首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Invasive exotic plants can persist and successfully spread within ecosystems and negatively affect the recruitment of native species. The exotic invasive Ailanthus altissima and the native Robinia pseudoacacia are frequently found in disturbed sites and exhibit similar growth and reproductive characteristics, yet each has distinct functional roles such as allelopathy and nitrogen fixation, respectively. A four-month full additive series in the greenhouse was used to analyze the intraspecific and interspecific interference between these two species. In the greenhouse experiment, the inverse of the mean total biomass (g) response per plant for each species was regressed on the density of each species and revealed that the performance of the plants was significantly reduced by interspecific interference and not by intraspecific interference (p < 0.05). Other biomass traits such as root dry weight, shoot dry weight, stem dry weight, and leaf dry weight were also negatively affected by interspecific interference. Competition indices such as Relative Yield Total and Relative Crowding Coefficient suggested that A. altissima was the better competitor in mixed plantings. Ailanthus altissima consistently produced a larger above ground and below ground relative yield while R. pseudoacacia generated a larger aboveground relative yield in high density mixed species pots.  相似文献   

2.

Robinia pseudoacacia L. has been widely planted worldwide for a variety of purposes, but it is an aggressive invader in many regions. To control invasion by the species, we examined the effectiveness of girdling young trees to ground level to kill trees and preclude sprout development through comparison among girdling, clearcut and control treatments on the Tama river terrace, Tokyo. More than 99% of R. pseudoacacia trees were killed by girdling. The number of sprouts that developed from roots and stumps after girdling was distinctly reduced compared with that observed after clearcutting. We also conducted girdling of young trees of Ailanthus altissima (Mill.) Swingle, which shows similar developmental and ecological characteristics to R. pseudoacacia, and the two species are often sympatric. More than 98% of A. altissima trees were killed, but a higher number of sprouts developed from A. altissima stumps compared with that from R. pseudoacacia stumps. These results indicate that girdling young trees to ground level is an effective method of controlling R. pseudoacacia by killing the stem and precluding sprout development. The girdling method is simple to apply and imposes a low burden on the surrounding environment.

  相似文献   

3.
One of the most important sources of energy in aquatic ecosystems is the allochthonous input of detritus. Replacement of native tree species by exotic ones affects the quality of detritus entering freshwater ecosystems. This replacement can alter nutrient cycles and community structure in aquatic ecosystems. The aims of our study were (1) to compare leaf litter decomposition of two widely distributed exotic species (Ailanthus altissima and Robinia pseudoacacia) with the native species they coexist with (Ulmus minor and Fraxinus angustifolia), and (2) to compare macroinvertebrate colonization among litters of the invasive and native species. Litter bags of the four tree species were placed in the water and collected every 2, 25, 39, 71, and 95 days in a lentic ecosystem. Additionally, the macroinvertebrate community on litter bags was monitored after 25, 39, and 95 days. Several leaf chemistry traits were measured at the beginning (% lignin; lignin:N, C:N, LMA) and during the study (leaf total nitrogen). We detected variable rates of decomposition among species (k values of 0.009, 0.008, 0.008, and 0.005 for F. angustifolia, U. minor, A. altissima and R. pseudoacacia, respectively), but we did not detect an effect of litter source (from native/exotic). In spite of its low decay, the highest leaf nitrogen was found in R. pseudoacacia litter. Macroinvertebrate communities colonizing litter bags were similar across species. Most of them were collectors (i.e., they feed on fine particulate organic matter), suggesting that leaf material of either invasive or native trees was used as substrate both for the animals and for the organic matter they feed on. Our results suggest that the replacement of the native Fraxinus by Robinia would imply a reduction in the rate of leaf processing and also a slower release of leaf nitrogen to water.  相似文献   

