首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Heavy metal contamination represents an important environmental issue due to the toxic effects of metals on different organisms. Filamentous fungi play an important impact in the bioremediation of heavy metal-contaminated wastewater and soil. The purpose of this investigation was to observe fungal uptake behavior toward heavy metal. For this aim Trichoderma asperellum TS141 and T. harzianum TS103 at growth period were screened for their tolerance and uptake capability of cadmium (Cd), lead (Pb) and nickel (Ni) at different concentrations (0, 25, 50, 100, and 200 mg/L) in PDB media (potato dextrose broth as a complex medium). Results showed that both fungi were able to survive at the maximum concentration of 200 mg/L of the heavy metals, and remove them. T. asperellum had a better uptake capacity for Cd compared to Pb and Ni in the highest metal concentration in media. Maximum removal efficiency of Pb (68.4%) at 100 mg/L and Ni (78%) at 200 mg/L was performed by T. asperellum. For Cd, the highest removal efficiency (82.1%) was recorded by T. harzianum at 200 mg/L Cd in aqueous solution. The uptake of Cd was highly dependent on pH of solution than Pb and Ni so that the optimal pH of Cd uptake was 9 for T. asperellum and 4 for T. harzianum. Also, optimal temperature was 35°C for Cd and Pb uptake in both fungi, whereas for Ni uptake was 30 and 35°C in T. harzianum and T. asperellum, respectively. We propose that T. asperellum TS141 and T. harzianum TS103 can be used as a bioremediation agent for metal remediation from wastewater and heavy metal-contaminated soils.  相似文献   

2.
Six bacterial strains (Bacillus subtilis, Bacillus polymyxa, Bacillus circulans, Pseudomonas putida, Pseudomonas fluorescens 2 and Pseudomonas fluorescens 8) and one fungal isolate (Trichoderma harzianum) were tested for their ability to protect Cucumis sativus L. cv. Beith Alpha against the disease development of Cucumber mosaic cucumovirus (CMV). Seed treatment with individual bacterial and fungal liquid cultures significantly and consistently reduced the disease severity (DS) of infected cucumber plants, after 14 days from CMV inoculation onto cotyledons. All seven biotic inducers reduced the CMV infection at the range of 16.6–39% and 0–46.5% under sterilised and non-sterilised soils, respectively. The effect of treatment with each biotic inducer has a significant difference in the percentage of CMV DS. In sterilised soil, B. circulans has a low percentage of DS (42%), while P. fluorescens 8 has a high DS percentage (62.9%). In non-sterilised soil, the low DS percentage was 30% for T. harzianum, while P. putida had the highest DS percentage (70%). On the other hand, CMV variability on Chenopodium amaranticolor revealed that all biotic treatments differed according to the local lesion number, similarity and morphology.  相似文献   

3.
Yedidia  Iris  Srivastva  Alok K  Kapulnik  Yoram  Chet  Ilan 《Plant and Soil》2001,235(2):235-242
The potential of the biocontrol agent Trichoderma harzianum strain T-203 to induce a growth response in cucumber plants was studied in soil and under axenic hydroponic growth conditions. When soil was amended with T. harzianum propagules, a 30% increase in seedling emergence was observed up to 8 days after sowing. On day 28, these plants exhibited a 95 and 75% increase in root area and cumulative root length, respectively, and a significant increase in dry weight (80%), shoot length (45%) and leaf area (80%). Similarly, an increase of 90 and 30% in P and Fe concentration respectively, was observed in T. harzianum inoculated plants. To better characterize the effect of T. harzianum during the early stages of root colonization, experiments were carried out in a gnotobiotic hydroponic system. An increased growth response was apparent as early as 5 days post-inoculation with T. harzianum, resulting in an increase of 25 and 40% in the dry weight of roots and shoots, respectively. Similarly a significant increase in the concentration of Cu, P, Fe, Zn, Mn and Na was observed in inoculated roots. In the shoots of these plants, the concentration of Zn, P and Mn increased by 25, 30 and 70%, respectively. Using the axenic hydroponic system, we showed that the improvement of plant nutritional level may be directly related to a general beneficial growth effect of the root system following T. harzianum inoculation. This phenomenon was evident from 5 days post-inoculation throughout the rest of the growth period, resulting in biomass accumulation in both roots and shoots.  相似文献   

