首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The biochemical basis of resistance in castor (Ricinus communis L.) to Fusarium wilt, caused by the pathogen Fusarium oxysporum f. sp. ricini, was investigated. Induction of plant defence against pathogen attack is regulated by a complex network of different signals. Thus changes in various biochemical defenses including antioxidant enzymes, phenolic compounds and pathogenesis related (PR) proteins were investigated in the roots of resistant and susceptible genotypes of castor at 0, 24, 48 and 72 h.a.i. Infection by F. oxysporum significantly increased the superoxide dismutase (SOD) and peroxidase (POX) activities in the roots of susceptible genotypes, while the catalase (CAT) activities were appreciably higher in the roots of resistant genotypes at different stages. Constitutive levels of ascorbate peroxidase (APX) and polyphenol oxidase (PPO) were higher in the resistant genotypes. Also, the activities of phenylalanine ammonia lyase (PAL) and β 1, 3 glucanase significantly increased in the roots of the resistant genotypes after infections. The rate of increment of thiobarbituric acid reactive substances (TBARS) was higher in resistant genotypes after infection. Analysis of isozyme banding pattern of SOD, POX, PPO and esterase on native PAGE electrophoresis revealed that interaction between plant and fungi invoked various isozymes at 48 h of infection. SOD 3 was observed only in resistant genotypes at 24 h.a.i. except Geeta. Similarly induction of POX 5 was observed only in resistant genotypes at 48 h of infection, though the intensity of POX 5 was very less.  相似文献   

2.
The study focused on the dynamics of Malondialdehyde (MDA) contents and the activities of protective enzymes in the leaves of alfalfa varieties with various resistances to Aphis medicaginis Koch. The results showed that susceptible varieties always had higher MDA contents than resistant varieties, and the MDA contents tended to rise in both susceptible and resistant varieties in period of the varieties were pierced and sucked by aphids. Superoxide dismutase (SOD), peroxidase (POD) and phenylalanine ammonia-lyase (PAL) activities in susceptible varieties were lower than those in resistant varieties, and in both susceptible and resistant varieties the SOD and POD activities tended to rise at first and then decline, and the PAL activities rose to their peaks and then tended to remain stable. In the susceptible and resistant varieties the catalase (CAT) activities appeared to rise and decline alternatively; the PPO activities in resistant varieties were lower than those in susceptible varieties in early growth, but higher than those in susceptible varieties in later growth. It follows that infested by aphids, susceptible and resistant varieties had the MDA contents, variations of SOD, POD, PAL and PPO activities were closely correlated with their aphid resistances, hence these indexes could be used as physiological indexes for testing aphid resistance of alfalfa, whereas the relations of their CAT activities to their resistances needed to be further studied.  相似文献   

3.
Huang W  Jia Z K  Han Q F 《农业工程》2007,27(6):2177-2183
The study focused on the dynamics of Malondialdehyde (MDA) contents and the activities of protective enzymes in the leaves of alfalfa varieties with various resistances to Aphis medicaginis Koch. The results showed that susceptible varieties always had higher MDA contents than resistant varieties, and the MDA contents tended to rise in both susceptible and resistant varieties in period of the varieties were pierced and sucked by aphids. Superoxide dismutase (SOD), peroxidase (POD) and phenylalanine ammonia-lyase (PAL) activities in susceptible varieties were lower than those in resistant varieties, and in both susceptible and resistant varieties the SOD and POD activities tended to rise at first and then decline, and the PAL activities rose to their peaks and then tended to remain stable. In the susceptible and resistant varieties the catalase (CAT) activities appeared to rise and decline alternatively; the PPO activities in resistant varieties were lower than those in susceptible varieties in early growth, but higher than those in susceptible varieties in later growth. It follows that infested by aphids, susceptible and resistant varieties had the MDA contents, variations of SOD, POD, PAL and PPO activities were closely correlated with their aphid resistances, hence these indexes could be used as physiological indexes for testing aphid resistance of alfalfa, whereas the relations of their CAT activities to their resistances needed to be further studied.  相似文献   

