首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Plant growth and productivity are greatly affected due to changes in the environmental conditions. In the present investigation, the interactive effects of two important abiotic stresses, i.e., water deficit and Al toxicity, were examined in the seedlings of two rice (Oryza sativa L.) cvs. Malviya-36 (water deficit/Al sensitive) and Vandana (water deficit/Al tolerant). When 15 days grown seedlings were exposed to water deficit (created with 15 % polyethylene glycol 6000) or Al (1 mM AlCl3) treatment or both the treatments together for 48 h, the lengths of root/shoot, relative water content, and chlorophyll greatly declined in the seedlings of the sensitive cultivar, whereas in the tolerant seedlings, either little or insignificant decline in these parameters was observed due to the treatments. Seedlings subjected to water deficit or Al treatment alone or in combination showed increased intensity of the isoenzyme activity bands of superoxide dismutase (SOD), guaiacol peroxidase (GPX), and ascorbate peroxidase (APX) in in-gel activity staining studies. Water deficit caused decrease in intensity of catalase (CAT) activity bands; however, when seedlings were exposed to AlCl3 alone or in combination with water deficit, the intensity of the CAT isoforms increased in both the rice cultivars. The level of expression of the activity bands of SOD, CAT, GPX, and APX was always higher in the seedlings of tolerant cv. Vandana compared to the sensitive cv. Malviya-36 under both controls as well as stress treatments. Higher intensity of isozymes representing higher activity levels of antioxidative enzymes in the rice seedlings and their further increase under water deficit, Al exposure, or in combination of both the stresses appears to serve as useful marker for specifying a combination of water deficit and Al tolerance in rice.  相似文献   

3.
4.
To understand the functions of antioxidant enzymes during leaf development in sweetpotato, we investigated the activities of several antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POX), ascorbate peroxidase (APX) and catalase (CAT). Significant increases were observed in the activities of SOD, POX and APX during the late stage of leaf development, whereas CAT activity increased during the early developmental stage. By RT-PCR analysis, various POX and APX genes showed differential expression patterns during leaf development. Four POX genes swpa3, swpa4, swpa6, swpb4 and one APX gene swAPX1 exhibited high levels of gene expression during the senescence stage of leaf development, but two POX genes, swpa1 and swpa7 were preferentially expressed at both the mature green and the late senescence stages of leaf development. These results indicate that hydrogen peroxide (H2O2)-related antioxidant enzymes are differentially regulated in the process of leaf development of sweetpotato.  相似文献   

5.
Abstract

The effects of exogenous silicon (Si) on leaf relative water content (RWC), and the growth, Si concentrations, lipid peroxidation (MDA), lipoxygenase (LOX) activity, proline and H2O2 accumulation, non-enzymatic antioxidant activity (AA) and the activity of some antioxidant enzymes (superoxide dismutase, SOD; catalase, CAT; ascorbate peroxidase, APX) in shoots of ten chickpea cultivars grown under drought were investigated. Drought stress decreased the growth of all the cultivars while applied Si improved the growth at least five of the 10 chickpea cultivars. Silicon applied to the soil at 100 mg kg?1 significantly increased Si concentrations of the cultivars and counteracted the deleterious effects of drought in 5 of the ten chickpea cultivars by increasing their RWC. In most cultivars tested H2O2, proline and MDA content and LOX activity were increased by drought whereas application of Si decreased their levels. APX activity was increased by drought but it was depressed by Si. In general, SOD and CAT activities of the cultivars were decreased by drought. Depending on cultivars, the CAT activity was decreased, and increased or unchanged in response to applied Si, while the SOD activity of the cultivars increased or unchanged by Si. The non-enzymatic antioxidant activity of the cultivars was also increased by Si. These observations implied an essential role for Si in minimizing drought stress-induced limitation of the growth and oxidative membrane damage in chickpea plants.  相似文献   