4.
Arbuscular mycorrhizal fungi (AMF) can promote plant growth and reduce plant uptake of heavy metals. Phosphorus (P) fertilization can affect this relationship. We investigated maize (Zea mays L.) uptake of heavy metals after soil AMF inoculation and P fertilization. Maize biomass, glomaline and chlorophyll contents and uptake of Fe, Mn, Zn, Cu, Cd and Pb have been determined in a soil inoculated with AMF (Glomus aggregatum, or Glomus intraradices) and treated with 30 or 60 µg P-K2HPO4 g?1 soil. Consistent variations were found between the two mycorrhizal species with respect to the colonization and glomalin content. Shoot dry weight and chlorophyll content were higher with G. intraradices than with G. aggregatum inoculation. The biomass was highest with 30 µg P g?1 soil. Shoot concentrations of Cd, Pb and Zn decreased with G. aggregatum inoculation, but that of Cd and Pb increased with G. intraradices inoculation. Addition of P fertilizers decreased Cd and Zn concentrations in the shoot. AMF with P fertilization greatly reduced maize content of heavy metals. The results provide that native AMF with a moderate application rate of P fertilizers can be exploited in polluted soils to minimize the heavy metals uptake and to increase maize growth.  相似文献   

5.
The effects of native isolates of Pseudomonas fluorescens, Azospirillum brasilense, and Trichoderma harzianum on rooting and acclimatization of in vitro-grown shoots and plantlets of tea were evaluated. In vitro bacterization of P. fluorescens failed to establish, while both T. harzianum and A. brasilense retarded shoot growth, eventually overtaking shoot cultures in in vitro rooting. Acclimatization of rooted plantlets in soil amended with bioinoculants, either individually or in various combinations, promoted plantlet survival. Moreover, efficiency of nutrient uptake of plantlets was higher in the presence of microorganisms. Root rot or wilting of tissue culture-derived plants was not observed in bioinoculant-treated plants, as they possessed relatively higher activities of defense enzymes, including peroxidase and phenylalanine ammonia lyase.  相似文献   

6.
Abstract

Among the seven fungal (Gliocladium virens, Trichoderma hamatum, T. harzianum, T. koningii, T. longibrachiatum, T. pseudokoningii and T. viride) and two bacterial (Bacillus subtilis and Pseudomonas fluorescens) antagonists screened against C. gloeosporioides under in vitro conditions, T. harzianum exhibited maximum inhibition followed by Pseudomonas fluorescens at 5 days after incubation. These fungal and bacterial antagonists were selected for application to fruits infected with pathogens. Fruits inoculated with C. gloeosporioides were dipped in spore/cell suspensions of fungal/bacterial antagonists and kept for different durations. The fungal antagonists T. harzianum and P. fluorescens were effective in checking the spread of pathogens on fruits compared with the pathogen-inoculated control.  相似文献   

7.
A pot study was conducted to compare the effects of amendments (CaHPO4 and cow manure) on growth and uptake of Cd and Zn from contaminated sediments by two wetland plant species, Typha angustifolia and Colocasia esculenta. Contaminated sediments (Cd 33.2 mg kg–1 and Zn 363 mg kg–1) were collected from Mae Tao basin, Mae Sot district, Tak province, Thailand. The experiment consisted of 4 treatments: control (uncontaminated sediment), Cd/Zn, Cd/Zn + 5% CaHPO4, and Cd/Zn + 10% cow manure. Plants were grown for 3 months in the greenhouse. The addition of CaHPO4 resulted in the highest relative growth rate (RGR) and highest Cd accumulation in both T. angustifolia and C. esculenta while the lowest RGR was found in C. esculenta grown in the cow manure treatment. Both plant species had higher concentrations of metals (Cd, Zn) in their belowground parts. None of the amendments affected Zn accumulation. C. esculenta exhibited the highest uptake of both Cd and Zn. The results clearly demonstrated the phytoremediation potential of C. esculenta and the enhancement of this potential by CaHPO4 amendment.  相似文献   