4.
黄伟  贾志宽  韩清芳 《生态学报》2007,27(6):2177-2183
研究了蚜虫危害胁迫后不同抗蚜性苜蓿品种叶片内丙二醛含量及防御性酶活性的动态变化。结果表明:在蚜虫刺吸诱导的过程中,高感品种的MDA含量始终高于高抗品种,并且高感和高抗品种均保持上升的趋势;高感品种的SOD、POD和PAL活性始终低于高抗品种,其中高感和高抗品种的SOD和POD活性均表现先上升后下降的趋势,而PAL活性上升到高峰后均趋于稳定;CAT活性在高感和高抗品种间表现为交替的上升下降;高抗品种的PPO活性前期低于高感品种,而后期高于高感品种。由此可见,在蚜虫危害胁迫下,高感和高抗品种间MDA、SOD、POD、PAL和PPO活性的变化与苜蓿的抗蚜性密切相关,均可作为苜蓿抗蚜性鉴定的生理指标,而CAT活性变化与苜蓿抗蚜性的联系有待进一步研究。  相似文献   

5.
绿盲蝽取食与机械损伤对棉花叶片内防御性酶活性的影响   总被引:3,自引:0,他引:3  
毛红  陈瀚  刘小侠  张青文 《昆虫知识》2011,48(5):1431-1436
为探明绿盲蝽Apolygus lucorum (Mayer-Dür)取食和机械损伤对不同抗性棉花叶片内主要防御酶活性的影响以及防御酶与棉花抗绿盲蝽性的关系,以棉花3个不同抗性品系为材料,室内条件下测定绿盲蝽取食和机械损伤处理后棉叶中苯丙氨酸解氨酶(PAL)、过氧化物酶(POD)和多酚氧化酶(PPO)的活性.结果表明:对...  相似文献   

6.
Exogenous foliar application of β-aminobutyric acid (BABA) led to a significant reduction in disease severity in Brassica carinata caused by Alternaria brassicae. To get a better insight about changes in defence-related enzymes like phenylalanine ammonia lyase (PAL) and polyphenol oxidase (PPO), isoform analysis of superoxide dismutase (SOD) and peroxidase (POX) were studied. BABA-treated plants showed a significant increase in PAL, PPO enzyme activities and total phenolic content in response to pathogen inoculation. However, isoform analysis of SOD and POX revealed no change in isoform number but a quantitative change in activity was observed in response to pathogen.  相似文献   

7.
Bacterial stalk rot (BSR) of maize caused by Dickeya zeae is an important disease in northwest region of India. In the current study, eighty maize lines were evaluated for resistance against this disease. Of these, 20 were moderately resistant, 25 were moderately susceptible and the rest were highly susceptible to BSR. Six lines from each set were randomly selected. Activities of three antioxidant enzymes, viz. phenylalanine ammonia lyase (PAL), peroxidase (POX) and polyphenol oxidase (PPO) were analysed from these three sets of maize lines representing different levels of resistance. A trend of elevated activity of PAL, POX and PPO was observed in all the three sets of maize lines. The results showed significantly more activity of these three enzymes in moderately resistant than highly susceptible maize lines. The activity of PAL and PPO peaked after 48 hr and of POX after 72 hr of challenge inoculation by D. zeae in all the maize lines. The activity of these enzymes further correlated negatively with disease development. Our results show that PAL, POX and PPO play an important role in contributing towards resistance in maize against BSR.  相似文献   

8.
Hyperhydricity is a physiological abnormality that frequently affects shoots that are vegetatively propagated in vitro. In this study, sugar beet (Beta vulgaris L. cv. Felicita) shoot tip explants were cultured on Murashige and Skoog medium supplemented with different concentrations of polyethylene glycol (PEG) 6000. We observed that higher concentrations of PEG 6000 and longer exposure (up to 4 wk) resulted in increasing levels of hyperhydration as well as browning and/or blackening of tissues in culture. A comparison of hyperhydric shoots with controls on the 28th day showed a marked increase in the content of water, phenolics, and malondialdehyde (MDA), which was positively correlated with an increase in the accumulation of PEG 6000. Selected antioxidant enzyme activities, including superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), guaiacol peroxidase (POX), and polyphenol oxidase (PPO) also increased in hyperhydric shoots, especially at lower concentrations of PEG 6000. Regression analysis indicated that strong linear relationships exist between SOD–APX (R 2?=?0.932), SOD–CAT (R 2?=?0.753), SOD–total phenolic content (R 2?=?0.966), APX–PPO (R 2?=?0.842), APX–total phenolic content (R 2?=?0.904), POX–CAT (R 2?=?0.751), and CAT–total phenolic content (R 2?=?0.806). Despite the correlation between different antioxidant enzymes and between the antioxidant enzymes and antioxidant compounds, was not able to prevent ROS damage in hyperhydric shoots. The negative correlation between SOD–MDA, POX–MDA, CAT–MDA, and MDA–total phenolics also indicated an increase in antioxidant enzyme activities, yet the increase in these antioxidant compound contents did not prevent lipid peroxidation of in vitro propagated beet shoots.  相似文献   

