首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract. Survival and death of Chara internodal cells were investigated in one of the alkali metal salts KCl, some of the alkali earth metal salts CaCl2, Ca(NO3)2, MgCl2, Mg(NO3)2, SrCl2, Sr(NO3)2, BaCl2 and Ba(NO3)2, potassium phosphate pH buffer solution (pH 7.0), Tris-maleate pH buffer solution (pH 7.0), HEPES (N-2-hydroxyethylpiperazine-N′-2-ethanesulphonic acid)-KOH (pH 7.0) pH buffer solution, calcium buffer solutions, and deionized water. Most of the internodal cells died within a day or a few days in KCl, MgCl2, Mg(NO3)2, BaCl2 and Ba(NO3)2 solutions of higher concentrations, calcium buffer solutions of pCa 6.0, 10.0 mol m-3 potassium phosphate pH buffer solution and 10.0 mol m-3 Trismaleate pH buffer solution. However, all of the internodal cells survived more than 10 d in deionized water, 80.0 mol m-3 CaCl2, 80.0 mol m-3 Ca(NO3)2, 80.0 mol m-3 SrCl2, 80.0 mol m-3 Sr(NO3)2 calcium buffer solutions of pCa 4.0 and pCa 5.0, and 10.0 mol m-3 HEPES-KOH (pH 7.0) pH buffer solution. Addition of Ca2+ or Sr2+ to K+, Mg2+ and Ba2+ salt solutions increased the survival rates of the internodal cells. Calcium release from the internodal cell wall was measured in deionized water, KCl, NaCl, MgCl2, CaCl2, SrCl2 and BaCl2 solutions. Except in deionized water and CaCl2 solution, most of the calcium binding to the cell wall was released within one or a few hours in respective electrolyte solutions. Thus, survival and death of the internodal cells in the electrolyte solutions tested were interpreted in terms of the calcium release from the cell wall and the cell membrane, and intrinsic ability of Sr2+ to maintain the cell membrane normal.  相似文献   

2.
1. Experiments on anomalous osmosis suggested that salts with trivalent cations, e.g. LaCl3, caused isoelectric gelatin to be positively charged, and salts with tetravalent anions, e.g. Na4Fe(CN)6, caused isoelectric gelatin to be negatively charged. In this paper direct measurements of the P.D. between gels of isoelectric gelatin and an aqueous solution as well as between solutions of isoelectric gelatin in a collodion bag and an aqueous solution are published which show that this suggestion was correct. 2. Experiments on anomalous osmosis suggested that salts like MgCl2, CaCl2, NaCl, LiCl, or Na2SO4 produce no charge on isoelectric gelatin and it is shown in this paper that direct measurements of the P.D. support this suggestion. 3. The question arose as to the nature of the mechanism by which trivalent and tetravalent ions cause the charge of isoelectric proteins. It is shown that salts with such ions act on isoelectric gelatin in a way similar to that in which acids or alkalies act, inasmuch as in low concentrations the positive charge of isoelectric gelatin increases with the concentration of the LaCl3 solution until a maximum is reached at a concentration of LaCl3 of about M/8,000; from then on a further increase in the concentration of LaCl3 diminishes the charge again. It is shown that the same is true for the action of Na4Fe(CN)6. From this it is inferred that the charge of the isoelectric gelatin under the influence of LaCl3 and Na4Fe(CN)6 at the isoelectric point is due to an ionization of the isoelectric protein by the trivalent or tetravalent ions. 4. This ionization might be due to a change of the pH of the solution, but experiments are reported which show that in addition to this influence on pH, LaCl3 causes an ionization of the protein in some other way, possibly by the formation of a complex cation, gelatin-La. Na4Fe(CN)6 might probably cause the formation of a complex anion of the type gelatin-Fe(CN)6. Isoelectric gelatin seems not to form such compounds with Ca, Na, Cl, or SO4. 5. Solutions of LaCl3 and Na4Fe(CN)6 influence the osmotic pressure of solutions of isoelectric gelatin in a similar way as they influence the P.D., inasmuch as in lower concentrations they raise the osmotic pressure of the gelatin solution until a maximum is reached at a concentration of about M/2,048 LaCl3 and M/4,096 Na4Fe(CN)6. A further increase of the concentration of the salt depresses the osmotic pressure again. NaCl, LiCl, MgCl2, CaCl2, and Na2SO4 do not act in this way. 6. Solutions of LaCl3 have only a depressing effect on the P.D. and osmotic pressure of gelatin chloride solutions of pH 3.0 and this depressing effect is quantitatively identical with that of solutions of CaCl2 and NaCl of the same concentration of Cl.  相似文献   

