首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Knowledge of soil heavy metal concentration is very important for assessing the purity and quality of the soil in an environment. The concentrations of nine heavy metals (NHM), Zn, Pb, Cr, Cu, Co, Ni, Cd, Hg, and As, from the near-surface soils (~ 0–15 cm) from an industrial cluster in Kumasi, Ghana, were qualitatively and quantitatively measured and analyzed using X-ray fluorescence (XRF) spectroscopy analysis. The sources of these NHM were mainly anthropogenic as a result of the indiscriminate industrial waste disposal. In all, a total of about 100 soil samples were taken from six sampling sites, four of which were industrial and the remaining two residential. Forty soil samples out of the total number were carefully selected for elemental analyses and the mean heavy metal concentrations were calculated using statistical methods. The results from locations of high industrial impact showed that the mean concentrations of the NHM present in the soil were in the order of Zn (189.2?908.6 mgkg?1), Pb (133.7?571.3 mgkg?1), Cr (91.3?545.8 mgkg?1), Cu (62.9?334.6 mgkg?1), Co (38.6?81.9 mgkg?1), Ni (12.4?30.9 mgkg?1), Cd (6.9?13.2 mgkg?1), Hg (5.5?10.4 mg kg?1), and As (2.3?18.6 mgkg?1). Apart from Ni and As, all the heavy metals recorded concentrations that ranged from 10?900% higher than their respective threshold limit values (TLVs). Heavy metal concentrations from the residential sites were comparatively far lower with only Cr, Cd, and Hg registering concentrations between 65?250% above their TLVs. The cluster with its residential communities is at a serious risk of soil heavy metal toxicity and awareness to this needs to be created as such.  相似文献   

2.
Abstract Growth of barley (Hordeum vulgare L., cv. Georgie) was insensitive to soil K content above about 150 mg kg?1, but at lower levels it declined. The reduction in yield was greater in soils containing approximately 10 mg Na kg?1 than in soils with about 90 mg kg?1 of Na. Growth was unaffected by changes in shoot K concentration above 75 mol m?3, but declined at lower concentrations, and the decrease was less in plants grown in soils with high Na. Growth responses were not simply related to tissue K concentrations because plants grown in soils with extra Na had higher yields but lower K concentrations. When soil Na was low, plants accumulated Ca as tissue K declined, but when Na was provided this ion was accumulated. Plant Mg concentrations were generally low but increased as K decreased. The Ca and Mg were osmotically active. There were highly significant inverse linear relationships between yield and either the Ca or Mg concentrations in the shoots. X-ray microanalysis was used to examine the compartmentation of cations in leaves from barley plants (cv. Clipper) grown in nutrient solutions with high and low K concentrations. In plants grown with 2.5 mol m?3 K, this was the major cation in both the cytoplasm and vacuole of mesophyll cells. However, in plants grown with 0.02 mol m?3 K it declined to undetectable levels in the vacuole, although it was still detectable in the cytoplasm. In all plants, Ca was mainly located in epidermal cells. The implication of the results for explaining responses to K. in terms of compartmentation of solutes is discussed.  相似文献   

3.
Enhanced phytoextraction uses soil chelators to increase the bioavailability of heavy metals. This study tested the effectiveness of ethylenediaminetetraacetic acid (EDTA) and citric acid in enhancing cadmium (Cd) phytoextraction and their effects on the growth, yield, and ionic uptake of maize (Zea mays). Maize seeds of two cultivars were sown in pots treated with 15 (Cd15) or 30 mg Cd kg?1 soil (Cd30). EDTA and citric acid at 0.5 g kg?1 each were applied 2 weeks after germination. Results demonstrated that the growth, yield per plant, and total grain weight were reduced by exposure to Cd. EDTA increased the uptake of Cd in shoots, roots, and grains of both maize varieties. Citric acid did not enhance the uptake of Cd, rather it ameliorated the toxicity of Cd, as shown by increased shoot and root length and biomass. Cadmium toxicity reduced the number of grains, rather than the grain size. The maize cultivar Sahiwal-2002 extracted 1.6% and 3.6% of Cd from soil in both Cd+ EDTA treatments. Hence, our study implies that maize can be used to successfully phytoremediate Cd from soil using EDTA, without reducing plant biomass or yield.  相似文献   