4.
Life‐history traits of invasive exotic plants are typically considered to be exceptional vis‐à‐vis native species. In particular, hyper‐fecundity and long range dispersal are regarded as invasive traits, but direct comparisons with native species are needed to identify the life‐history stages behind invasiveness. Until recently, this task was particularly problematic in forests as tree fecundity and dispersal were difficult to characterize in closed stands. We used inverse modelling to parameterize fecundity, seed dispersal and seedling dispersion functions for two exotic and eight native tree species in closed‐canopy forests in Connecticut, USA. Interannual variation in seed production was dramatic for all species, with complete seed crop failures in at least one year for six native species. However, the average per capita seed production of the exotic Ailanthus altissima was extraordinary: > 40 times higher than the next highest species. Seed production of the shade tolerant exotic Acer platanoides was average, but much higher than the native shade tolerant species, and the density of its established seedlings (≥ 3 years) was higher than any other species. Overall, the data supported a model in which adults of native and exotic species must reach a minimum size before seed production occurred. Once reached, the relationship between tree diameter and seed production was fairly flat for seven species, including both exotics. Seed dispersal was highly localized and usually showed a steep decline with increasing distance from parent trees: only Ailanthus altissima and Fraxinus americana had mean dispersal distances > 10 m. Janzen‐Connell patterns were clearly evident for both native and exotic species, as the mode and mean dispersion distance of seedlings were further from potential parent trees than seeds. The comparable intensity of Janzen‐Connell effects between native and exotic species suggests that the enemy escape hypothesis alone cannot explain the invasiveness of these exotics. Our study confirms the general importance of colonization processes in invasions, yet demonstrates how invasiveness can occur via divergent colonization strategies. Dispersal limitation of Acer platanoides and recruitment limitation of Ailanthus altissima will likely constitute some limit on their invasiveness in closed‐canopy forests.  相似文献   

5.

Background and aim

Exotic plant species can alter the nitrogen cycle in invaded ecosystems. We assess the differences in nitrogen use strategies and litter production and dynamics among three native riparian trees (Fraxinus angustifolia, Populus alba and Ulmus minor) and three co-occurring exotics (Ailanthus altissima, Robinia pseudoacacia and Ulmus pumila), currently spreading throughout river banks in inner Spain. We aim to predict the ecological consequences of a replacement of the natives by the exotics.

Methods

We compared the leaf lifespan, nitrogen resorption efficiency in leaves, nitrogen mean residence time, amount and timing of litter production and amount of nitrogen returned to soils between these native and exotic species.

Results

We found differences among species in all the variables measured, but not between native or exotic origins. Species were ranked from the most to the least conservative nitrogen use strategy as follows: U. pumila was the most conservative species, followed by the three natives (with an intermediate strategy), A. altissima and finally by the nitrogen-fixer R. pseudoacacia. The studied exotic species would produce contrasting impacts on the nitrogen cycle upon invasion.

Conclusions

On the basis of our results, we predict little impacts on the nitrogen cycle if U. pumila dominates the landscape. Despite being nitrogen-fixer R. pseudocacia would not increase soil nitrogen availability in the study area due to its low litter production and litter decomposition rates. In contrast, we predict an increase in nitrogen availability of soils upon A. altissima invasion, as this species produces a high amount of nitrogen rich and labile litter. This study offers a striking example of the contingencies involved in predicting the ecosystem impacts of exotic plant invasion.  相似文献   

6.
Inter- and intraspecific competitive abilities are significant determinants of invasive success and the ecological impact of non-native plants. We tested two major hypotheses on the competitive ability of invasive species using invasive (Taraxacum officinale) and native (T. platycarpum) dandelions: differential interspecific competitive ability between invasive and native species and the kin recognition of invasive species. We collected seeds from two field sites where the two dandelion species occurred nearby. Plants were grown alone, with kin (plants from the same maternal genotype) or strangers (plants from different populations) of the same species, or with different species in a growth chamber, and the performance at the early developmental stage between species and treatments was compared. The invasive dandelions outcompeted the native dandelions when competing against each other, although no difference between species was detected without competition or with intraspecific competition. Populations of native species responded to interspecific competition differently. The effect of kinship on plant performance differed between the tested populations in both species. A population produced more biomass than the other populations when grown with a stranger, and this trend was manifested more in native species. Our results support the hypothesis that invasive plants have better competitive ability than native plants, which potentially contributes to the establishment and the range expansion of T. officinale in the introduced range. Although kin recognition is expected to evolve in invasive species, the competitive ability of populations rather than kinship seems to affect plant growth of invasive T. officinale under intraspecific competition.  相似文献   