9.
The hemibiotrophic pathogen Fusarium culmorum (Fc) causes crown and root rot (CRR) in wheat. In this study, MeJA treatment was done 6 h after pathogen inoculation (hai) to focus the physiological and biochemical responses in root tissue of the susceptible wheat cv Falat, partially resistant cv Pishtaz and the tolerant cv Sumai3 at the beginning of the necrotrophic stage. The results indicate that treatment with MeJA at 6 hai significantly delayed the necrotic progress in cv Falat, whereas no significant difference was seen in other cultivars. The activities of pathogen responsive defense-related enzymes (SOD, CAT, POX, PPO, LOX and PAL), total phenols and callose contents were higher in Sumai3, while treatment with MeJA significantly increased these enzymes activities and total phenols content in Falat, signifying the most sensitive cultivar which had a weak reaction to the pathogen but a strong response to MeJA treatment. Additionally, MeJA treatment decreased the level of H2O2 and MDA contents particularly in cv Falat. This is the first work reporting the regulation of defense-related enzymes by MeJA treatment at particular time point of 6 hai suggests the possible role of JA in regulating basal resistance in CRR pathogen–wheat interaction. Taken together, our data add new insights into the mechanism of wheat defense including enzymatic events controlling wheat protection against Fc infection.  相似文献   

10.
The effects of drought on growth, protein content, lipid peroxidation, superoxide dismutase (SOD), peroxidase (POX), catalase (CAT) and polyphenol oxidase (PPO) were studied in leaves and roots of Sesamum indicum L. cvs. Darab 14 and Yekta. Four weeks after sowing, plants were grown under soil moisture corresponding to 100, 75, 50 and 25 % field capacity for next four weeks. Fresh and dry masses, and total protein content in leaves and roots decreased obviously under drought. However, several new proteins appeared and content of some proteins was affected. Measurement of malondialdehyde content in leaves and roots showed that lipid peroxidation was lower in Yekta than in Darab 14. Severe stress increased SOD, POX, CAT and PPO activities in leaves and roots, especially in Yekta. According to the present study Yekta is more resistant to drought than Darab 14.  相似文献   

11.
Pigeonpea [Cajanus cajan (L.) Millsp.] is a waterlogging-sensitive legume crop. We studied the effect of waterlogging stress on hydrogen peroxide (H2O2) content, lipid peroxidation and antioxidant enzyme activities in two pigeonpea genotypes viz., ICPL-84023 (waterlogging resistant) and MAL-18 (waterlogging susceptible). In a pot experiment, waterlogging stress was imposed for 6 days at early vegetative stage (20 days after sowing). Waterlogging treatment significantly increased hydrogen peroxide accumulation and lipid peroxidation, which indicated the extent of oxidative injury posed by stress conditions. Enzyme activities of peroxidase (POX), catalase (CAT), ascorbate peroxidase (APX), superoxide dismutase (SOD) and polyphenol oxidase (PPO) increased in pigeonpea roots as a consequence of waterlogged conditions, and all the enzyme activities were significantly higher in waterlogged ICPL-84023 than in MAL-18. POX activity was the maximum immediately after imposing stress, therefore, it was suggested to be involved in early scavenging of H2O2, while rest of the enzymes (CAT, APX, SOD and PPO) were more important in late responses to waterlogging. Present study revealed that H2O2 content is directly related to lipid peroxidation leading to oxidative damage during waterlogging in pigeonpea. Higher antioxidant potential in ICPL-84023 as evidenced by enhanced POX, CAT, APX, SOD and PPO activities increased capacity for reactive oxygen species (ROS) scavenging and indicated relationship between waterlogging resistance and antioxidant defense system in pigeonpea.  相似文献   