4.
Glasshouse experiments were conducted to evaluate the influence of L-methionine (L-MET) and L-ethionine (L-ETH) added to soil on the growth of corn (Zea mays L.) and tomato (Lycopersicon esculentum), respectively. The application of L-MET and L-ETH stimulated C2H4 production in soil by 299- and 313-fold, respectively, over an unamended control. An L-MET treatment of 1.85 mg kg−1 soil was the most effective in increasing shoot height, shoot fresh weight, internodal distance, and stem diameter in two corn cultivars, Kandy Korn and Miracle, while shoot and root dry weights, leaf width, uppermost leaf collar base distance and resistance to stem breaking were increased in the case of Kandy Korn only. A significant epinastic response was observed in the second and third leaves of tomato plants when soil was treated with L-ETH. An L-ETH treatment of 0.2 mg kg−1 soil resulted in the maximum fresh fruit yield, while 0.02 and 2.0 mg kg−1 gave the most fruit and greater average weight of fresh fruit, respectively. Concentrations ranging from 0.002 to 2.0 mg L-ETH kg−1 soil initiated early fruit formation. Early fruit ripening was observed with an application rate of 20 mg L-ETH kg−1 soil. The mechanism of action of these chemicals could either be attributed to i) substrate-dependent C2H4 production in soil by the indigenous microflora, ii) uptake directly by plant roots followed by metabolism within the tissues, and/or iii) a change in the balance of rhizosphere microflora affecting plant growth.  相似文献   

5.
A field trail was carried out at the University of Agriculture Peshawar during spring, 2013 in order to evaluate the effect of different levels of phosphorus fertilizer and various planting times on the growth and development of tomato. The main objective of the research work was to investigate the best sowing time for tomato in combination with suitable dose of P fertilizer in order to get maximum yield of tomato in the climatic conditions of Peshawar. RCB Design with split plot arrangements was used in the trail. The main factor (phosphorous levels of 0, 90, 110, 130) was allotted to main plots while sowing dates in sub plots. A total twelve treatment were replicated thrice. Maximum days to flowering (39.583?days) and fruiting (46.167?days) obtained in the late sowing. Minimum days to flowering (39), minimum days to fruiting (38.778?days) were taken by the early sowing. Maximum number of branches (27.778), maximum fruit length (6.0222), maximum fruit with (6.1667), maximum fruit yield (24.653?tons?ha?1) was produced when the plot fertilize with 130?kg?P?ha?1. Maximum number of fruit?plant?1 (29.778) were produced with application of 130?kg?P?ha?1, minimum number of fruits (23.667?cm), fruit width (3.778?cm), fruit length (4.3667?cm), plant height (56.300?cm) were obtained from the controlled treatment. Among the various treatment studied in experiment, it is concluded that early planting of the tomato in the summer season i.e. in the start of March and the use of higher dose of P (130?kg?P?ha?1) is very beneficial for the excellent growth, development and yield of tomato crop.  相似文献   

6.
A field experiment was conducted under furrow irrigation on a Vertisol in arid northwestern Mexico, to evaluate sustainable production alternatives for irrigated wheat systems. Treatments included: tillage (conventionally tilled raised beds where new beds are formed after disc ploughing before planting [CTB] and permanent raised beds [PB]) and irrigation regimes (full and reduced). Physical and chemical soil quality was compared among treatments. PB improved soil structure and direct infiltration, increased topsoil K concentrations (0–5 cm; 1.6 cmol kg?1 in PB vs. 1.0–1.1 cmol kg?1 in CTB) and reduced Na concentrations (0–5 cm; 1.3–1.4 cmol kg?1 in PB vs. 1.9–2.2 cmol kg?1 in CTB) compared to CTB. Crop growth dynamics were studied throughout the season with an optical handheld NDVI sensor. Crop growth was initially slower in PB compared to CTB, but this was compensated by increased crop growth in the later stages of the crop cycle which influenced final yield, especially under reduced irrigation. These results were reflected in the final grain yield: in the third year after conversion to PB, no difference in grain yield was found between tillage systems under full irrigation. However, under reduced irrigation the improved soil quality with PB resulted in a 19% and 26% increment in bread and durum wheat grain yields, respectively. As projected climatic scenarios forecast higher evapotranspiration, less reliable rainfall and increased drought, our results indicate that PB could contribute to maintaining and increasing wheat yields in a sustainable way.  相似文献   