3.
Ilse Foissner 《Protoplasma》1990,154(2-3):80-90
Summary The formation of wall appositions (plugs) by ionophore A 23187, CaCl2, LaCl3, and nifedipine was studied in mature internodal cells of characeaen algae. CaCl2 at concentrations above 10–2M induces thick fibrillar plugs without callose inNitella flexilis. InChara corallina andNitella flexilis ionophore A 23187 (1.25×10–5 to 5×10–5M) and LaCl3 (7.5×10–5 to 2.5×10–4M) cause flat appositions which contain callose and have a more granular structure. Plug formation by ionophore A 23187, CaCl2, and LaCl3 is pH-dependent and occurs beneath the alkaline regions of the cell. Nifedipine (10–4 to 10–5M) induces plugs inNitella flexilis after previous injury. These callose-containing wall appositions consist of a heterogeneous granular core which is covered by a fibrillar layer. The results of this work are compared with previous studies on wound wall formation and chlortetracycline (CTC)-induced plug formation which reveal that abundant coated vesicles occur only when a thick fibrillar wall layer is formed. Neither LaCl3 nor nifedipine inhibit the formation of CaCl2- or CTC-plugs. The unusual effects of these substances, which normally act as Ca2+ antagonists and therefore should prevent and not induce plug formation, are discussed. It is suggested that La3+ mimicks the effects of calcium and that nifedipine binding to the Ca2+ channels is altered in the alkaline regions of characean internodes and allows an influx of Ca2+.Abbreviations AFW artificial fresh water - CTC chlortetracycline - DCMU dichlorphenyldimethylurea - DMSO dimethylsulfoxide - EGTA ethyleneglycoltetraacetic acid - MES 2-(N-morpholino) ethanesulfonic acid - HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - TAPS N-tris[hydroxymethyl]methyl-3-aminopropanesulfonic acid  相似文献   

4.
Regulation of proline accumulation in plants under chilling stress remains unclear. In this paper, we treated Jatropha curcas seedlings under chilling stress with exogenous calcium chloride (CaCl2), the plasma membrane Ca2+-channel blocker lanthanum chloride (LaCl3), calmodulin antagonists, chlorpromazine (CPZ), and trifluoperazine (TFP) and investigated the effects of calcium and calmodulin (CaM) on proline accumulation and chilling tolerance. The results showed that CaCl2 treatment significantly enhanced chilling stress-induced proline accumulation. CaCl2 also induced an almost immediate and rapid increase of Δ1-pyrroline-5-carboxylate synthetase (P5CS) and glutamate dehydrogenase activities, the key enzymes in the glutamate pathway of proline biosynthesis, and up-regulated P5CS expression, but it decreased the activity of proline dehydrogenase (ProDH), a key enzyme of proline degradation, and inhibited ProDH expression. Treatment with LaCl3, CPZ, and TFP exhibited the opposite effects to those by CaCl2 treatment. Moreover, CaCl2, LaCl3, CPZ, and TFP had little effect on the activities of ornithine aminotransferase and arginase, the key enzymes in the ornithine pathway of proline biosynthesis. These results indicated that Ca2+-CaM might be involved in signal transduction events, leading to proline accumulation in J. curcas seedlings under chilling stress, and that Ca2+-induced proline accumulation is a combined result of the activation of the glutamate pathways of proline biosynthesis and the simultaneous inhibition of the proline degradation pathway. In addition, CaCl2 treatment increased tissue vitality, decreased the content of the lipid peroxidation product malondialdehyde (MDA), and alleviated electrolyte leakage in J. curcas seedlings under chilling stress, indicating that exogenous Ca2+ can enhance chilling tolerance, and proline might be a key factor in this increased chilling tolerance.  相似文献   

