首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The incorporation of 14C-leucine into the post-mitochondrial supernatant and neuron, glia and myelin-enriched fractions isolated from the rabbit spinal cord was studied after ischaemia and subsequent recirculation. In the cell-free system, incorporation decreased to 55% of the control value after 40 min ischaemia, but proteosynthesis returned to the pre-ischaemic value after 3 h recirculation and remained at this level during further recirculation. The incorporation of amino acids into proteins of neurons and neuroglia differed from the cell-free system and from each other. In the enriched neuronal fraction, protein synthesis fall after ischaemia and also during the first hours of recirculation, but during further recirculation it rose to 60% above the control value. In the enriched glial fraction, specific radioactivity of proteins rose abruptly immediately after ischaemia and by the fourth day there was sixfold increase as compared with control values. The results indicate that the ischaemia-induced decrease in protein synthesis is only transient and that a significant increase occurs in the surviving cell populations, especially the neuroglia. The functional changes caused by spinal cord ischaemia are irreversible, however.  相似文献   

2.
Slices of rabbit cerebral cortex were incubated in the presence of labelled amino acids. Following incubation, neuron- and gliaenriched fractions were obtained by density gradient centrifugation and the TCA-insoluble radioactivity determined. The protein-bound radioactivity was five to six times higher in the neuronal-enriched fraction than in the glial-enriched fraction after incubation with tritiated leucine. The neuronal fraction incorporated also a number of other amino acids to a higher extent than the glial fraction (neuron/glia ratio 2·5-6). A definite dependence of incorporation on the rate of oxygenation was demonstrated. The suppression of amino acid incorporation was more marked for the neuronal fraction than for the glial fraction during incubation in relative hypoxia. An increase of potassium concentration in the incubation medium enhanced the amino acid incorporation in both fractions. Low sodium levels decreased the incorporation. Puromycin inhibited incorporation to approximately 30 per cent of control for both fractions. Addition of cycloheximide and dinitrophenol resulted in greater inhibition of incorporation in the neuronal fraction than in the neuroglial fraction. Actinomycin D did not markedly affect the incorporation in any fraction. These results are discussed in relation to in vivo and in in vitro differences for transport and incorporation of amino acids.  相似文献   

3.
Abstract— Ethanol administered in vivo or in vitro during incubation of brain slices was studied with respect to its effect on brain protein synthesis. In the in vivo series the rats were given a single intraperitoneal injection of ethanol 3 h before death. Slices of cerebral cortex and liver were incubated in isotonic saline media containing [3H]leucine. Amounts of free and protein-bound radioactivity were determined. Subcellular fractions and fractions enriched in neuronal perikarya and in glial cells were prepared from cortical slices subsequent to incubation, and the specific radioactivity determined for each cell type. The incorporation of [3H]leucine into brain proteins was inhibited while incorporation into liver proteins was stimulated in ethanol-treated rats. The levels of TCA-soluble radio-activity, however, did not differ between the ethanol group and the controls. In the fractionated material from cerebral cortex, the specific radioactivity in the neuronal fraction was unaffected by ethanol, while the radioactivity in the glial fraction was significantly depressed. In vitro administration of ethanol induced a non-linear response in both brain and liver, with depression of leucine incorporation into proteins of cerebral cortex at all concentrations used. When brain slices were exposed to ethanol in vitro, in concentrations corresponding to the in vivo experiments, a similar reduction of the leucine incorporation into the glial fraction was obtained. Incorporation of leucine into subcellular fractions from whole brain cortex was also investigated. The specific sensitivity of the glial fraction to ethanol is discussed in relation to the involvement of the different cell types with transport processes in the brain.  相似文献   

4.
The incorporation of [14C]lysine into various brain proteins was studied. The proteins of different areas of the auditory system and cortical subcellular fractions were analysed using a disc electrophoretic technique that allows both protein and radioactivity assays along the gels. The highest level of incorporation was found in the mid brain nuclei, particularly the inferior colliculus, and was lowest in the auditory cortex proteins. This was true for both saline soluble proteins and proteins solubilized by Triton X-100 treatment. Of the subcellular fractions, the highest level of activity was found in the microsomal fraction. Considerable radioactivity was also found in the proteins isolated from the synaptosome-rich fraction. Of particular interest in this fraction was a slow migrating protein band which was soluble in Triton X-100, had a high specific activity, and appeared to be synaptosome specific. These observations are in concurrence with the hypothesis that the nerve ending contains protein synthesizing machinery.  相似文献   