7.
This research presented here, for the first time, elucidates the responses of several antioxidants in Pennisetum leaves exposed to varying concentrations of atrazine (0–200 mgkg?1). Pennisetum has been reported to be resistant to atrazine; however, its physiological response to high concentrations (≥50 mgkg?1) of atrazine is not well documented. The contents of reduced (AsA) and oxidized (DHA) ascorbate increased significantly with increase in atrazine concentration and exposure time; but the increase was more evident under higher (50 and 100 mgkg?1) atrazine concentrations. Increase in atrazine concentration to 200 mgkg?1 significantly decreased AsA, but increased DHA content, throughout the experiment. Seedlings treated with 200 mgkg?1 atrazine showed significantly lowest reduced glutathione (GSH) content, while oxidized glutathione (GSSG) was not significantly affected, after 68 d. Seedlings treated with 100 mgkg?1 atrazine showed increased glutathione-S-transferase (GST) activity after 48 d and 68 d, while treatment with 200 mgkg?1 atrazine significantly increased glutathione reductase (GR) after 58 d. This result suggests that Pennisetum may tolerate lower atrazine concentrations. However, higher concentrations (≥50 mg kg?1), which could have longer residency period in the soil, could induce more physiological damage to the plant.  相似文献   

8.
Brassinosteroids (BRs) have emerged as pleiotropic phytohormone owing to their wide function in crop growth and metabolism. Homobrassinolide (HBR) being an analogue of BRs is known to improve the growth, yield and quality parameters in many crop plants. Thus, an evaluation study was conducted for two years (2018 and 2019) to elucidate the performance of tomato plants (Solanum lycopersicum L.) to a novel group of phytohormone,HBR. The field experiment comprised of seven treatments with homobrassinolide 0.04% (Emulsifiable Concentrate) EC at four different concentrations (0.06, 0.08, 0.10 and 0.12 g active ingredient (a.i.) ha?1) and two well-known growth promoters viz., Gibberellic acid (GA), Naphthalene Acetic Acid (NAA) along with the untreated control. Plant height and chlorophyll concentration were found significantly different in both years of experiment as well as among the different treatments. HBR at 0.12 g a.i. ha?1 was found better with maximum number of fruits (77.36 plant?1), fruit length (6.72 cm), fruit breadth (6.45 cm) and fruit weight (80.52 g) over other concentrations and treatments. Fruit yield was more pronounced in the plots treated with plant growth regulators compared to untreated control. However, significantly higher fruit yield of 91.07 t ha?1 (62.58 t ha?1 with untreated control) along with improved quality traits viz., fruit firmness (4.11 kg cm?2), ascorbic acid content (24.09 mg 100 g?1), total soluble solids (4.43°Brix) and keeping quality (12.50 days) was recorded in 0.12 g a.i. ha?1 HBR treated plots. Thus, it can be inferred that HBRapplication would be a better option to enhance growth, yield as well as quality traits in tomato.  相似文献   

9.
The effectiveness of soil fumigation with 50, 100 and 200 µL kg?1 soil of essential oils (EOs) from the plant species Eucalyptus citriodora, Eucalyptus globulus, Mentha piperita, Pelargonium asperum and Ruta graveolens was assessed against the root‐knot nematode Meloidogyne incognita on potted tomato. Plant growth parameters and number of galls, nematode eggs and juveniles on tomato roots were evaluated after two months of maintenance of the treated plants at 25°C in greenhouse. EOs of E. globulus and P. asperum significantly reduced nematode multiplication and gall formation on tomato roots at all the tested rates, whereas the EOs of E. citriodora, M. piperita and R. graveolens were more suppressive at levels greater than 50 µL kg?1 soil. Biofumigation with EOs of E. globulus and P. asperum resulted also in the largest increase of tomato plant top and root biomass. The five samples of EOs had a different chemical composition as determined by GC and GC‐MS. Structure–activity relationship based on the main constituents of the tested EOs and their nematicidal effect on M. incognita is discussed.  相似文献   

10.
The effect of soil nutrient content on fruit yield and fruit quality is very important. To explore the effect of soil nutrients on apple quality we investigated 200 fruit samples from 40 orchards in Feng County, Jiangsu Province. Soil mineral elements and fruit quality were measured. The effect of soil nutrient content on fruit quality was analyzed by artificial neural network (ANN) model. The results showed that the prediction accuracy was highest (R2 = 0.851, 0.847, 0.885, 0.678 and 0.746) in mass per fruit (MPF), hardness (HB), soluble solids concentrations (SSC), titratable acid concentration (TA) and solid-acid ratio (SSC/TA), respectively. The sensitivity analysis of the prediction model showed that soil available P, K, Ca and Mg contents had the greatest impact on the quality of apple fruit. Response surface method (RSM) was performed to determine the optimum range of the available P, K, Ca, and Mg contents in orchards In Feng County, which were 10∼20 mg⋅kg−1, 170∼200 mg⋅kg−1, 1000∼1500 mg⋅kg−1, and 80∼200 mg⋅kg−1, respectively. The research also concluded that improving the content of available P and available Ca in orchard soil was crucial to improve apple fruit quality in Feng County, Jiangsu Province.  相似文献   

11.