6.
The effects of water deficit on photochemical parameters and activities of superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX), as well as, cellular damages were investigated in two clones of Coffea canephora differing in drought tolerance. After 6 days without irrigation, predawn leaf water potential fell to −3.0 MPa that was accompanied by the suppression of net photosynthesis in both clones. The variable to maximum chlorophyll fluorescence ratio remained unchanged regardless of the imposed treatments. Both clones showed a similar decline (about 25%) in the photochemical quenching coefficient, but only the drought-sensitive clone exhibited an enhancement (31%) of thermal deactivation under water deficit conditions. The quantum yield of electron transport decreased similarly in both genotypes. Under drought conditions, activities of SOD, CAT and APX increased to a greater extent in the drought-tolerant clone than in the drought-sensitive one. This seemed to be matched with higher protection against oxidative stress, as judged from the lower levels of lipid peroxidation and electrolyte leakage in the drought-tolerant clone. Thus, the ability to increase the antioxidant system activity in order to limit cellular damages might be an important attribute linked to the drought tolerance in C. canephora.  相似文献   

7.
The objective of the present study was to determine the activity of antioxidant enzymes: superoxide dismutase (SOD), ascorbate peroxidase (APX), and catalase (CAT) and the expression of their genes in two barley genotypes under controlled severe drought. To fulfill this objective, 21-day-old barley plants of two genotypes: Rum and Yarmouk were exposed to controlled severe drought (25% field capacity) for 2, 9, and 16 days. The activity of SOD was significantly high in Rum genotype after 2 days of drought treatment. In Yarmouk genotype, the activity of APX was significantly high after 2 and 9 days of drought treatment. In Rum genotype, CAT2 was upregulated after 9 days of drought treatment and SOD and APX were upregulated after 16 days of drought treatment, whereas CAT2, SOD, and APX were upregulated in Yarmouk genotype after 2 days of drought treatment. The results indicate a unique pattern of activity and gene expression of the antioxidant enzymes in the two barley genotypes under controlled severe drought. Moreover, the data suggest that each genotype utilizes different molecular and biochemical responses under the same drought conditions.  相似文献   

8.
Russian Journal of Plant Physiology - The effects of water deficit on the activity of antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and...  相似文献   

9.
10.
The control of reactive oxygen species (ROS) and the stability of photosynthetic pigments under stress conditions are hypothesized to contribute to drought tolerance. Here we studied how ascorbic peroxidase (APX), superoxide dismutase (SOD), catalase (CAT) isozyme activities and chlorophyll a, b (Chl a, b) and carotenoids (Car) contents responded to water stress and whether they related to presence of a terminal drought tolerance QTL in pearl millet. We used PRLT2/89-33 (QTL donor), H77/833-2 (sensitive), and near-isogenic lines (QTL-NILs) introgressed with the QTL in H77/833-2 background. Under water stress there was no significant change in the total APX activity; only the proportional APX5 activity increased, with higher band intensity in tolerant genotypes. There were no significant changes in total activities of CAT and SOD under water stress, with similar band intensities in all genotypes, and a new CAT isozyme was induced in all genotypes. The photosynthetic pigment content decreased under water stress, although not differently in any genotype. Under water stress, the activities of most APX, CAT and SOD isozymes were closely related to the total chlorophyll/carotenoids ratio. Overall, besides APX5, water stress did not lead to major changes in the profile of isoenzymes involved in ROS scavenging. Similarly, the pigment content under stress did not discriminate genotypes according to the presence/absence of the QTL. This absence of discrimination for the ROS scavenging enzymes and for the pigment content under stress suggests that these traits may not play a key role in terminal drought tolerance in pearl millet.  相似文献   

11.
Oilseed crops are an important natural resource because they can be used for food and renewable energy production. However, oilseed seedling establishment and vigor depend upon the capacity to overcome functional transition, a developmental stage characterized by the consumption of the remaining oil reserves, through β-oxidation and glyoxylate cycle, and the onset of autotrophic metabolism. The increased growth and the acclimation to full photosynthetic activity lead to production of reactive oxygen species and a reorganization of the cell antioxidant systems to achieve a new redox homeostasis. In the present study, catalase (CAT) was inhibited by 3-amino-1,2,4-triazole application during functional transition in sunflower and safflower seedlings to understand the effect of this antioxidant enzyme impairment on the mRNA expression of the glyoxylate cycle enzymes isocitrate lyase (ICL) and malate synthase (MLS), as well as the superoxide dismutase (SOD) activity and ascorbate peroxidase (APX) activity and expression. CAT inhibition led to significant seedling growth reduction and increases in H2O2 content, SOD activity, and mRNA expression of CAT and APX in both species. However, APX activity was induced only in safflower plants. Additionally, ICL and MLS mRNA expressions were upregulated after 6 h of treatment when compared to the control values. These results indicate that under CAT impairment conditions, redox homeostasis at the functional transition phase was partially supported by the SOD and APX antioxidant systems to maintain the seedling photosynthetic establishment.  相似文献   