7.
General circulation models project more intense and frequent droughts over the next century, but many questions remain about how terrestrial ecosystems will respond. Of particular importance, is to understand how drought will alter the species composition of regenerating temperate forests wherein symbiotic dinitrogen (N2)-fixing plants play a critical role. In experimental mesocosms we manipulated soil moisture to study the effect of drought on the physiology, growth and competitive interactions of four co-occurring North American tree species, one of which (Robinia pseudoacacia) is a symbiotic N2-fixer. We hypothesized that drought would reduce growth by decreasing stomatal conductance, hydraulic conductance and increasing the water use efficiency of species with larger diameter xylem vessel elements (Quercus rubra, R. pseudoacacia) relative to those with smaller elements (Acer rubrum and Liriodendron tulipifera). We further hypothesized that N2 fixation by R. pseudoacacia would decline with drought, reducing its competitive ability. Under drought, growth declined across all species; but, growth and physiological responses did not correspond to species’ hydraulic architecture. Drought triggered an 80 % increase in nodule biomass and N accrual for R. pseudoacacia, improving its growth relative to other species. These results suggest that drought intensified soil N deficiency and that R. pseudoacacia’s ability to fix N2 facilitated competition with non-fixing species when both water and N were limiting. Under scenarios of moderate drought, N2 fixation may alleviate the N constraints resulting from low soil moisture and improve competitive ability of N2-fixing species, and as a result, supply more new N to the ecosystem.  相似文献   

8.
We used nine pairs of competing Drosophila melanogaster and Drosophila simulans populations to test three hypotheses. (1) Weaker competitors undergo greater evolutionary increases in competitive ability, compared with stronger ones. (2) Increased competitive ability against a specific competitor population causes a correlated increase in competitive ability against other competitor populations. (3) In a novel environment, adaptation to the abiotic environment contributes more to competitive ability than adaptation to the competitor population. After 11 generations of competition, initially weaker competitor populations showed relatively greater increases in competitive ability. Broad and specific competitive abilities, the latter being specific to a particular competitor population, were positively correlated in both familiar and novel environments. Adaptation to the abiotic environment seemed to be a more important component of competitive ability in the novel environments. We conclude that in geographically structured species, biotic and abiotic factors affecting the evolution of competitive ability may interact to help create a mosaic of outcomes that can affect the evolutionary dynamics of the interaction over the range of the competing species.  相似文献   

9.
Hartvigsen  Gregg 《Plant Ecology》2000,148(1):31-41
Kyllinga nervosa (Steud.) and Sporobolus kentrophyllus (K. Schum.) are co-dominant plants of the Serengeti short-grass plains, Tanzania. The plains are characterized by seasonal and sporadic rainfall and currently support in excess of 1.5 million migratory ungulates. The interactive effect of simulated bovine urine and water availability were tested on the competitive interactions of these species in the laboratory. Sporobolus kentrophyllus was a superior competitor to K. nervosa over the tested treatment levels with respect to growth and reproductive effort. Sporobolus kentrophyllus exhibited rapid growth in response to urine addition, leading to a significant species × urine interaction while reduced growth by K. nervosa in response to low water availability explained the significant species × water interaction and is likely explained by K. nervosa's shallow root system. Kyllinga nervosa, however, appears to be more tolerant of low nitrogen conditions based on its similar growth with and without the urine treatment. The effect of intraspecific competition on total biomass was similar for S. kentrophyllus and K. nervosa. Competition resulted in increased size differences (asymmetry) for K. nervosa and for the interspecific competition treatments compared to the size differences observed for plants grown individually (in absence of competition).Total reproductive biomass was reduced most by competition with S. kentrophyllus, irrespective of target species. The water treatment did not influence reproduction while the urine treatment significantly increased reproductive biomass and interacted with target species, competitor species, and yielded a three-way urine × target × competitor species interaction.Results suggest that codominance of these two species in the Serengeti is regulated by water availability, nitrogen input from grazers, and local neighbor identity.  相似文献   

10.
Negative interactions between non-indigenous and native species has been an important research topic of invasion biology. However, interactions between two or more invasive species may be as important in understanding biological invasions, but they have rarely been studied. In this paper, we describe three field experiments that investigated interactions between two non-indigenous plant species invasive in the eastern United States, Lonicera japonica (a perennial vine) and Microstegium vimineum (an annual grass). A press removal experiment conducted within a deciduous forest understory community indicated that M. vimineum was a superior competitor to L. japonica. We tested the hypothesis that the competitive success of M. vimineum was because it overgrew, and reduced light available to, L. japonica, by conducting a separate light gradient experiment within the same community. Shade cloth that simulated the M. vimineum canopy reduced the performance of L. japonica. In a third complementary experiment, we added experimental support hosts to test the hypothesis that the competitive ability of L. japonica is limited by support hosts, onto which L. japonica climbs to access light. We found that the abundance of climbing branches increased with the number of support hosts. Results of this experiment indicate that these two invasive species compete asymmetrically for resources, particularly light.  相似文献   