8.
The test strains Bacteroidetes bacterium (Ba), Pseudomonas fluorescens (Pf) and Variovorax sp. (Va) were selected in advance for their in vitro capability for growth promotion of rapeseed in the presence of increased concentrations of Cd, Cu, Pb and Zn in the medium. In the pot experiment, the strains were used for single Ba, Pf, Va or combined Ba + Pf, Ba + Va, Pf + Va, and Ba + Pf + Va inoculation of B. napus growing in contaminated soil from alluvial deposits. The positive effect of bacterial strains on plant growth was observed in vitro, but was not confirmed in situ in the contaminated soil, where the tested strains inhibited biomass production, rather than stimulating it. However, single inoculation with Ba significantly increased the chlorophyll content and K+ concentration in the leaves. The inoculation of rapeseed with Ba and Va strains was indicated to be the most promising combination for phytoextraction of Cd and Zn from contaminated soil. Combined inoculation with Pf+Va and Pf + Ba+Va significantly decreased the concentration of heavy metals in the roots of rapeseed. We conclude that suitable combinations of PGPR can control the metal uptake of B. napus, selectively increasing either metal extraction or metal stabilization in the rhizosphere and offering promising applications in soil remediation.  相似文献   

9.
Abstract

Biological and nutrient management of soil borne disease is increasingly gaining stature as a possible practical and safe approach. Inhibitory effects of fungal and bacterial antagonists were tested under in vitro conditions against the wilt pathogen of alfalfa Fusarium oxysporum f. sp. medicaginis. Trichoderma harzianum and Pseudomonas fluorescens (PI 5) were found to be effective against the alfalfa wilt pathogen. Manganese sulphate at 500 and 750 ppm inhibited the mycelial growth of F. oxysporumf. sp. medicaginis under in vitro conditions. In pot culture studies, manganese sulphate at 12.5 mg/kg reduced the wilt incidence (23.33%). Combined application of manganese sulphate 12.5 mg/kg + T. harzianum 1.25 mg/kg of soil significantly reduced the wilt incidence accompanied by improved plant growth and yield in pot culture. The mixture of manganese sulphate (25 kg/ha) + T. harzianum (2.5 kg/ha) significantly reduced the wilt incidence when applied as a basal dose in the field conditions. The average mean of disease reduction was 62.42% over control.  相似文献   

10.
Penicillium digitatum, an aggressive fungus causes post-harvest decay of mandarin sweet orange and Washington navel. In vitro Trichoderma harzianum or humic acid (HA) or powdered cloves of garlic caused inhibition of fungal growth of isolates P1 and P2. Under storage conditions, the fruit citrus is protected by using T. harzianum with standard volume 2.0?ml (9.6?×?106?conidia/ml) and application 24?h before inoculation reduces disease incidence and disease severity after seven?days from inoculation with P. digitatum spore suspension (1.0?×?106?spores/ml) compared to control. Spraying the fruit citrus by standard volume of 2.0?ml of either HA or powder cloves of garlic 1% on each fruit 24?h before inoculation reduces disease incidence and disease severity after seven?days from inoculation with P. digitatum (1.0?×?106 spores/ml) compared to control. The lowest percentage of disease incidence and disease severity were associated with powder of cloves garlic and followed by HA and T. harzianum during two growing seasons compared with the untreated and control.  相似文献   