12.
棉花抗蚜性与苯丙氨酸解氨酶活性的关系   总被引:4,自引:0,他引:4  
为探讨苯丙氨酸解氨酶活性与棉花抗蚜性的关系,在室内人工接蚜危害和田间自然蚜群2种条件下,测定不同抗蚜性棉花品种受棉蚜Aphis gossypii Glover危害后叶片的PAL活性。结果表明:未受棉蚜危害时,抗、感品种PAL活性无明显差异;棉蚜危害胁迫棉花PAL活性升高,抗蚜品种受到棉蚜危害诱导所产生的PAL活性远比感蚜品种高。田间有蚜株率与棉花叶片苯丙氨酸解氨酶活性的呈显著的负相关关系。研究说明PAL酶活性对棉花的抗蚜性有一定的影响。  相似文献   

13.
This work describes, for the first time, the changes taking place in the antioxidative system of the leaf apoplast in response to plum pox virus (PPV) in different Prunus species showing different susceptibilities to PPV. The presence of p-hydroxymercuribenzoic acid (pHMB)-sensitive ascorbate peroxidase (APX) (class I APX) and pHMB-insensitive APX (class III APX), superoxide dismutase (SOD), peroxidase (POX), NADH-POX, and polyphenoloxidase (PPO) was described in the apoplast from both peach and apricot leaves. PPV infection produced different changes in the antioxidant system of the leaf apoplast from the Prunus species, depending on their susceptibility to the virus. In leaves of the very susceptible peach cultivar GF305, PPV brought about an increase in class I APX, POX, NADH-POX, and PPO activities. In the susceptible apricot cultivar Real Fino, PPV infection produced a decrease in apoplastic POX and SOD activities, whereas a strong increase in PPO was observed. However, in the resistant apricot cultivar Stark Early Orange, a rise in class I APX as well as a strong increase in POX and SOD activities was noticed in the apoplastic compartment. Long-term PPV infection produced an oxidative stress in the apoplastic space from apricot and peach plants, as observed by the increase in H2O2 contents in this compartment. However, this increase was much higher in the PPV-susceptible plants than in the resistant apricot cultivar. Only in the PPV-susceptible apricot and peach plants was the increase in apoplastic H2O2 levels accompanied by an increase in electrolyte leakage. No changes in the electrolyte leakage were observed in the PPV-inoculated resistant apricot leaves, although a 42% increase in the apoplastic H2O2 levels was produced. Two-dimensional electrophoresis analyses revealed that the majority of the polypeptides in the apoplastic fluid had isoelectric points in the range of pI 4-6. The identification of proteins using MALDI-TOF (matrix-assisted laser desorption/ionization-time of flight) and peptide mass fingerprinting analyses showed the induction of a thaumatin-like protein as well as the decrease of mandelonitrile lyase in peach apoplast due to PPV infection. However, most of the selected polypeptides showed no homology with known proteins. This fact emphasizes that, at least in Prunus, most of the functions of the apoplastic space remain unknown. It is concluded that long-term PPV infection produced an oxidative stress in the leaf apoplast, contributing to the deleterious effects produced by PPV infection in leaves of inoculated, susceptible Prunus plants.  相似文献   

14.
Sixty days old mung beans Vigna radiata (L.) Wilczek were treated with soil applied paclobutrazol, at the rate of 500 μg per 10 inch pot. After seven days of application, the plants along with untreated controls were transferred to the dark for induction of senescence. The treated plants exhibited higher chlorophyll content and activity of catalase (CAT) compared to controls. In contrast, control leaves had higher activity of peroxidase (POX) and a higher content of malondialdehyde (MDA), while superoxide dismutase (SOD) activity remained unchanged. Upon transfer to dark, chlorophyll content declined in both control and treated plants but the decline was much faster in control. The activity of CAT decreased significantly in controls while POX activity and MDA content remained higher in control than in treated plants. Paclobutrazol delayed the dark-induced senescence in attached mung bean leaves in association with the maintenance of higher activity of CAT, low activity of POX, and low MDA contents. The variation in SOD activity was not discernible with senescence levels.  相似文献   