5.
《BBA》1987,890(1):66-76
Laser-flash-induced absorption changes at 830 nm, fluorescence-induction curves and the average oxygen yield per flash have been measured in spinach Photosystem II membrane fragments as a function of trypsin treatment and its modification by CaCl2. The following was found. (i) The relative contribution of the nanosecond relaxation to the overall decay kinetics of 830 nm absorption changes reflecting the P-680+-reduction decreases as a function of incubation time with trypsin. Simultaneously, mild treatment at pH = 6.0 markedly increases the extent of 200 μs kinetics that highly revert back to nanosecond kinetics by CaCl2 addition. After harsher trypsin treatment (pH = 7.5) pH-dependent 2–20 μs kinetics appear that cannot be reverted to nanosecond kinetics by CaCl2. (ii) The CaCl2-induced restoration of nanosecond kinetics is mainly due to a Ca2+-induced effect rather than to a functional role of Cl. Sr2+ can substantially substitute for Ca2+, whereas Mg2+, Mn2+ and monovalent ions are almost inefficient. (iii) A quantitative correlation between the extent of the nanosecond kinetics and the average oxygen yield per flash was not observed. (iv) If CaCl2 is present in the assay medium for trypsin treatment the samples are markedly protected to proteolytic degradation. This effect mainly refers to the reaction pattern of the acceptor side. Other bivalent cations can substitute Ca2+ for its protective function. (v) The CaCl2-induced protection to proteolytic attack is extremely sensitive to a very short trypsin pretreatment that does hardly affect the shape of the fluorescence induction curve. The results are discussed in relation to the functional and structural organization of Photosystem II.  相似文献   

6.
1. This paper gives measurements of the influence of various electrolytes on the cataphoretic P.D. of particles of collodion coated with gelatin, of particles of casein, and of particles of boiled egg albumin in water at different pH. The influence of the same electrolyte was about the same in all three proteins. 2. It was found that the salts can be divided into two groups according to their effect on the P.D. at the isoelectric point. The salts of the first group including salts of the type of NaCl, CaCl2, and Na2SO4 affect the P.D. of proteins at the isoelectric point but little; the second group includes salts with a trivalent or tetravalent ion such as LaCl3 or Na4Fe(CN)6. These latter salts produce a high P.D. on the isoelectric particles, LaCl3 making them positively and Na4Fe(CN)6 making them negatively charged. This difference in the action of the two groups of salts agrees with the observations on the effect of the same salts on the anomalous osmosis through collodion membranes coated with gelatin. 3. At pH 4.0 the three proteins have a positive cataphoretic charge which is increased by LaCl3 but not by NaCl or CaCl2, and which is reversed by Na4Fe(CN)6, the latter salt making the cataphoretic charge of the particles strongly negative. 4. At pH 5.8 the protein particles have a negative cataphoretic charge which is strongly increased by Na4Fe(CN)6 but practically not at all by Na2SO4 or NaCl, and which is reversed by LaCl3. the latter salt making the cataphoretic charge of the particles strongly positive. 5. The fact that electrolytes affect the cataphoretic P.D. of protein particles in the same way, no matter whether the protein is denatured egg albumin or a genuine protein like gelatin, furnishes proof that the solutions of genuine proteins such as crystalline egg albumin or gelatin are not diaphasic systems, since we shall show in a subsequent paper that proteins insoluble in water, e.g. denatured egg albumin, are precipitated when the cataphoretic P.D. falls below a certain critical value, while water-soluble proteins, e.g. genuine crystalline egg albumin or gelatin, stay in solution even if the P.D. of the particles falls below the critical P.D.  相似文献   