11.
Soil solarization in combination with introduction of biocontrol agents (BCA) was evaluated as a potential disease management strategy for tomato damping-off caused by Pythium spp. A rifampicin resistant Pseudomonas fluorescens strain (PfT-8) and a carbendazim resistant Trichoderma harzianum strain (ThM-1) were introduced into soil following solarization. Tomato seeds were planted into treated field plots. The influence of soil solarization and application of biocontrol agents on damping-off incidence, plant biomass, rhizosphere population of introduced antagonists, and native Pythium spp. was assessed by two consecutive field trials. Damping-off incidence was significantly reduced in solarized plots compared to control. Soil inoculation of biocontrol agents into solarized plots resulted in the highest suppression of damping-off incidence (PfT-8 up to 92%; ThM-1 up to 83%), and increase in plant biomass (PfT-8 up to 66%; ThM-1 up to 48%) when compared to un-solarized control plots. Rhizosphere population of introduced biocontrol agents gradually increased (PfT-8 up to 102% and ThM-1 up to 84%) in solarized soils when compared to unsolarized control. The population of Pythium spp in rhizosphere soil was reduced up to 55% in solarized plots; whereas, application of BCA to solarized soils reduced the rhizosphere population of Pythium spp. by 86 and 82% in P. fluorescens and T. harzianum applied plots respectively.  相似文献   

12.
Abstract

Hydroponic, greenhouse and field experiments were conducted to explore the potential of pokeweed (Phytolacca americana L.) to accumulate Zn and Cd from nutrient solutions and contaminated soils. The hydroponic results confirmed that this native species is a strong Zn and Cd bioaccumulator that does not experience severe phytotoxicity until quite high root and shoot concentrations, approaching 4000 and 1600?mg?kg?1 of Zn, and 1500 and 500?mg?kg?1 of Cd, respectively. These high Zn and Cd concentrations were accompanied by increased sulfur and lower manganese in both shoots and roots. However, in field and greenhouse trials with soils historically contaminated by a number of heavy metals including Zn and Cd, concentrations of Zn and Cd in shoots of P. americana reached concentrations less than 30% and 10%, respectively, of those achieved with hydroponics. The main constraint to phytoremediation of soils by P. americana was the low concentrations of Zn and Cd in soil solution. Pretreatment of the metal-contaminated soil by oxalic acid increased soluble Cd and Zn but failed to increase plant uptake of either metal, a possible result of higher solubility of competing metal ions (Cu, Mn) or low bioavailability of Cd and Zn-oxalate complexes.  相似文献   

13.
Meloidogyne incognita is a plant pathogen causing root-knot disease and loss of crop yield. The present study aimed to use Trichoderma harzianum as a biocontrol agent against plant-parasitic nematodes and used press mud, which is a solid waste by-product of sugarcane, as a biocontrol agent and biofertilizer. Therefore, the combined application of T. harzianum and press mud may enhance nematode control and plant growth. Elemental analysis of press mud using scanning electron microscopy (SEM) integrated with an Energy Dispersive X-ray (EDX) analyzer revealed the presence of different elements such as C, O, Mg, Si, P, K, Ca, Cu and Zn. In addition, a greenhouse study was conducted to investigate the combined effects of press mud and T. harzianum on M. incognita reproduction and growth and the biochemical features of Psoralea corylifolia. The results showed that plant length, dry biomass, leaf area, the number of seeds per plant, chlorophyll a, chl b, carotenoid content, nitrate reductase, carbonic anhydrase, and nitrogen content were significantly increased (P ≤ 0.05) in the T2 plants (plants were treated with 100 g of press mud + 50 mL T. harzianum before one week of M. incognita inoculation), over inoculated plants (IC). Antioxidant enzyme activity of ascorbate peroxidase (APX), catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD) in the foliage of P. corylifolia was significantly increased when plants were treated with press mud + T. harzianum. A significant reduction in the number of egg masses, nematode population, and root-knot index (RKI) was found in plants with T2 plants. These results suggest that the combined application of T. harzianum and press mud has the potential to control the M. incognita infection and can be used as an environmentally safe alternative to chemical nematicides and also help in the removal of sugarcane waste that causes environmental pollution.  相似文献   