This study assessed the interactive effect of selenium (Se) and farmyard manure (FYM) on soil microbial activities, growth, yield, and Se accumulation by wheat grains. Preliminarily, the effect of Se (0–250 µg kg?1 soil) and FYM (0–12.5 g kg?1 soil) was assessed on soil microflora. Selenium exhibited an adverse impact on soil microflora; respiration was decreased at?≥?10 µg kg?1 soil while dehydrogenase and urease activities were decreased at?≥?125 µg kg?1 soil. At 250 µg Se kg?1 soil, respiration, dehydrogenase and urease activities were decreased by 81, 40 and 35%, respectively, on unamended soil, and by 9, 47 and 22%, respectively, on FYM-amended soil. The subsequent plant experiments were conducted with same Se and FYM rates; one was harvested 42 days after sowing and other at crop maturity. The application of 125 µg Se kg?1 and 12.5 g FYM kg?1 soil improved seedling biomass by 12.6 and 22%, respectively, while their combined use lacked synergistic effect. Similarly, at maturity Se and FYM increased grain yield while their combined effect was not synergistic. The Se-induced suppression in microbial activities was not related to yield which was improved (11% at the highest rate in unamended soil) by Se application. Selenium application increased grain Se content in a rate-dependent manner, it increased from 0 to 1025 µg kg?1 by applying 250 µg Se kg?1 soil. Moreover, FYM application decreased Se accumulation in grains. It is concluded that FYM application increased soil microbial activities and yield but reduced grain Se accumulation in wheat on Se-applied soil.

  相似文献   

12.
The presence of cadmium in the soil above a particular level is proposed to check not only plant growth but also productivity and fruit quality. Therefore, in the present study investigations are directed to evaluate the effect of four levels of cadmium (3, 6, 9, 12 mg kg−1) in interaction with two analogs of brassinosteroids on the growth, fruit yield and quality of tomato. Under greenhouse conditions plants were analyzed for antioxidant system activity and photosynthetic assimilation efficiency. Cd stressed plants exhibited poor growth and biological yield. The metal also had a negative impact on the antioxidant system of the resulting fruits. However, the follow up application of BRs (10−8 M) neutralized the damaging effects of the metal on the plants.  相似文献   

13.
Three strawberry (Fragaria × ananassa Duch.) cultivars Rainier, Totem and Selva were grown under greenhouse conditions in a Parkhill sandy loam soil with a background DTPA-extractable Cd concentration of 0.18 mg kg-1 and a pH of 5.1. Experimental treatments included combinations of 4 Cd applications (0, 15, 30 and 60 mg Cd kg-1 soil) applied as CdSO4 and 2 soil pH values 5.1 and 6.8. Both the application of Cd and pH of the soil significantly affected plant growth, yield and Cd accumulation in plant tissue anf fruit. Although roots accumulated the highest concentrations of Cd of all plant parts investigated, increased soil Cd application reduced leaf weight more than root weight. In general, yield of strawberries was decreased by an increase in amount of soil-applied Cd, however the yield response varied among cultivars. At 60 mg Cd kg-1 soil, yield of Rainier cultivar was reduced to 17.6% of control plants. Over 90% of total Cd taken up by plants grown in Cd-treated soil accumulated in roots, regardless of the Cd level in the soil. Root Cd concentrations ranged from 2.6 mg kg-1 (control plants) to 505.7 mg kg-1 (Totem plants grown in soil at highest Cd and a soil pH 5.1) and were directly related to soil Cd concentrations. Cd translocation from roots to leaves and fruit was very limited, resulting in a maximum Cd concentration in root leaf tissue of 10.2 mg kg-1. Accumulation of Cd in fruit was found to correlate well with leaf Cd, although even at the highest amount of applied Cd, fruit Cd concentration did not exceed 700 g kg-1 of fresh weight.Contribution no. 951  相似文献   