11.
Floodplain forests are characterized by high and increasing levels of invasions by plant species, but the factors that drive their spread are insufficiently understood. Using data from 708 plots surveyed twice (1998, 2008) supplemented with further data (management, stand age, distance to dispersal corridors, type of ecosystems invaded) we analyzed the factors which shape the local distribution, growth, persistence and spread of three invasive alien tree species (Acer negundo, Ailanthus altissima, Robinia pseudoacacia) in the National Park Donau-Auen in Austria. Using Generalized Linear Models (GLMs), we found that the distribution of the study species per plot is contingent on stand age (R. pseudoacacia), type of floodplain forest (A. negundo, A. altissima) and distance to the next water body (A. negundo). For all study species, colonization of new plots between both surveys is driven by short distance spread from already established invasion foci. Moreover, recipient habitats (softwood vs. hardwood floodplain forests) modify invasion success in species-specific ways. The probability of occurrence and colonization of plots located in softwood floodplain forests is higher for A. negundo, whereas A. altissima more frequently colonizes hardwood floodplain forests. Persistence of R. pseudoacacia decreases with stand age, whereas its growth rate is significantly higher in plots located in zones where management is allowed than in those which are not managed. Persistence and growth of the other two study species were not related to any explanatory variables analyzed. The on-going spread of the study species in the National Park Donau-Auen suggests that their local distribution is in disequilibrium, i.e. not all suitable habitat patches have yet been colonized. This implies that increased management efforts are necessary to reverse the spread of alien tree species in the study area and to maintain the high conservation value of this iconic area which protects one of the largest floodplain forests in Europe.  相似文献   

12.
Invasive expansion of Robinia pseudoacacia is a worldwide problem. A method to control existing R. pseudoacacia populations is urgently needed. In addition to plants above the ground, seed banks should be targets for the management of R. pseudoacacia. We targeted an old plantation of R. pseudoacacia and its surroundings in a headwater basin to determine the spatial characteristics of the distribution. We established 49 square plots in which the number of buried seeds and seeds dispersed by wind, and several other related environmental factors were surveyed. The relationship between the spatial extent of seeds dispersed by wind and the distribution of the seed bank was analyzed. Environmental factors that potentially influenced the density of buried seeds were also analyzed. We found that barochory and anemochory were the main factors that contributed to R. pseudoacacia forming seed banks. The greatest factor controlling the density of buried seeds was slope angle; thus, transfer of seeds by rolling is important for the formation of seed banks in headwater basins. From these results, some guidelines for the management of seed banks in headwater basin are presented. First, unnecessary soil disturbance within about a 100-m buffer area around seeding trees should be avoided. Second, plantation soil from gentle slopes should not be applied for revegetation of other locations. In situations where R. pseudoacacia populations are planted on steep slopes near streams, there is a chance that seeds will be carried away and form seed banks at lower or downstream sites.  相似文献   

13.
The distribution of marine phytoplankton will shift alongside changes in marine environments, leading to altered species frequencies and community composition. An understanding of the response of mixed populations to abiotic changes is required to adequately predict how environmental change may affect the future composition of phytoplankton communities. This study investigated the growth and competitive ability of two marine diatoms, Phaeodactylum tricornutum and Thalassiosira pseudonana, along a temperature gradient (9–35°C) spanning the thermal niches of both species under both high‐nitrogen nutrient‐replete and low‐nitrogen nutrient‐limited conditions. Across this temperature gradient, the competitive outcome under both nutrient conditions at any assay temperature, and the critical temperature at which competitive advantage shifted from one species to the other, was well predicted by the temperature dependencies of the growth rates of the two species measured in monocultures. The temperature at which the competitive advantage switched from P. tricornutum to T. pseudonana increased from 18.8°C under replete conditions to 25.3°C under nutrient‐limited conditions. Thus, P. tricornutum was a better competitor over a wider temperature range in a low N environment. Being able to determine the competitive outcomes from physiological responses of single species to environmental changes has the potential to significantly improve the predictive power of phytoplankton spatial distribution and community composition models.  相似文献   

14.
Abstract Acacia saligna and Acacia cyclops are the dominant invasive alien plants of phosphorus-poor, sand-plain, lowland fynbos and the relatively phosphorus-rich strandveld vegetation of the southwestern Cape of South Africa, respectively, but their ranges overlap. Seedlings of the two species were grown in pots, in isolation and mixed, in up to seven treatments supplying a broad gradient in phosphorus (P) availability. Acacia saligna seedlings grew taller and had greater dry mass than those of A. cyclops at each level of P, but both peaked in response to the same relatively high soil P level and then tended to decline. Root : shoot ratios did not differ in response to P, but were greater in A. saligna. In mixture, A. saligna had a higher dry mass than A. cyclops at each level of P, but the relative differences between species were no greater than in isolation. Depth penetration of the soil by the tap root of A. saligna seedlings was over three times as rapid as that of A. cyclops over a 30 day period. The higher absolute growth rates of A. saligna were not related to seed size or seed nitrogen and P contents, as these were greater in A. cyclops. The contrasting distributions of the acacias do not appear to be a response to P availability per se, but possibly to the interaction of P with other factors such as moisture availability.  相似文献   