5.
Propepties of spinal cord proteins were studied in adult mice subjected to unilateral crush or electrical stimulation of sciatic nerve. The protein composition of spinal tissue was determined using SDS-polyacrylamide gel electrophoresis coupled with subcellular fractionation. Comparisons of mouse spinal cord and brain revealed similarities in the types but differences in the concentrations of myelin associated proteins, nuclear histones and other proteins. Comparisons with sciatic nerve proteins demonstrated differences in types of proteins but similarities in the concentration of myelin proteins and nuclear histones. The short term (<2 hrs.) incorporation of radioactive amino acids into spinal cord proteins revealed heterogeneous rates of incorporation. Neither nerve crush six days prior to testing nor sciatic nerve stimulation had a significant effect on the protein composition or amino acid incorporation rates of spinal cord tissue. These observations suggest that known differences in spinal cord function following alterations in nerve input may be dependent upon different mechanisms than have been found in the brain.  相似文献   

6.
RAPID TRANSPORT OF FUCOSYL GLYCOPROTEINS TO NERVE ENDINGS IN MOUSE BRAIN   总被引:4,自引:3,他引:1  
Abstract— Mice were injected intracerebrally with mixtures of [3H]fucose and [14C]gluco-samine, and incorporation into macromolecules in various subcellular fractions of brain was studied at 1, 2, 3 and 4 h after administration of the precursors. There was a lag of several hours between the incorporation of [3H]fucose into the glycoproteins of the whole brain fractions and of that into the soluble and particulate glycoproteins of the nerve ending fractions. In contrast, no lag was observed between the incorporation of [14C]glucosamine into the macromolecules of the whole brain fractions and of that into the soluble macro-molecules of the nerve ending fraction. We conclude that fucosyl glycoproteins of the nerve ending fraction were synthesized in the nerve cell bodies and transported to nerve endings by rapid axoplasmic transport, whereas a substantial proportion of the glucosamine in the soluble macromolecules of the nerve ending fraction was incorporated by the nerve endings themselves. In addition, our evidence indicates that cyclobeximide inhibited fucose incorporation into brain glycoproteins by inhibiting the synthesis of acceptor proteins rather than fucosyl transferase.  相似文献   

7.
Abstract— (1) Two myelin fractions of bovine peripheral nerve and spinal cord have been studied comparatively. Cholesterol as well as cerebroside content per mg of protein in the peripheral nerve myelin was less than that in the spinal cord myelin, while no significant difference in the total phospholipid content was noted.
(2) The basic proteins in myelin fractions were quantitatively estimated by disc gel electrophoresis. Around one-fourth of the total myelin protein in the bovine peripheral nerve was a basic protein with a mobility of 1.07 relative to lysozyme by Reisfeld's disc gel electrophoresis.
(3) The myelin proteins in the peripheral nerve were less completely solubilized than those of the spinal cord by treatment with deoxycholate as well as by Triton-salt solution. The protein fractions obtained from the peripheral nerve myelin by techniques similar to that for obtaining the proteolipids from the spinal cord myelin, contained different types of protein.
(4) 2',3'-Cyclic nucleotide 3'-phosphohydrolase activity in the peripheral nerve myelin was only one tenth of that in the spinal cord myelin. The Triton-salt insoluble fraction showed remarkable high activity among subfractions of the spinal cord myelin.
(5) By immunological studies, it may be concluded that an antigenic substance for experimental allergic neuritis was localized in the peripheral nerve myelin, but not in its basic protein.  相似文献   