12.
为探讨光质对白芨(Bletilla striata)组培苗生长发育的影响,对不同光质下白芨组培苗的生长特征、抗氧化酶活性以及酶基因表达进行了研究。结果表明,蓝光和红光对白芨生长有显著促进作用,绿光的作用不明显。除了CAT外,不同光质处理白芨的APX、POD、SOD活性均呈上升趋势,且黄光处理的白芨SOD和APX活性最高,红光处理的POD活性最高,绿光处理的抗氧化酶活性比其他光质的低,蓝光处理35~45 d对抗氧化酶基因表达具有促进作用。因此,红光和黄光促进白芨生根组培苗的长高和生根;不同光质处理总体上提高了白芨氧化酶活性;白芨抗氧化酶基因的表达在蓝光处理下最大。  相似文献   

13.
The present investigation was carried out to characterize genotypic variability in chickpea for water deficit tolerance by exploring the antioxidative defense system and seedling growth. Twenty nine chickpea genotypes including cultivars and advanced lines were grown under control and water deficit conditions induced by adding 3 % mannitol. The genotypes showed differential response in seedling growth under water deficit conditions. The activities of catalase (CAT) and superoxide dismutase (SOD) were observed to be differentially expressed in the roots of various genotypes, under control and water deficit conditions. The contents of H2O2, malondialdehyde (MDA) and proline were also observed to be variable in the roots of all the genotypes, under control and water deficit conditions. Stress tolerance index for the various parameters, viz, CAT and SOD activity, H2O2, MDA and proline content, root length, shoot length and their biomass was determined and the level of stress resistance calculated. The genotypes which showed increased activities of CAT and SOD, decreased contents of H2O2 and MDA together with least affected seedling growth under water deficit conditions exhibited higher stress resistance capacity. Multivariate principal component analysis for all the parameters affected under water deficit conditions, grouped the genotypes into three clusters having different (high, moderate and low) levels of stress resistance. Complete linkage clustering grouped these genotypes into two major clusters-I and II. The genotypes present in sub–sub cluster ‘A1’ and sub cluster ‘B’ of major cluster-I have been observed to possess high stress resistance levels for respective parameters. It can thus be concluded that chickpea genotypes exhibiting increased stress resistance levels in relation to SOD and CAT activities, H2O2 and MDA contents and seedling growth would have higher stress tolerance under water deficit conditions.  相似文献   

14.
Hyperhydricity is a physiological abnormality that frequently affects shoots that are vegetatively propagated in vitro. In this study, sugar beet (Beta vulgaris L. cv. Felicita) shoot tip explants were cultured on Murashige and Skoog medium supplemented with different concentrations of polyethylene glycol (PEG) 6000. We observed that higher concentrations of PEG 6000 and longer exposure (up to 4 wk) resulted in increasing levels of hyperhydration as well as browning and/or blackening of tissues in culture. A comparison of hyperhydric shoots with controls on the 28th day showed a marked increase in the content of water, phenolics, and malondialdehyde (MDA), which was positively correlated with an increase in the accumulation of PEG 6000. Selected antioxidant enzyme activities, including superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), guaiacol peroxidase (POX), and polyphenol oxidase (PPO) also increased in hyperhydric shoots, especially at lower concentrations of PEG 6000. Regression analysis indicated that strong linear relationships exist between SOD–APX (R 2?=?0.932), SOD–CAT (R 2?=?0.753), SOD–total phenolic content (R 2?=?0.966), APX–PPO (R 2?=?0.842), APX–total phenolic content (R 2?=?0.904), POX–CAT (R 2?=?0.751), and CAT–total phenolic content (R 2?=?0.806). Despite the correlation between different antioxidant enzymes and between the antioxidant enzymes and antioxidant compounds, was not able to prevent ROS damage in hyperhydric shoots. The negative correlation between SOD–MDA, POX–MDA, CAT–MDA, and MDA–total phenolics also indicated an increase in antioxidant enzyme activities, yet the increase in these antioxidant compound contents did not prevent lipid peroxidation of in vitro propagated beet shoots.  相似文献   