15.
Abstract

Partial rootzone drying (PRD) and regulated deficit irrigation (RDI) are water saving irrigation systems that have been developed to increase water use efficiency (WUE) without significant yield reduction. To examine whether tomato responded differently to RDI and PRD, we compared the changes in antioxidative defenses in tomato plants using a split-root system. Tomato plants were grown for 21 days under controlled conditions with their roots separated equally between two soil compartments. Three irrigation treatments were imposed: Control, receiving an amount of water equivalent to 100% of plant transpiration; PRD in which one compartment was watered with 50% of the amount of water supplied to the controls, allowing one-half of the root system to be exposed to dry soil, and switching irrigation between sides weekly; RDI in which 50% of the amount of water given to the controls was supplied, half to each side of the root system. Relative water content (RWC), midday leaf Ψ and chlorophyll content decreased largely in RDI-treated plants, whereas the PRD plants exhibited relatively higher Ψ and RWC values. An enhanced level of lipid peroxidation in both roots and leaves indicated that PRD and RDI caused oxidative stress in tomato plants. In leaves, superoxide dismutase (SOD), soluble peroxidase (POX) and polyphenol oxidase (PPO) activities showed an increase in the early phase of water deficit, and then decreased in the remaining phase of the drying cycle. However, the increase was more pronounced under RDI. Catalase (CAT) activity declined continuously from the onset of PRD and RDI treatments to below the control level, and the reduction was less under PRD than RDI. POX cell-wall associated activities exceeded the control level by 450% and 230%, respectively, under RDI and PRD. At the root level, while CAT activity also decreased under both PRD and RDI, the activities of SOD, POX and PPO significantly increased and their activities showed an alternating increase/decrease paralleling the alternating irrigation in PRD-treated roots. As a result of the difference in POX and PPO activities between the two water treatments applied, PRD-treated plants accumulated more soluble and cell-wall bound phenolic compounds.  相似文献   

16.
以苹果树腐烂病菌LXS080601、感病苹果品种‘富士’和抗病砧木‘平邑甜茶’愈伤组织为材料,测定腐烂病菌侵染后,愈伤组织内过氧化物酶(POD)、多酚氧化酶(PPO)、超氧化物歧化酶(SOD)和苯丙氨酸解氨酶(PAL)活性及丙二醛(MDA)含量的动态变化。结果显示,接种LXS080601后,‘富士’愈伤组织的发病严重度和病情指数均明显大于‘平邑甜茶’;感病品种MDA含量上升速度快,于接种后3 d增幅为28.02%,且变幅较大,为–0.32%~36.39%,而抗病砧木MDA含量变化较小,仅为–2.17%~7.46%。同时,腐烂病菌侵染提高了愈伤组织内4种防御酶活性,接种后1~2 d,PPO和POD酶活性达到高峰,接种后3~4 d,PAL和SOD酶到达活性高峰;除PPO外,‘平邑甜茶’PAL、SOD和POD酶活性变化均明显高于‘富士’,且整个侵染过程酶活性维持在较高水平,而‘富士’体内3种酶活性快速下降至对照水平,表明‘平邑甜茶’通过提高抗氧化酶活性减少体内活性氧的积累,降低膜脂过氧化产物MDA的形成,增强了对腐烂病菌侵染的抗性。  相似文献   

17.
茉莉酸对棉花单宁含量和抗虫相关酶活性的诱导效应   总被引:4,自引:0,他引:4  
杨世勇  王蒙蒙  谢建春 《生态学报》2013,33(5):1615-1625
以植物生长调节物茉莉酸(Jasmonic acid,JA)为诱导子,以常规棉为研究对象,探讨了外源茉莉酸对棉花幼苗单宁和蛋白酶抑制素以及其它抗虫相关酶活性诱导的浓度依赖性和持久性,讨论了棉花抗虫相关物质的抗虫效果.结果表明,0.01、0.1和1.0 mmol/L茉莉酸都能在2周内诱导棉花单宁和胰蛋白酶抑制素(Proteinase inhibitors,PIs)含量增加,诱导多酚氧化酶(Polyphenol oxidase,PPO)、苯丙氨酸解氨酶(Phenylalanine ammonia-lyase,PAL)、过氧化物酶(Peroxidase,POD)和过氧化氢酶(Catalase,CAT)活性升高.对3种浓度茉莉酸的诱导效应进行分析表明,0.1 mmol/L茉莉酸对于诱导PIs、PPO、POD和CAT最有效,0.1和1.0 mmol/L茉莉酸对于诱导棉花单宁和苯丙氨酸解氨酶等效,二者的诱导效应均高于0.01 mmol/L.对茉莉酸诱导抗性的持久性进行分析表明,最佳诱导效应发生的时间各不相同:POD活性在JA处理后第1天最高,随后呈下降趋势,PIs和单宁含量分别在JA处理后第7天和第14天达最大值;JA处理后第1天和第7天的PPO活性无明显差异,但明显高于第14天;JA处理后第7天和第14天的PAL活性无明显差异,但明显高于第1天;JA处理后第1、7和14天棉花叶片的CAT活性均无明显差异.以上结果表明,茉莉酸可通过增加棉叶单宁和PIs含量、提高棉叶PAL、PPO、POD和CAT活性等增强棉花幼苗的抗虫性.  相似文献   