8.
—The metabolic activity of proteins from myelin and non-myelin fractions of slices of lesions in monkey brains and in spinal cords of Lewis rats with acute experimental allergic encephalomyelitis was investigated using [1-14C]leucine as a protein precursor. The uptake in vitro of [1-14C]leucine into the monkey EAE lesions was greatly increased in both the myelin and non-myelin fractions. Similar findings were made in spinal cord slices of the EAE rat with an average specific activity 341 per cent of control measured in proteins of purified myelin and 415 per cent of control in the non-myelin protein. The increased uptake appeared with the onset of paralytic symptoms 10–14 days after injection. The increased uptake did not appear to be a result of an increased amino acid pool size as measured with uniformly labelled l -leucine, valine, arginine and phenylalanine. The increase in specific activity of the myelin protein of the EAE rats was shown to be associated with the peaks characteristic of myelin protein when separated on polyacrylamide gels and the serial slices counted. Most of the radioactivity of both the control and EAE myelin protein migrated with the high molecular weight fraction, and the largest increase in radioactivity in myelin protein appeared in this fraction. Some increase in specific activity was also found in the basic and proteolipid proteins. Four different guinea-pig antigens were used to induce EAE: whole spinal cord, purified basic protein, purified myelin and basic protein + cerebroside. All caused paralytic symptoms and greatly increased incorporation in vitro of [1-14C]leucine into spinal cord proteins. The incorporation of [1-14C]leucine into slices of the inguinal and popliteal lymph nodes of the EAE and Freund's adjuvant control rats were measured and compared with the incorporation into the spinal cord non-myelin fractions. The specific activity of lymph node proteins was of the order of 10 × that of the non-myelin protein of the control spinal cord. Invasion of a moderate number of cells of the order of activity of these lymph nodes could account for the large increase in rate of protein synthesis in the EAE nervous tissue. It is concluded that much of the increased protein synthesis could be due to the inflammatory cells, although a small amount of the total increase appears to be associated with myelin protein. Other changes in metabolism of the CNS tissue of the EAE rat include a lower rate of lipid synthesis and a decreased activity of the tricarboxylic acid cycle.  相似文献   

9.
The in vivo utilization ofd-3-hydroxy[3-14C]butyrate for oxidation in the whole animal and for lipid and amino acid synthesis in brain and spinal cord of overnight-fasted 15-day-old chicks has been measured. Appreciable amounts of injected 3-hydroxy[3-14C]butyrate were expired as14CO2 one hour after injection, the total amount of which increased with increasing dosages. Lipid synthesis was high in both brain and spinal cord. Free, cholesterol and phospholipids were the main lipids labeled in both, tissues, increasing with time after injection up to 120 min. The incorporation of radioactivity into triglycerides, esterified cholesterol and free fatty acids was not time-dependent. Increased concentrations of 3-hydroxybutyrate gave rise to higher synthetic rates both in brain and spinal cord The rate of amino acid synthesis was slightly higher in brain than in spinal cord. Glutamate was always the major amino acid formed.  相似文献   

10.
—Uridine incorporation into RNA of rabbit brain was studied by using an in vitro system for incubation of brain slices for up to 180 min. Neuron-enriched and glia-enriched fractions were prepared by ficoll density gradient centrifugation, and various subcellular fractions were prepared by sucrose density gradient centrifugation. Although the difference was not as great as in the case of l -leucine incorporation into protein, the neuron-enriched fraction consistently showed a higher specific radioactivity than the glia-enriched fraction. The specific radioactivity of the nuclei increased promptly and remained high at 180 min; the increase in the microsomes was gradual. Comparison of these data suggests that both neuron-enriched and glia-enriched fractions retain high radioactivities in their nuclei at 180 min when a considerable portion of the ribosomal RNA in these fractions is not labeled. The sharp diffusion gradient of nucleotides is discussed in relation to the acid-soluble radioactivity.  相似文献   

11.
Spinal ganglia of adult rabbits were cultured in the routine and protein synthesis precursors-enriched media. On days I and 4 of cultivation, the intensity of 14C-leucine incorporation in protein and in acid soluble fraction of nerve and glial cells was determined. The tissue of the spinal ganglion keeps incorporating 14C-amino acid, into neurons and glia, for all the tested periods of cultivation with both the media employed. The curves of incorporation into the above fractions of nerve and glial cells cultured in the routine medium display similar patterns of changes, whereas those obtained from the enriched medium observations appear to be anti-fasic. The enrichment of the medium results also in less pronounced fluctuations in the intensity of the labeled amino acid in protein and 14C-leucine pool, on the tested periods of cultivation, which may provide more stable conditions of the explant's survival.  相似文献   