15.
The ability of an invasive species to establish is mostly determined by its biotic interactions with native species from the recipient community. Here, we evaluate the competitive effects and responses of the invasive Eragrostis plana when interacting with native species, in order to identify possible mechanisms driving invasion in Río de la Plata grasslands. A pairwise competition experiment was performed consisting of treatments that varied in the identity of neighbour plant species: (i) control (no interaction); (ii) intraspecific interaction; (iii) interspecific interaction between native and invasive species; and (iv) interspecific interaction between two co‐occurring native species. Data analysis was separated into the effect of E. plana on the performance of three native perennial grasses (target species: Aristida laevis, Eragrostis neesii and Paspalum notatum) and the response of E. plana to natives (target species: E. plana). Separately for each target species, components of plant performance were compared between neighbouring species treatments. We found that the strength of competitive interactions depended on both target and neighbour species identity. Regarding natives, interspecific competition was stronger than intraspecific. Native species showed distinctive responses to whether the neighbour was the invasive or a co‐occurring native (Eragrostis lugens). Competition between E. plana and native species was stronger than between co‐occurring natives. We demonstrated E. plana had a greater negative effect on native's species performance than the native congener E. lugens. Regarding E. plana, intraspecific competition was stronger than interspecific, and its response was positive or neutral when interacting with natives, suggesting its high tolerance to grow in competition with neighbours. We conclude E. plana's negative effects on native species performance, and its positive or neutral responses to neighbouring native plants demonstrate its strong competitive ability in the recipient community. This may explain its invasion success in southern Brazil and in the encompassing Río de la Plata grasslands. Abstract in Spanish is available with online material.  相似文献   

16.
Successful restoration of an invaded landscape to a diverse, invasion‐resistant native plant community requires determining the optimal native species mix to add to the landscape. We manipulated native seed mix (annuals, perennials, or a combination of the two), while controlling the growth of non‐native species to test the hypothesis that altering native species composition can influence native establishment and subsequent non‐native invasion. Initial survival of native annuals and perennials was higher when seeded in separate mixes than when combined, and competition between the native perennials and annuals led to lower perennial cover in year 2 of mixed‐seeded plots. The plots with the highest perennial cover had the highest resistance to invasion by Brassica nigra. To clarify interactions among different functional groups of natives and B. nigra, we measured competitive interactions in pots. We grew one native annual, one native perennial, and B. nigra alone or with different competitors and measured biomass after 12 weeks. Brassica nigra was the strongest competitor, limiting the growth of all native species, and was not impacted by competition with native annuals or perennial seedlings. Results from the potted plant experiment demonstrated the strong negative influence of B. nigra on native seedlings. Older native perennials were the strongest competitors against invasive species in the field, yet perennial seedling survival was limited by competition with native annuals and B. nigra. Management action that maximizes perennial growth in early years may lead to a relatively more successful restoration and the establishment of an invasion‐resistant community.  相似文献   

17.
Geographic variation in species interactions can have major effects on species distributions and can be important for the resistance of resident communities to invasive species. We tested the hypothesis that coexistence or replacement of a resident North American mosquito Aedes aegypti with the invasive Aedes albopictus is affected by interpopulation variation in the inherent competitive ability of A. aegypti and variation in the fecundity–size relationship. We postulated that such variation creates differential population-level outcomes of competition with A. albopictus. We compared competitive abilities of eight North American populations of A. aegypti, four populations sympatric to A. albopictus, and four populations allopatric to A. albopictus. Competition among larvae from each A. aegypti population and a single A. albopictus population was tested in laboratory microcosms in a response-surface design. We found origin of A. aegypti influences its competitive response to competition from A. albopictus and competitive effect on A. albopictus. A. aegypti from allopatric sites preformed better in competition with A. albopictus than did A. aegypti from sympatric sites because they had a stronger average effect on A. albopictus. This average was strongly influenced by the allopatric population from Miami. Competitive effect and response were uncorrelated among populations, indicating inconsistent ranking of A. aegypti in competitive effect and response. Although A. albopictus is generally a superior competitor to A. aegypti, a stronger competitive effect of particular A. aegypti populations on invading A. albopictus may contribute to competition-mediated biotic resistance to the invader. These results suggest that interpopulation variation in competitive ability of A. aegypti may contribute to failure of A. albopictus to invade parts of the southeastern United States and offer evidence of a contribution to biotic resistance by an inferior competitor. Geographic variation in competitive ability may be common and one general cause of variation in invasion success and impact.  相似文献   