7.
Changes in the turbidity of suspensions of bovine rod outer segment fragments induced by rhodopsin bleaching were measured in the presence of various concentrations of divalent cations at acidic pH (4.7–5.4). Unlike the situation at neutral pH, the turbidity of the suspensions increased drastically by bleaching at acidic pH. It was found that the extent of turbidity change became maximum at a particular concentration of divalent cations (i.e., 5 mM CaCl2, 5 mM MgCl2, or 5 mM mixed divalent cations). However, the turbidity increment in the presence of 5 mM MgCl2 was greatly enhanced by the addition of a minute amount of CaCl2. These results evidently show that the membrane characteristic is abruptly changed by bleaching at acidic pH in particular. It is also suggested that there are two kinds of binding sites for Ca ions: one is a Ca2+ specific site, and the other is a nonspecific site to which Mg2+ can also bind.  相似文献   

8.
A radioligand receptor assay was used to determine the effect of Ca+2 and other cations on the binding of D-Ser-(t-Bu)6-desGly10EA GnRH (Buserelin acetate, Hoechst) to the gonadotropin releasing hormone receptor in rat pituitary membrane. Specific binding was reduced in the presence of CaCl2, BaCl2, MnCl2, Co(CH3COO)2, MgCl2, NaCl, or LaCl3, although these salts have markedly different effects on receptor mediated gonadotropin release from intact cells. Consistent with this finding, compounds which chelate cations increased specific binding of the ligand. The decreased binding is explained solely by an effect on receptor affinity, which was reduced from 4 × 109 M?1 in the presence of 10 mM CaCl2. Total receptor number was unchanged. These data suggest that the requirement for Ca+2 in GnRH-stimulated LH release is not mediated through a specific action of this ion at the level of receptor binding.  相似文献   

9.
R G Peterson 《Life sciences》1976,18(8):845-849
Whole mouse sciatic nerves were split and incubated in phosphate buffered saline (PBS) and in PBS containing various amounts of trypsin. After 24 hours of exposure to PBS alone there were no changes in the gel electrophoresis pattern of myelin proteins. During the same period of time, trypsin digested major amounts ofboth the main myelin protein (PO) and the two basic proteins of myelin (P1, P2). The basic proteins were undetectable after 24 hours of 1% trypsin digestion while the main myelin protein was not completely digested. The amount of digestion of the myelin proteins was related to the concentration of trypsin and the time of digestion. Myelin proteins were demonstrated by staining with Coomassie blue, periodic acid Schiff (PAS) and by special indirect lighting techniques.  相似文献   

10.
Lanthanum chloride (LaCl3) can affect neurobehavioral development and impair cognitive abilities. The mechanism underlying LaCl3-induced neurotoxic effects is still unknown. The purpose of this research was to investigate the neuronal impairment induced by LaCl3 and discuss the possible mechanism from the aspects of the alteration of glutamate level, intracellular calcium concentration ([Ca2+]i), Bax, Bcl-2 and caspases expression in the hippocampus. Lactational rats were exposed to 0, 0.25, 0.50 and 1.0 % LaCl3 in drinking water, respectively. Their offspring were exposed to LaCl3 by parental lactation and then administrated with 0, 0.25, 0.50 and 1.0 % LaCl3 in drinking water for 1 month. The results showed that 0.25, 0.50 and 1.0 % LaCl3 exposure induced neuronal impairment in the hippocampus of young rat. Hippocampal glutamate level, [Ca2+]i and ratio of Bax and Bcl-2 expression increased significantly after LaCl3 exposure. Besides, LaCl3 exposure increased GRP78, GRP94, GADD153 and p-JNK expression, promoted the activation of caspase-3, caspase-9 and caspase-12, induced PARP cleavage and caused excessive apoptosis. These results indicate that LaCl3 increases glutamate level, [Ca2+]i and ratio of Bax and Bcl-2 expression, which cause excessive apoptosis by the mitochondrial and endoplasmic reticulum stress-induced pathway, and thus neuronal damages in the hippocampus.  相似文献   