12.
The peptide transmitter N-acetylaspartylglutamate (NAAG) is present in millimolar concentrations in mammalian spinal cord. Data from the rat peripheral nervous system suggest that this peptide is synthesized enzymatically, a process that would be unique for mammalian neuropeptides. To test this hypothesis in the mammalian CNS, rat spinal cords were acutely isolated and used to study the incorporation of radiolabeled amino acids into NAAG. Consistent with the action of a NAAG synthetase, inhibition of protein synthesis did not affect radiolabel incorporation into NAAG. Depolarization of spinal cords stimulated incorporation of radiolabel. Biosynthesis of NAAG by cortical astrocytes in cell culture was demonstrated by tracing incorporation of [3H]-glutamate by astrocytes. In the first test of the hypothesis that NAA is an immediate precursor in NAAG biosynthesis, [3H]-NAA was incorporated into NAAG by isolated spinal cords and by cell cultures of cortical astrocytes. Data from cerebellar neurons and glia in primary culture confirmed the predominance of neuronal synthesis and glial uptake of NAA, leading to the hypothesis that while neurons synthesize NAA for NAAG biosynthesis, glia may take it up from the extracellular space. However, cortical astrocytes in serum-free low-density cell culture incorporated [3H]-aspartate into NAAG, a result indicating that under some conditions these cells may also synthesize NAA. Pre-incubation of isolated spinal cords and cultures of rat cortical astrocytes with unlabeled NAA increased [3H]-glutamate incorporation into NAAG. In contrast, [3H]-glutamine incorporation in spinal cord was not stimulated by unlabeled NAA. These results are consistent with the glutamate-glutamine cycle greatly favoring uptake of glutamine into neurons and glutamate by glia and suggest that NAA availability may be rate-limiting in the synthesis of NAAG by glia under some conditions.  相似文献   

13.
Rat pups, 3 weeks old, were injected i.p. with combinations of 3H2O and either [3-14C]acetoacetate or [14C]glucose. 3H/14C incorporation ratios were measured in lipid fractions of homogenates and myelin prepared from whole brain and spinal cord. Spinal cord synthesized at least twice as much fatty acids and 3-fold more sterols than whole brain. Both tissues used acetoacetate preferentially for sterol synthesis, whereas label from [14C]glucose was distributed between fatty acids and sterols in the same way as 3H from 3H2O. The relative contributions of acetoacetate to sterol synthesis in whole tissue and in the purified myelin fraction were about the same, both for the cerebrum and for the spinal cord.  相似文献   

14.
Abstract— A technique for the isolation of pure neuronal perikarya and intact glial cells from cerebral cortex has been developed for routine use. The yield of neuronal perikarya and glial cells was greater from highly immature (5–10 days) rat cerebral cortex than from the cortex of older rats (18–43 days). The perikarya/glia yield ratio decreased with age indicating that, as the glial population matured, the procedure succeeded in isolating a gradually smaller proportion of the existing neurons. The perikarya/glia ratio was highest for the 5-day-old cortex in which no mature glial cells could be identified. After a 10-min pulse in vivo of intrathecally injected [14C]phenylalanine, the specific radioactivity of the neuronal proteins was higher than that of the glial proteins in the 5-, 10- and 18-day-old rat but was lower in the 43-day-old rat. The values for absolute specific radioactivity of the 14C-labelled proteins in both cell types were greater, the younger the brain. The 14C-labelling of neuronal and glial proteins in the 18-day-old rat was assessed in vivo as a function of time by determining the incorporation of [14C]phenylalanine into such proteins at 5, 10, 20 and 45 min after administration of the amino acid. The rate of incorporation of [14C]phenylalanine into the glial cells was faster than into the neurons since higher specific radioactivities of the glial proteins could be achieved at earlier times. Also, a biphasic pattern of 14C-labelling of the glial proteins was noted, suggesting, perhaps, a sequential involvement of the oligodendrocytes and astrocytes. Homogenates of prelabelled neuronal perikarya were fractionated into the nuclear, mitochondrial microsomal and soluble cell sap fractions. In the 18-day-old cerebral cortex, the proteins of the microsomal fraction exhibited the highest specific radioactivity at the end of 10 min, whereas by 20 min proteins of the mitochondrial fraction were most highly labelled. The specific radioactivity of the nuclear proteins increased over the entire 45-min experimental period. On the contrary, the proteins of the soluble cell sap, in which the specific radioactivity was at all times by far the lowest, were maximally labelled by 5 min. Examination of the labelling of the neuronal subcellular fractions as a function of age revealed that at 10 min after administration of [14C]phenylalanine, the specific radioactivities of all 14C-labelled proteins were highest in the youngest (5-day-old) neurons. The proteins of the microsomal fraction were most rapidly labelled at all ages. During this interval the proteins of the soluble cell sap were only moderately labelled in the 5-day-old neurons and were totally unlabelled in the 43-day-old neurons, indicating age-dependent differences in the rate of utilization of the amino acid precursor by the neurons.  相似文献   