18.
为探讨本地物种假地豆和白饭树对入侵植物飞机草的替代控制潜力,利用培养皿法和同质园种植实验分别研究了两个本地物种种子萌发对飞机草的化感耐受性及其与飞机草的竞争关系。结果显示:除了假地豆的萌发率在高浓度(2.5%)的飞机草叶提取液下受到显著抑制外,两个本地种的萌发在不同浓度飞机草根、茎、叶提取液下均不受抑制。飞机草与假地豆混种时,飞机草的株高、地下生物量比及根冠比显著降低,假地豆的株高无显著变化,但生物量显著增加;飞机草的竞争参数相对产量(RY)显著小于1,竞争攻击力系数显著小于零,表明其竞争力弱于假地豆。飞机草与白饭树混种时,飞机草的根冠比也显著降低,但株高和生物量均显著增加,而白饭树的株高和生物量却显著降低;飞机草的相对产量(RY)显著大于1,竞争攻击力系数显著大于零,表明其竞争力强于白饭树。结合以上结果,本地植物假地豆可以一定程度上竞争抑制飞机草的生长,具有替代控制飞机草的潜力,而白饭树可以在清除飞机草后的入侵地辅助植被修复。实验结果为飞机草替代控制的目标物种的筛选提供了科学依据,对被飞机草入侵生境生物多样性的恢复和重建具有一定指导意义。  相似文献   

19.
We assessed drivers of ecological success along resource availability gradients for three invasive woody species: Prunus serotina Ehrh., Quercus rubra L. and Robinia pseudoacacia L. We aimed to check how much of invasion success, measured by invader biomass, is explained by propagule pressure and plant community invasibility. Using 3 years of observations from 372 study plots (100 m2 each) in temperate forests of Wielkopolski National Park (Poland) we investigated the hierarchy of predictors and partial dependencies using the random forest method. Our study indicated that propagule pressure explained more variance in success of invaders than invasibility—describing availability of resources and competitors in understory vegetation. We also found different responses of seedlings and saplings, connected with dependence on stored carbohydrates, which decreased seedling responses to resource availability gradients. However, resource availability (light and leaf litter predictors) had greater influence than predictors describing understory vegetation. Based on importance and response strength the species studied may be arranged by decreasing requirements for soil fertility and acidity: P. serotina?<?Q. rubra?<?R. pseudoacacia, whereas for light requirements and competition vulnerability the order is: P. serotina?>?Q. rubra?>?R. pseudoacacia. However, low light requirements of R. pseudoacacia may be biased by high proportion of sprouts supplied by parental trees. Results provide guidelines for effective management of invasive woody species in forest ecosystems and describe complex interactions between factors studied on ecological success of invaders.  相似文献   

20.
Allelochemicals released by invasive plants contribute to the successful invasion of new habitats. However, the relationship between allelopathic effects and competitive ability of invasive plants has not been characterized. We quantified the neighbor effects of Wedelia trilobata (family: Asteraceae) and the allelopathic effects of its leaf litter on two Asteraceae competitor species (invasive Eupatorium catarium and non-invasive Lactuca sativa) and on its own ramet growth. The seed germination rate and seedling biomass of the two competitor species decreased following treatment with W. trilobata leaf extracts. When co-cultured with W. trilobata, the total biomass of the two competitor species significantly decreased regardless of whether leaf extracts were present. Under low plant density co-culture conditions, W. trilobata leaf extracts enhanced the inhibitory effects on E. catarium. In contrast, W. trilobata leaf extracts promoted the growth of W. trilobata adventitious roots, resulting in increased competitive ability. Therefore, W. trilobata growth was promoted by its own allelochemicals in leaf extracts, whereas the growth of the invasive and non-invasive competitors was inhibited by the same chemicals. These responses facilitated the invasion by W. trilobata. Our study demonstrates that leaf litter of invasive plants may inhibit the growth of neighboring species to enhance the competitive ability of the invasive plants during the early stages of invasion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号