11.
1. It is shown that NaCl acts like CaCl2 or LaCl3 in preventing the diffusion of strong acids through the membrane of the egg of Fundulus with this difference only that a M/8 solution of NaCl acts like a M/1,000 solution of CaCl2 and like a M/30,000 solution of LaCl3. 2. It is shown that these salts inhibit the diffusion of non-dissociated weak acid through the membrane of the Fundulus egg but slightly if at all. 3. Both NaCl and CaCl2 accelerate the diffusion of dissociated strong alkali through the egg membrane of Fundulus and CaCl2 is more efficient in this respect than NaCl. 4. It is shown that in moderate concentrations NaCl accelerates the rate of diffusion of KCl through the membrane of the egg of Fundulus while CaCl2 does not.  相似文献   

12.
1. While crystalline egg albumin is highly soluble in water at low temperature at the pH of its isoelectric point, it is coagulated by heating. It has long been known that this coagulation can be prevented by adding either acid or alkali, whereby the protein is ionized. 2. It is shown in this paper that salts with trivalent or tetravalent ions, e.g. LaCl3 or Na4Fe(CN)6, are also able to prevent the heat coagulation of albumin at the isoelectric point (i.e. pH 4.8), while salts with a divalent ion, e.g. CaCl2, BaCl4, Na2SO4, or salts like NaCl, have no such effect. 3. This is in harmony with the fact shown in a preceding paper that salts with trivalent or tetravalent ions can cause the ionization of proteins at its isoelectric point and thus give rise to a membrane potential between micellæ of isoelectric protein and surrounding aqueous solution, while the above mentioned salts with divalent and monovalent ions have apparently no such effect.  相似文献   

13.
Fertilized eggs of the mollusk Ilyanassa obsoleta (Nassarius obsoletus) form large blebs resembling polar lobes within 12 min of exposure to solutions of isotonic CaCl2, whereas control eggs in sea water remain spherical. Under identical conditions, fertilized eggs of the sea urchin, Strongylocentrotus purpuratus, an organism which normally does not form polar lobes, do not form blebs upon exposure to solutions of isotonic CaCl2. The calcium-induced blebbing in Ilyanassa still occurs if other cations such as Na+, Mg2+, or Mn2+ are present in addition to Ca2+, but not if comparable concentrations of K+ are present. Cytochalasin B prevents the calcium-induced blebbing, whereas colchicine does not. Cytokinesis in both Ilyanassa and Strongylocentrotus and normal polar lobe formation in Ilyanassa appear to require exogenous K+ but not exogenous Ca2+. Preliminary electron microscopy of Ilyanassa eggs exposed to isotonic solutions of CaCl2 has shown microfilaments in the cortical cytoplasm in the region of the bleb constriction but no microfilaments in spherical control eggs in sea water. These data suggest that high concentrations of exogenous Ca2+ trigger the polymerization and contraction of a ring of microfilaments in the cortical cytoplasm of the Ilyanassa egg which results in the formation of a lobelike bleb of cytoplasm. The observation that K+ antagonizes this Ca2+-induced blebbing has led to the formulation of a theory which postulates that the ratio of intracellular Ca2+ to intracellular K+ is critical in the control of polar lobe formation and cytokinesis.  相似文献   