15.
Effects of the antioxidant system and chlorophyll fluorescence on drought tolerance of four common bean (Phaseolus vulgaris L.) cultivars were studied. The cultivars were positioned in the order of a decrease in their drought tolerance: Yakutiye, Pinto Villa, Ozayse, and Zulbiye on the basis of changes in the water potential, stomatal conductance, photosynthetic pigment content, and lipid peroxidation. Under drought conditions, the level of H2O2 was not changed in cv. Pinto Villa but decreased in other cultivars. Antioxidant enzymes (superothide dismutase (SOD), guaiacol peroxidase (GPX), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR)) were generally activated in all cultivars. Interestingly, CAT, APX, and GR activities were not changed in cv. Pinto Villa, APX activity decreased in cv. Yakutiye, and CAT activity was not changed in cv. Zulbiye. The increases in SOD and GPX activities in cv. Ozayse were higher than in other cultivars. Drought stress reduced the effective quantum yield of PS2 (ΦPS2) and the photochemical quenching (qp), while it increased nonphotochemical quenching (NPQ) in all cultivars. The reduction or increase was more pronounced in cv. Zulbiye. There were generally significant correlations between qp, NPQ, and ROS scavenging by SOD and APX. Also, there were significant correlations between SOD and qp in tolerant cultivars and APX and qp in sensitive ones. The results indicate that activation of SOD and APX was closely related to the efficiency of PS2 in common bean cultivars. This interaction was essential for protection of photosystems and plant survival under drought.  相似文献   

16.
Abstract

Two genotypes (Pusa 9531 and PS 16) of moongbean [Vigna radiata (L) Wilczek], differing in photosynthetic capacity were grown for 30 days in earthen pots at three field capacities (100, 75 and 50%), and the possible role of biochemical alterations and antioxidant metabolism in conferring photosynthetic capacity was determined by measuring Rubisco activity, photosynthetic traits, lipid peroxidation and assaying activities of the central components of antioxidant defence system. Growth, Rubisco activity, photosynthetic traits and soluble protein content decreased significantly with decreasing field capacity (FC) from 100 to 50%. Levels of TBARS, H2O2, electrolyte leakage and proline contents increased with decreasing FC. Activities of SOD and GR increased in both genotypes with decreasing FC; the CAT and APX activities over-expressed only at mild (75%) FC but not at severe (50%) FC. There were found genotype-dependent alterations in growth, photosynthetic traits, Rubisco activity and antioxidant metabolism when exposed to water deficit. Decline in efficiency of the H2O2-decomposing system at severe drought was responsible for oxidative damage occurring in both the genotypes. The differential responses of antioxidative enzymes in the two genotypes were the result of their ability to protect photosynthetic apparatus and alleviate water deficit stress.  相似文献   

17.
Water deficit is considered the main abiotic stress that limits agricultural production worldwide. Brassinosteroids (BRs) are natural substances that play roles in plant tolerance against abiotic stresses, including water deficit. This research aims to determine whether BRs can mitigate the negative effects caused by water deficiency, revealing how BRs act and their possible contribution to increased tolerance of cowpea plants to water deficit. The experiment was a factorial design with the factors completely randomised, with two water conditions (control and water deficit) and three levels of brassinosteroids (0, 50 and 100 nM 24-epibrassinolide; EBR is an active BRs). Plants sprayed with 100 nM EBR under the water deficit presented significant increases in ΦPSII, qP and ETR compared with plants subjected to the water deficit without EBR. With respect to gas exchange, P N, E and g s exhibited significant reductions after water deficit, but application of 100 nM EBR caused increases in these variables of 96, 24 and 33%, respectively, compared to the water deficit + 0 nM EBR treatment. To antioxidant enzymes, EBR resulted in increases in SOD, CAT, APX and POX, indicating that EBR acts on the antioxidant system, reducing cell damage. The water deficit caused significant reductions in Chl a, Chl b and total Chl, while plants sprayed with 100 nM EBR showed significant increases of 26, 58 and 33% in Chl a, Chl b and total Chl, respectively. This study revealed that EBR improves photosystem II efficiency, inducing increases in ΦPSII, qP and ETR. This substance also mitigated the negative effects on gas exchange and growth induced by the water deficit. Increases in SOD, CAT, APX and POX of plants treated with EBR indicate that this steroid clearly increased the tolerance to the water deficit, reducing reactive oxygen species, cell damage, and maintaining the photosynthetic pigments. Additionally, 100 nM EBR resulted in a better dose–response of cowpea plants exposed to the water deficit.  相似文献   