18.
Assessment of the differential expression of antioxidative enzymes and their isozymes, was done in 30 day-old ex vitro raised plants of three highly resistant (DP-25, Jhankri and Duradim) and one highly susceptible (N-118) genotypes of taro [Colocasia esculenta (L.) Schott]. Antioxidative enzymes were assayed in the ex vitro plants, 7 days after inoculation with the spores (15,000 spores ml−1 water) of Phytophthora colocasiae Raciborski to induce taro leaf blight disease. Uninoculated ex vitro plants in each genotype were used as control. The activity of superoxide dismutase (SOD) and guaiacol peroxidase (GPX) increased under induced blight condition when compared with control. Increase in antioxidative enzymes was more (67–92%) in the resistant genotypes than that (21–29%) of the susceptible genotype. The zymograms of SOD and GPX in the resistant genotypes, with pathogenic infection, showed increased activity for anodal isoform of SOD and increased expression and/or induction of either POX 1 or POX 2 isoforms of GPX. In susceptible genotype, expression of the above isoforms was faint for SOD and nearly absent for GPX under both blight free and induced blight conditions. Induction and/or increased activity of particular isoform of SOD and GPX against infection of Phytophthora colocasiae in the resistant genotypes studied led to the apparent conclusion of linkage of isozyme expression with blight resistance in taro. This might be an important criterion in breeding of taro for Phytophthora leaf blight resistance.  相似文献   

19.
Induced defense was studied in three groundnut genotypes ICGV 86699 (resistant), NCAc 343 (resistant) and TMV 2 (susceptible) in response to Spodoptera litura infestation and jasmonic acid (JA) application. The activity of the oxidative enzymes [peroxidase (POD) and polyphenol oxidase (PPO)] and the amounts other host plant defense components [total phenols, hydrogen peroxide (H2O2), malondialdehyde (MDA), and protein content] were recorded at 24, 48, 72 and 96 h in JA pretreated (one day before) plants and infested with S. litura, and JA application and simultaneous infestation with S. litura to understand the defense response of groundnut genotypes against S. litura damage. Data on plant damage, larval survival and larval weights were also recorded. There was a rapid increase in the activities of POD and PPO and in the quantities of total phenols, H2O2, MDA and protein content in the JA pretreated + S. litura infested plants. All the three genotypes showed quick response to JA application and S. litura infestation by increasing the defensive compounds. Among all the genotypes, higher induction was recorded in ICGV 86699 in most of the parameters. Reduced plant damage, low larval survival and larval weights were observed in JA pretreated plants. It suggests that pretreatment with elicitors, such as JA could provide more opportunity for plant defense against herbivores.  相似文献   

20.
Plant growth-promoting rhizobacteria Bacillus pumilus strain INR-7 effectively induced downy mildew resistance in pearl millet. The histo-chemical analysis of B. pumilus INR-7 mediated systemic resistance showed that induced resistance is associated with the expression of hypersensitive response (HR), enhanced lignification, callose deposition, and hydrogen peroxide in addition to the increased expression of the defense enzymes β-1,3-glucanase, chitinase, phenylalanine ammonia lyase (PAL), peroxidase (POX), and polyphenol oxidase (PPO). There was rapid expression of HR in the resistant pearl millet as well as the susceptible seedlings induced by treatment with INR-7 after pathogen infection when compared to the susceptible seedlings, which expressed HR at later hours. Examination of inoculated pearl millet tissues by microscopy showed that lignin, callose, and hydrogen peroxide accumulated earlier and to higher levels in resistant and induced resistant seedlings. Accumulation of various defense enzymes was an immediate response to Sclerospora graminicola infection and preceded the development of induced resistance elicited by strain INR-7. Tissue print analysis showed that defense enzymes were found to be localized in the vascular bundles and revealed the visual difference in the expression pattern of β-1,3-glucanase, chitinase, PAL, POX, and PPO whose intensity varied among resistant, INR-7 treated, and susceptible pearl millet seedlings. This study clearly demonstrated that the differences between the responses, susceptible, INR-7 treated or resistant pearl millet seedlings recorded differences in the speed, intensity, and pattern of different histo-chemical responses to S. graminicola infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号