14.
Among the natural plant growth stimulants, moringa has attained enormous attention due to its leaf composition being enriched with cytokinin, antioxidants and minerals. Exogenous application of moringa leaf extract (MLE) improves productivity in many crops. This study investigated the potential of MLE with different dilutions, i.e., MLE0, MLE10, MLE20 and MLE30 (0, 10, 20 and 30 times diluted in water, respectively) to improve the performance of tomato. Foliage-applied water and benzylaminopurine (BAP, 50 mg L?1) were taken as controls. Among treatments, foliar-applied MLE30 produced maximum vegetative and flowering branches, number of flowers and heaviest fruits per plant of tomato in comparison with synthetic BAP and other treatments. A similar increase in vegetative and flowering branches was recorded for root-applied MLE20 including BAP. Foliage-applied MLE30 also increased chlorophyll (a) pigments and leaf total soluble proteins than other stimulants used. This increase was followed by enhanced antioxidant activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), total phenolics in leaves and fruit lycopene contents of tomato. In general, foliar application of MLE30 was more effective as natural biostimulant to improve growth, productivity and fruit quality of tomato as compared to synthetic BAP and its root application.  相似文献   

15.
  • Development of alleviation strategies, which enhance plant growth under heavy metal stress, is important. Inorganic (zeolite) and organic (diethylene triamine penta‐acetic acid, DTPA) amendments affecting the alleviation of lead (Pb) stress in a calcareous soil were tested by investigating leaf nutrient uptake of tomato (Lycopersicon esculentum L.) plants.
  • Experimental quantities of lead (Pb) at 0, 50, 100 and 150 mg·kg?1 soil, zeolite (clinoptilolite) at 0%, 0.5% and 1%, and DTPA at 0, 50 and 100 mg·kg?1 soil were tested in a factorial experiment with three plant replicates.
  • According to the anova , Pb, zeolite, DTPA and their interactions significantly affected plant concentrations of nitrogen (N), potassium (K), iron (Fe), zinc (Zn), copper (Cu), manganese (Mn) and lead (Pb). With increasing DTPA concentration at different levels of zeolite and Pb, plant concentrations of macro‐ and micronutrients significantly increased. Increasing soil Pb increased leaf Pb concentration and decreased the uptake of N, K, Fe, Zn, Cu and Mn. Although with increasing Pb concentration the uptake of macro‐ and micronutrients decreased in tomato, the use of zeolite and DTPA alleviated this stress by increasing nutrient uptake compared to the control. Interestingly, however, increased levels of zeolite and DTPA led to a decreased uptake of nutrients by plants (compared with control), indicating the absorption of such nutrients by the two amendments and their partial release for further plant use.
  • Zeolite and DTPA may alleviate the negative effects of soil Pb on tomato growth by decreasing nutrient leaching and increasing plant nutrient uptake.
  相似文献   

16.
Spatial soil-K availability for no-till soybean [Glycine max (L.) Merr.] has not been studied extensively. We characterize soybean growth- and yield-component and quantify root parameters as a function of soil depth in K-stratified soils with 1 M ammonium acetate extractable-K ranges 60–290 at 0–10 cm increment and 50–90 mg kg?1 at the 10–20 cm increment. Shoots and roots (five depth increments to 50 cm) were collected during development and grain at harvest during 2 years. Soil K at or above the critical level (104 mg K kg?1) increased early-season leaf area and root K-uptake rates early and late in reproductive development. Greater number of seeds plant?1 increased yield for soils with K near the critical level. Soil-K above the critical level increased luxury K-uptake without improving yield, seed-K concentration and accumulation, or seed oil and protein concentration. Greater root length density (>41% of the total) in surface soil coupled with previous results showing greater water content throughout the season in surface soil compared to deeper layers illustrates K stratification caused by no-till may enhance soybean K-uptake.  相似文献   