14.
—Purified myelin incorporated l -[14C]leucine and l -[14C]lysine into myelin proteins in an enzymatic process similar to that of renal brush border membranes. The system was not inhibited by cycloheximide or puromycin or by pretreatment with ribonuclease; the reaction was inhibited by cetophenicol. ATP was an effector, shifting the optimal pH from 7.2 to 8.3. In the presence of ATP, myelin was less dense in a sucrose gradient. Ammonia was released from the membrane during the incorporation of amino acids. Myelin preloaded with cold leucine did not incorporate [14C]leucine but did incorporate [14C]lysine; there was no cross inhibition between the two amino acids. The incorporation was into or onto proteins of the Wolfgram proteolipid fraction of myelin. The incorporation was of the high affinity type with a Km of 10?7m and was restricted to the natural amino acids.  相似文献   

15.
Summary Discophrya collini is a suctorian protozoan with contractile tentacles containing a microtubule-lined canal and microfilaments. The effects of a range of cations on tentacle contraction and ultrastructure have been determined. Treatment with 80 mM CaCl2 and 95 mM MgCl2 causes contraction to 28% and 57% of the control length respectively. Re-extension takes over 4 hours in the culture medium, but CaCl2-treated tentacles are re-extended after a 5 minutes treatment with 10–2 M EDTA or 5 × 10–3 M EGTA. CuCl2 causes a significant contraction at 10–5 M (to 77%); LaCl3 at 10–4 M (to 65%); ZnCl2 at 10–2 M (to 65%), but BaCl2, CoCl2, MnCl2, NiCl2, and SrCl2 cause significant changes only at 10–1 M.The cytoplasm of CaCl2-treated cells contains two forms of membraneous structures when viewed in TEM; that of MgCl2-treated cells reveals granular areas of medium electron density. None of these features are seen in control cells. The microtubules of the tentacle canal appear to be intact upon its retraction into the cell with no change occurring in the numbers or relative positions of the microtubules. The tentacle cortex is wrinkled. It is suggested from this and previous work that tentacle contraction may be mediated by a microfilament-based mechanism, and that calcium may be involved.  相似文献   

16.
Calcium chloride and snail physiological salt solutions were exposed to static magnetic fields (2.3–350 mT), and the physical properties of the solutions as well as their biologic effects were studied. Our preliminary observations show that these fields alter physicochemical properties of CaCl2 solutions and the functional effects of physiological solutions. Experiments on CaCl2 solutions demonstrated field-dependent changes of electrical conductivity, with the magnitude and the direction of conductivity change being a function of both concentration and field intensity. The changes in conductivity were maintained for periods in excess of 1 h after exposure. Conductivity changes were not found after exposure of physiological solutions to static magnetic fields, but changes of biological consequence did occur. Other experiments showed that there were several changes in cellular function observed in ganglia and isolated neurons of Helix pomatia when the perfusing medium was changed from the normal physiologic solution to the same solution after exposure to magnetic fields. These changes include membrane depolarization and increased action potential discharge, reduced uptake of Ca into cells, altered content of cyclic nucleotides in ganglia, and increased volume of isolated cell bodies. A change in hydration of calcium ions may be one of the consequences of magnetic-field exposure, and in physiological solutions this change may have functional consequences. © 1994 Wiley-Liss, Inc.  相似文献   

17.
Hiatt AJ 《Plant physiology》1967,42(2):294-298
Excised roots of barley (Hordeum vulgare, var. Campana) were incubated in KCl, K2SO4, CaCl2, and NaCl solutions at concentrations of 10−5 to 10−2 n. Changes in substrate solution pH, cell sap pH, and organic acid content of the roots were related to differences in cation and anion absorption. The pH of expressed sap of roots increased when cations were absorbed in excess of anions and decreased when anions were absorbed in excess of cations. The pH of the cell sap shifted in response to imbalances in cation and anion uptake in salt solutions as dilute as 10−5 n. Changes in cell sap pH were detectable within 15 minutes after the roots were placed in 10−3 n K2SO4. Organic acid changes in the roots were proportional to expressed sap pH changes induced by unbalanced ion uptake. Changes in organic acid content in response to differential cation and anion uptake appear to be associated with the low-salt component of ion uptake.  相似文献   

