under drought. By contrast, this ratio was lowered in roots of M plants and remained unchanged in leaves and roots of MR plants when stress was imposed. The highest leaf conductances and transpirational fluxes under well-watered conditions were those of nitrogen-fixing R and MR plants, but these results were not impaired with increased CO2 exchange rates. Photosynthesis, leaf conductance and transpiration rates decreased in all treatments when stress was imposed, with the strongest decrease occurring in non-mycorrhizal plants. The relationships found between these gas exchange parameters and the hormone concentrations in stressed alfalfa tissues suggest that microsymbionts have an important role in the control of gas exchange of the host plant through hormone production in roots and the ABA/cytokinin balance in leaves. The most relevant effect of mycorrhizal fungi was observed under drought conditions.  相似文献   

20.
In common with many plants native to low P soils, jarrah (Eucalyptus marginata) develops toxicity symptoms upon exposure to elevated phosphorus (P). Jarrah plants can establish arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) associations, along with a non-colonizing symbiosis described recently. AM colonization is known to influence the pattern of expression of genes required for P uptake of host plants and our aim was to investigate this phenomenon in relation to P sensitivity. Therefore, we examined the effect on hosts of the presence of AM and ECM fungi in combination with toxic pulses of P and assessed possible correlations between the induced tolerance and the shoot P concentration. The P transport dynamics of AM (Rhizophagus irregularis and Scutellospora calospora), ECM (Scleroderma sp.), non-colonizing symbiosis (Austroboletus occidentalis), dual mycorrhizal (R. irregularis and Scleroderma sp.), and non-mycorrhizal (NM) seedlings were monitored following two pulses of P. The ECM and A. occidentalis associations significantly enhanced the shoot P content of jarrah plants growing under P-deficient conditions. In addition, S. calospora, A. occidentalis, and Scleroderma sp. all stimulated plant growth significantly. All inoculated plants had significantly lower phytotoxicity symptoms compared to NM controls 7 days after addition of an elevated P dose (30 mg P kg?1 soil). Following exposure to toxicity-inducing levels of P, the shoot P concentration was significantly lower in R. irregularis-inoculated and dually inoculated plants compared to NM controls. Although all inoculated plants had reduced toxicity symptoms and there was a positive linear relationship between rank and shoot P concentration, the protective effect was not necessarily explained by the type of fungal association or the extent of mycorrhizal colonization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号