14.
The efficacy of eight fungal and eight bacterial isolates was tested for their ability to inhibit the growth of Sclerotium rolfsii, the causal agent of collar rot of peppermint. In vitro studies revealed that Trichoderma harzianum (THA) and Pseudomonas fluorescens (PFM) showed the highest inhibition of mycelial growth (68.28; 74.25 %) of S. rolfsii. The antagonists T. harzianum and P. fluorescens were compatible with each other and they were tested alone and together in in vivo for the control of S. rolfsii. Besides, the induction of defense-related enzymes such as peroxidase, polyphenoloxidase, phenylalanine ammonia-lyase, and the accumulation of phenolics in peppermint plants due to the application of bioagents were also studied. Combined application of talc-based formulation of bioagents and challenge inoculation with S. rolfsii recorded maximum induction of defense-related enzymes, and accumulation of phenolics as compared with individual application. This study suggests that the increased induction of defense-related enzymes (two- to threefold) and phenolic content (threefold) due to the combination treatment of bioagents might be involved in the reduction of collar rot incidence.  相似文献   

15.
Abstract

A pot experiment was conducted to investigate the potential influence of arbuscular mycorrhizal fungi (AMF), Funneliformis mosseae and Diversispora spurcum, on the growth and nutrient (P and S) and heavy metal (HMs) (Pb, Zn, and Cd) content of bermudagrass [Cynodon dactylon (L.) Pers.] in a lead-zinc mine wasteland. The D. spurcum inoculation significantly increased the bermudagrass growth, whereas the F. mosseae inoculation did not. The AMF inoculation significantly increased the soil pH and uptake of P, S, and HMs by bermudagrass, decreased the contents of available Pb and Zn in soils and Pb in shoots, reduced the translocation factor (TF) and translocation capacity factor (TF') of Pb and Cd in bermudagrass and increased the TF and TF' of Zn in bermudagrass. A significant negative correlation was found between pH and available HMs in soil, whereas a significant positive correlation was noted between the HMs content and nutrient content in bermudagrass shoots. Experiment results provide evidence of the potential role of AMF in improving bermudagrass performance for the vegetation restoration of metalliferous mine wastelands.  相似文献   

16.
Some fungal and bacterial isolates applied as soil and seed treatments in greenhouse trials gave a good protection against Puccinia carthami Cda. on safflower, significantly reducing the infection from rust-infested seeds. Trichoderma viride and T. harzianum added alone and in combination as air-dried inoculum to the soil were the most effective fungal isolates. However T. viride at two higher rates reduced the rate of emergence of safflower seedlings. Among bacteria, Bacillus subtilis, B. cereus, isolates of Pseudomonas fluorescens and B. thuringiensis reduced rust infection when added both as soil drench and as seed treatment. Good results in the biocontrol of P. carthami were also obtained with some combination antagonist treatments such as T. viride + B. cereus, T. viride + P. fluorescens (16), T. viride + T. harzianum + B. cereus and T. viride +, T. harzianum + P. fluorescens (16). Fungal isolates added as soil treatment increased seedling length, whereas no similar effects were observed when these isolates were applied as seed treatment.  相似文献   

17.
The heavy metal hyperaccumulator Thlaspi caerulescens is widespread in France on many kinds of sites and substrates, including Zn/Pb/Cd mine and smelter wastes, Ni-rich serpentine outcrops and a variety of nonmetalliferous soils. Thlaspi caerulescens is remarkable among the metallophytes of France because it accumulates Zn to high concentrations (almost always >0.1%, and often >1% in the dry matter) regardless of the total Zn concentration of the substrate. The extraordinary uptake of Zn from soils of normal Zn concentration draws attention to the need for studies of the mechanisms by which such mobilization and uptake can occur. Different populations of Thlaspi caerulescens in France show considerable variation in their ability to accumulate Cd; individuals in some populations contain as much as 0.1 to 0.4% Cd, the highest levels recorded in vascular plants. The hyperaccumulation of Ni (sometimes exceeding 1%) from serpentine soils in France is also noteworthy. Despite the generally low biomass, some very large individuals occur, giving good potential for selective breeding to improve the value of Thlaspi caerulescens for phytoremediation, especially of Cd. The high Zn uptake from all kinds of soils is a property shared by the related T. brachypetalum, and T. alpinum shows dual Zn- and Ni uptake, depending on the substrate. The extent to which other species of Thlaspi occurring in France exhibit metal accumulation is also discussed.  相似文献   