15.
After 4 hr of the intraperitoneal injection of different doses of (R)-[5-14C]mevalonic acid (MVA), its incorporation into nonsaponifiable and saponifiable lipids was maximal in neonatal chick kidneys and liver, and minimal in brain, spinal cord and skin. Using 14CO2 production from [5-14C]MVA as an index of the shunt pathway not leading to sterols, we have demonstrated for the first time that about 11% of MVA was in vivo metabolized by this pathway in nonmammalian species. Kidneys presented the maximal ability to incorporate MVA into nonsaponifiable and saponifiable lipids at any time considered (15-750 min). The percentage of radioactivity recovered as saponifiable lipids in liver and kidney decreased after 12 hr the injection of MVA. Although the absolute amounts of 14C incorporated in both derivatives were much less in brain, spinal cord and skin than in liver and kidneys, the relative percentages found in the saponifiable fraction were clearly higher in the former tissues, especially in the spinal cord.  相似文献   

16.
1. The relative amounts of incorporation in vivo of l-lysine, and in one experiment l-arginine, into different histone fractions from Krebs ascites and a lymphoma ascites cells of mice and a `solid' tumour and liver of rats have been determined. 2. No marked differences in the incorporations of the amino acids into the fractions F1, F2a, F2b and F3 from the tumours were generally observed, although in some experiments there was a greater incorporation into fraction F2b, which could be decreased by further purification. 3. In the tumours the incorporations into all cell protein fractions obtained were approximately the same, indicating that the amount of incorporation was that required for the increase of cell mass. 4. In rat liver, the incorporations into fractions F1, F2a and F3 were not greatly different. That into fraction F2b was variable. The incorporation into the histone fractions was much less than that into the acid-insoluble nuclear residue, indicating that considerable turnover of amino acids in the latter occurs. 5. The decrease in radioactivity of labelled histone and acid-insoluble nuclear protein in vivo during several days confirmed the relatively small turnover of the histone fraction. The time taken for liver whole histone to lose half its radioactivity was about 1 week. A histone fraction of slower metabolism was also detected. 6. It is concluded that no appreciable turnover of protein occurs in any one histone fraction, the somewhat higher values obtained in certain cases being associated with acidic impurities. The apparently high rate of incorporation into histone of resting liver is discussed in relation to recent evidence on DNA metabolism of resting liver.  相似文献   

17.
Spinal cord polysomes were prepared from 15-day-old rats, 3-month-old rats, and adult triethyl tin-fed and control rats by a procedure adapted from that of Zomzely -Neurath et al. (1973) for brain polysomes. The state of aggregation and the activity in a cell-free system supplemented with a hepatic enzyme fraction were studied with these preparations. The properties of the amino acid-incorporating system in spinal cord polysomes were similar to those of brain systems with respect to rapid incorporation in the first 30 min of incubation, dependence on polysomes and supplementary enzymes, sensitivity to emetine and high Mg2+, and relative insensitivity to cycloheximide. Polysomes from 15-day-old rats were more highly aggregated than those from 3-month-old rats, but incorporation of radioactive amino acids was not different in the preparations from the two age groups with respect to the requirement for the supplementary enzyme fraction or the kinetics. Spinal cord polysomes prepared from rats with chronic triethyl tin-induced edema and demyelination were slightly more aggregated than those from the controls. Average increases of 30% in amino acid incorporating activity were observed in spinal cord polysomes from triethyl tin-fed rats compared to those of controls. Similar increases have been shown previously in fractions from the spinal cord slice, especially in the myelin fraction (Smith , 1973). Spinal cord polysomes from rats in two stages of development and in different experimentally-caused physiological states behaved differently within the limits of our in vitro system.  相似文献   