18.
During exposure to soft water, acidified to pH 4.0, the haemolymph concentrations of Na+, K+, and Cl decreased whereas the Ca2+ concentration fluctuated in Astacus astacus. The haemocyte content of K+ decreased from 9% to 2% of the total haemolymph K+ content after exposure to pH 3.7 for 3 days. Within 14 days, 250 µg Al3+ l–1, as Al2(SO4)3 at pH 5.0, reduced the haemolymph Na+ content in Astacus astacus and Pacifastacus leniusculus, however, the effects were less pronounced than earlier reported for fish. Disturbed ion regulation, mainly depending on low pH, is thought to contribute to the absence of these species in acid waters.  相似文献   

19.
Movements of ions are considered to be governed by the electroneutrality rule. Therefore, a cation moving across the cell membrane into the cell either passively or actively should move together with its counterion, an anion, in equal amounts of charge or in exchange for another cation inside the cell. This means that the net influx of the cation in question should be affected by the permeability of its counterion and/or another cation inside the cell. To examine osmotic and ionic regulation in Chara cells, cell fragments of Chara having a lower osmotic pressure than normal (L-cell fragments) were prepared. The L-cell fragments were individually put into various dilute electrolyte solutions and their osmotic potentials were measured with a turgor balance. Concentrations of K+, Na+, Ca2+, Mg2+, Cl?, NO?3. and SO2?4. in the external electrolyte solutions in which L-cells had been incubated were also analysed by ion chromatography. The results showed that in 0.5 mM KCL + 0.1 mM CaCl2 solution, Chara L-cell fragments absorbed K+ and Cl? to maintain electroneutrality and then regained their osmotic potential very rapidly. When the anion was Cl, the cation absorbed at the highest rate was K+ On the other hand, when the cation was K, the anion absorbed at the highest rate was Cl, Other ions Ca2+, SO2?4 and NO?3 showed much less permeability than K+ and Cl ?for the Chara plasma membrane. The conclusion from these findings was that due to the constraint of electroneutral transport, the uptake rate of a salt into L-cells is limited by the permeability of the least permeable ion.  相似文献   

20.
Calcium ion (Ca2+) is essential secondary messenger in plant signaling networks. In this study, the effect of Ca2+ on oxidative damage caused by a high irradiance (HI) was investigated in the leaves of two cultivars of tall fescue (Arid3 and Houndog5). Pretreatment of the tall fescue leaves with a CaCl2 solution significantly increased Ca2+ content and intrinsic HI tolerance due to a decreased ion leakage and content of malondialdehyde, hydrogen peroxide, and superoxide radicals. Moreover, the activities of superoxide dismutase, catalase, ascorbate peroxidase, and glutathione reductase increased in both the cultivars in the presence of Ca2+ under the HI stress. In contrast, treatments with a Ca2+ chelator ethylene glycol-bis(2-aminoethylether)-N,N,N′,N′-tetraacetic acid (EGTA) or a plasma membrane Ca2+ channel blocker LaCl3 reversed these effects. On the other hand, a pronounced increase in nitric oxide synthase-like activity and NO release by exogenous Ca2+ treatment was observed in the tolerant Arid3 plants after exposure to the HI, whereas only a small increase was observed in more sensitive Houndog5. Moreover, the inhibition of NO production by 2-(4-carboxy-2-phenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide or Nω-nitro-L-arginine blocked the protective effect of exogenous Ca2+, whereas the inhibition of Ca2+ by EGTA or LaCl3 had no influence on the protective effect of NO. The results indicate that NO might be involved in the Ca2+-induced activities of antioxidant enzymes further protecting against HI-induced oxidative damage. This protective mechanism was found to be more efficient in Arid3 than in Houndog5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号