18.
Rice seedlings were grown in hydroponic culture to determine the effects of external Zn and P supply on plant uptake of Cd in the presence or absence of iron plaque on the root surfaces. Iron plaque was induced by supplying 50 mg l−1 Fe2+ in the nutrient solution for 2 day. Then 43-day-old seedlings were exposed to 10 μmol l−1 Cd together with 10 μmol l−1 Zn or without Zn (Zn–Cd experiment), or to 10 μmol l−1 Cd with 1.0 mmol l−1 P or without P (P–Cd experiment) for another 2 day. The seedlings were then harvested and the concentrations of Fe, Zn, P and Cd in dithionite–citrate–bicarbonate (DCB) extracts and in roots and shoots were determined. The dry weights of roots and shoots of seedlings treated with 50 mg l−1 Fe were significantly lower than when no Fe was supplied. Adsorption of Cd, Zn and P on the iron plaque increased when Fe was supplied but Cd concentrations in DCB extracts were unaffected by external Zn or P supply levels. Cd concentrations in shoots and roots were lower when Fe was supplied. Zn additions decreased Cd concentrations in roots but increased Cd concentrations in shoots, whereas P additions significantly increased shoot and root Cd concentrations and this effect diminished when Fe was supplied. The percentage of Cd in DCB extracts was significantly lower than in roots or shoots, accounting for up to 1.8–3.8% of the plant total Cd, while root and shoot Cd were within the ranges 57–76% and 21–40% respectively in the two experiments. Thus, the main barrier to Cd uptake seemed to be the root tissue and the contribution of iron plaque on root surfaces to plant Cd uptake was minor. The changes in plant Cd uptake were not due to Zn or P additions altering Cd adsorption on iron plaque, but more likely because Zn or P interfered with Cd uptake by the roots and translocation to the shoots.  相似文献   

19.
When grown on contaminated soil, hyperaccumulator plants contain high concentrations of metals which may return to the soil after senescence. This work was undertaken to assess the availability of Cd and Zn associated to the leaves of the hyperaccumulator Thlaspi caerulescens after incorporation into an uncontaminated soil. A Zn- and Cd- accumulator population of T. caerulescens was grown on a Cd- and Zn- contaminated soil previously labelled with 109Cd. Leaves (TCL) were harvested, dried, ground and incorporated into the soil at a rate of 2.07 mg Cd kg−1 and 51.9 mg Zn kg−1. Then a pot experiment was conducted for 3 months with rye grass (Lolium perenne) and T. caerulescens. Rye grass was harvested monthly and T. caerulescens at the end of the experiment. Plant biomass was measured, along with the concentration of Cd, Zn and 109Cd. Results showed that water-extractable metals in TCL were 69% for Zn and 33% for Cd. Addition of TCL to soil, depleted growth of rye grass, and improved that of T. caerulescens. At harvest, concentrations of both metals were increased in plants by TCL. Concentrations of Cd in rye grass increased with the cut number, while that of Zn decreased slightly. Rye grass extracted 1.6% of the total Cd and 0.9% of the total Zn, and T. caerulescens extracted up to 22.4% of the Cd and 7% of the Zn. About 94% of the Cd in rye grass and 86% in T. caerulescens was derived from TCL. In conclusion, metals associated with leaves of the hyperaccumulator T. caerulescens were very mobile after incorporation into the soil. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
The compatibility of two biological inoculants, Trichoderma harzianum, a mycoparasitic biological control fungus and Piriformospora indica, a root colonizing plant-growth promoting endophytic fungus was evaluated using tissue cultured black pepper plantlets. We report, for the first time, the ability of P. indica to colonize black pepper, a perennial climber. T. harzianum inhibited the growth of P. indica in an in vitro dual culture plate assay. Simultaneous inoculation with both biological inoculants of tissue cultured black pepper plantlets negatively influenced root colonization by P. indica. However, when P. indica was applied initially followed 30 days later by T. harzianum, there was increased root colonization by the root endophyte P. indica and beneficial effects were found on the growth of the black pepper plants. The present study also showed that the efficacy of inoculation of the two fungal biological agents can be increased by sequential application of P. indica at the hardening stage followed by T. harzianum during transplanting into a soil-sand mixture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号