18.
Changes in H2O2 and the main antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR) and glutathione reductase (GR), in endospermic and embryonic tissues were studied in developing and artificially dried Jatropha curcas seeds. Immature seeds were desiccation-tolerant at 80 days after flowering, as they were able to germinate fully after artificial drying on silica gel had reduced their water content to 10–12% of fresh weight. In both endospermic and embryonic tissues, H2O2 level and, consequently, lipid peroxide content, decreased during seed development as well as after artificial dehydration of developing seeds. All examined antioxidant enzymes except DHAR showed a decrease in total activity in mature stages as compared with early stages. Expression analysis of SOD genes revealed that the decrease in total SOD activities was related to the decrease in Cu/Zn-SOD expression, while the continuous activity of SOD during maturation was related to an increase in Mn-SOD expression. Artificial drying resulted in increased SOD and DHAR activity, irrespective of the developmental stage. Our results revealed weak participation of CAT and APX in H2O2 scavenging, as well as no significant alterations in GR activities either during maturation or after artificial drying. Changes in SOD and GR isoenzyme patterns occurred during maturation-related drying, but not after artificial drying. These results highlight the role of ascorbate-glutathione cycle enzymes (DHAR and GR) in H2O2 scavenging during maturation or after artificial drying of developing J. curcas seeds.  相似文献   

19.
The germination/growth of wheat (Triticum aestivum L. cv. Zimai 1) seeds and changes in the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), and catalase (CAT), as well as in the content of thiobarbituric acid-reactive substances (TBARS), in response to salt and heat stress, as well as cross-stress, were investigated in the present study. With increasing temperature and decreasing water potential caused by NaCI solution, the germination percentage of seeds and the fresh weight of seedlings decreased markedly, SOD activity increased, activities of APX and CAT decreased distinctly, and the TBARS content increased gradually. Seeds pretreated at 33℃ for different times displayed increased tolerance to subsequent salt stress, enhanced SOD, APX, and CAT activities, and decreased TBARS content. Seeds pretreated at -0.8 MPa NaCI for different times displayed increased tolerance to subsequent heat stress and marked increases in SOD, APX, and CAT activities, which were associated with decreased TBARS content. It is considered that the common component in the cross-tolerance of the germination and growth of wheat seeds to salinity and heat stress is the anti-oxidant enzyme system.  相似文献   

20.
In this study, poplar tissue culture (hybrid black poplar, M1 genotype) was subjected to water stress influenced by polyethyleneglycol 6000 (100 and 200 mOsm PEG 6000). The aim of the research was to investigate the biochemical response of poplar tissue culture on water deficit regime. Antioxidant status was analyzed including antioxidant enzymes, superoxide-dismutase (SOD), catalase (CAT), guiacol-peroxidase (GPx), glutathione-peroxidase (GSH-Px), glutathione-reductase, reduced glutathione, total phenol content, Ferric reducing antioxidant power and DPPH radical antioxidant power. Polyphenol oxidase and phenylalanine-ammonium-lyase were determined as enzymatic markers of polyphenol metabolism. Among oxidative stress parameters lipid peroxidation, carbonyl-proteins, hydrogen-peroxide, reactive oxygen species, nitric-oxide and peroxynitrite were determined. Proline, proline-dehydrogenase and glycinebetaine were measured also as parameters of water stress. Cell viability is finally determined as a biological indicator of osmotic stress. It was found that water stress induced reactive oxygen and nitrogen species and lipid peroxidation in leaves of hybrid black poplar and reduced cell viability. Antioxidant enzymes including SOD, GPx, CAT and GSH-Px were induced but total phenol content and antioxidant capacity were reduced by PEG 6000 mediated osmotic stress. The highest biochemical response and adaptive reaction was the increase of proline and GB especially by 200 mOsm PEG. While long term molecular analysis will be necessary to fully address the poplar potentials for water stress adaptation, our results on hybrid black poplar suggest that glycine-betaine, proline and PDH enzyme might be the most important markers of poplar on water stress and that future efforts should be focused on these markers and strategies to enhance their concentration in poplar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号