17.
Oxidative stress or formation of faulty proteins due to non-specific replacement of sulphur by selenium(Se)/mineral imbalance can be one of the reasons for Se phytotoxicity. Present investigation reports the effect of Se on photosynthetic efficiency, anti-oxidative status and micronutrients in maize. Selenate-Se application (1–32 mg kg?1 soil) showed significant growth reduction after 30 days of sowing and all the plants died with concentration higher than 4 mg kg?1 soil. Lower Se doses increased dry matter, chlorophyll, proline and activities of defence enzymes viz. peroxidase, catalase and superoxide dismutase and decreased malondialdehyde, glutathione and glutathione reductase activity as compared to control. All the parameters showed the reverse trend with Se treatment of 4 mg kg?1 soil. Concentration of nutrients (K, P, S, Mn, Mg and Ca) in leaves decreased with application of increasing Se doses. Shoot and root weight decreased (8.5–31.9% and 12–24%, respectively) in response to varying Se doses and highest Se accumulation in these tissues was observed with Se @ 4 mg kg?1 soil. The phyto-toxic effects of higher Se doses may be due to its prooxidant effects and disturbances in nutrients level.  相似文献   

18.
Two commercial tomato cultivars were used to determine whether grafting could prevent decrease of fruit weight and quality under salt stress conditions. The cultivars Buran F1 and Berberana F1 were grafted onto rootstock ‘Maxifort’ and grown under three levels of elevated soil salinity (EC 3.80 dS m?1, 6.95 dS m?1 and 9.12 dS m?1). Fruit weight reduction of grafted plants was lower (about 20–30%) in comparison with non‐grafted ones. Salt stress at the second salinity level (EC 6.95 dS m?1) induced the highest alteration of examined growth and quality parameters. The total increase of phenols, flavonoids, ascorbate and lycopene content in the fruits of both grafted and non‐grafted plants for both cultivars had a similar trend and intensity, though some inter‐cultivar variation was observed. The possibility of grafting tomato plants to improve salt tolerance without fruit quality loss is discussed.  相似文献   

19.
A pot experiment with acid yellow–brown soil was conducted to investigate the interactive effects of molybdenum (Mo) and phosphorus (P) fertilizers on the photosynthetic characteristics of seedlings and grain yield of Brassica napus which is sensitive to soil P and Mo deficiency. Both Mo and P fertilizers were applied at three levels (0 mg Mo kg?1, 0.15 mg Mo kg?1, 0.30 mg Mo kg?1 soil; 0 mg P kg?1, 80 mg P kg?1, 160 mg P kg?1 soil). The results showed that P fertilizer application increased grain yield, soluble sugar concentrations of seedling leaves, DM and P accumulation of seedling shoots of Brassica napus in the absence or presence of Mo fertilizer. In contrast, Mo fertilizer increased these parameters only in the presence of P fertilizer. Mo accumulation in shoots, chlorophyll concentrations and net photosynthesis rate (P n) of seedling leaves were increased by both Mo and P fertilizers, particularly with the combination of the two fertilizers. The results also showed that the Mo and P fertilizers increased photosynthetic rate through two different mechanisms, with Mo increasing photosynthetic activity of mesophyll cells, and P increasing stomatal conductance. The results demonstrate that there was a synergetic effect on photosynthesis and grain yield between Mo and P fertilizers and it is conducive for Brassica napus growth to co-apply the two fertilizers.  相似文献   

20.
One-pass harvest equipment has been developed to collect corn (Zea mays L.) grain, stover, and cobs that can be used as bioenergy feedstock. Nutrients removed in these feedstocks have soil fertility implication and affect feedstock quality. The study objectives were to quantify nutrient concentrations and potential removal as a function of cutting height, plant organ, and physiological stage. Plant samples were collected in 10-cm increments at seven diverse geographic locations at two maturities and analyzed for multiple elements. At grain harvest, nutrient concentration averaged 5.5 g?N kg?1, 0.5 g?P kg?1, and 6.2 g?K kg?1 in cobs, 7.5 g?N kg?1, 1.2 g?P kg?1, and 8.7 g?K kg?1 in the above-ear stover fraction, and 6.4 g?N kg?1, 1.0 g?P kg?1, and 10.7 g?K kg?1 in the below-ear stover fraction (stover fractions exclude cobs). The average collective cost to replace N, P, and K was $11.66 Mg?1 for cobs, $17.59 Mg?1 for above-ear stover, and $18.11 Mg?1 for below-ear stover. If 3 Mg ha?1 of above-ear stover fraction plus 1 Mg of cobs are harvested, an average N, P, and K replacement cost was estimated at $64 ha?1. Collecting cobs or above-ear stover fraction may provide a higher quality feedstock while removing fewer nutrients compared to whole stover removal. This information will enable producers to balance soil fertility by adjusting fertilizer rates and to sustain soil quality by predicting C removal for different harvest scenarios. It also provides elemental information to the bioenergy industry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号