18.
 利用微型双向电泳、SDS电泳、免疫印迹法、DEAE-Sephadex色谱、高效液相色谱及氨基酸分析等方法,对牛脊髓(中枢神经)和马尾神经(周围神经)的可溶性酸性蛋白质进行了研究。结果表明在牛脊髓和马尾神经中有钙调素(CaM)、S-100蛋白和神经元特异烯醇化酶(NSE)等可溶性酸性蛋白质存在;脊髓中这些酸性蛋白质的含量远较马尾神经为高。  相似文献   

19.
Unlike mammals, some fish, including carp and trout, have a continuously growing brain. The glial architecture of teleost brain has been intensively studied in the carp and few data exist on trout brain. In this study, using immunoblotting we characterized the topographic distribution of glial fibrillary acidic protein (GFAP) in larval and adult rainbow trout brain and studied by immunohistochemistry the distribution and morphology of GFAP-immunoreactive cell systems in the rainbow trout hindbrain and spinal cord. Immunoblotting yielded a double band with an apparent molecular weight of 50-52 kDa in the spinal cord homogenate in the trout larval and adult stages. In the adult hindbrain and forebrain, our antibody cross reacted also with a second band at a higher molecular weight (90 kDa). Because the forebrain contained this band alone the two brain regions might contain two distinct isoforms. Conversely, the larval total brain homogenate contained the heavy 90 kDa band alone. Hence the heavy band might be a GFAP protein dimer or vimentin/GFAP copolymer reflecting nerve fiber growth and elongation, or the two isoforms might indicate two distinct astroglial cell types as recently proposed in the zebrafish. In sections from trout hindbrain and spinal cord the antibody detected a GFAP-immunoreactive glial fiber system observed in the raphe and in the glial septa separating the nerve tracts. These radial glia fibers thickened toward the pial surface, where they formed glial end feet. The antibody also labeled perivascular glia around blood vessels in the white matter, and the ependymoglial plexus surrounding the ventricular surface in the grey matter. Last, it labeled round astrocytes. The GFAP-immunoreactive glial systems had similar distribution patterns in the adult and larval spinal cord suggesting early differentiation.  相似文献   

20.
Following intravenous injection of [U-14C]palmitate in awake adult rats, whole brain radioactivity reached a broad maximum between 15–60 min, then declined rapidly to reach a relatively stable level between 4 hr and 20 hr. At 44 hr total radioactivity was 57% of the 4 hr value (p<0.05). About 50% of palmitate which entered the brain from the blood was oxidized rapidly, producing14C-labeled water-soluble components which later left the cytosol. Radioactivity in the cytosolic fraction peaked at 45 min and then declined, coincident with the decline in total brain radioactivity. Membrane fractions were rapidly labeled to levels which remained relatively stable from 1 to 44 hr. Increases in the relative distributions of radioactivity were seen between 1 and 4 hr for the microsomal and mitochondrial fractions, and beyond 4 hr for the synaptic and myelin membrane fractions (p<0.05). Radioactivity in membrane fractions was 80–90% lipid, 5–13% water-soluble components and 3–17% protein. The proportion of label in membrane-associated protein increased with time. Proportions of radioactivity in the combined membrane fractions increased from 65% to 76% to 80% at 4, 20 and 44 hr, respectively. The results show that plasma-derived palmitate enters oxidative and synthetic pathways to an equal extent, immediately after entry into the brain. At and after 4 hr, the radiolabel resides predominantly in stable membrane lipids and protein. Brain radioactivity at 4 hr can be used therefore, to examine incorporation of palmitate into lipids in vivo, in different experimental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号