首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
Host-plant resistance is the most economically viable and environmentally responsible method of control for Puccinia triticina, the causal agent of leaf rust in wheat (Triticum aestivum L.). The identification and utilization of new resistance sources is critical to the continued development of improved cultivars as shifts in pathogen races cause the effectiveness of widely deployed genes to be short lived. The objectives of this research were to identify and tag new leaf rust resistance genes. Forty landraces from Afghanistan and Iran were obtained from the National Plant Germplasm System and evaluated under field conditions at two locations in Texas. PI 289824, a landrace from Iran, was highly resistant under field infection. Further evaluation revealed that PI 289824 is highly resistant to a broad spectrum of leaf rust races, including the currently prevalent races of leaf rust in the Great Plains area of the USA. Eight F1 plants, 176 F2 individuals and 139 F2:3 families of a cross between PI 289824 and T112 (susceptible) were evaluated for resistance to leaf rust at the seedling stage. Genetic analysis indicated resistance in PI 289824 is controlled by a single dominant gene. The AFLP analyses resulted in the identification of a marker (P39 M48-367) linked to resistance. The diagnostic AFLP band was sequenced and that sequence information was used to develop an STS marker (TXW200) linked to the gene at a distance of 2.3 cM. The addition of microsatellite markers allowed the gene to be mapped to the short arm of Chromosome 5B. The only resistance gene to be assigned to Chr 5BS is Lr52. The Lr52 gene was reported to be 16.5 cM distal to Xgwm443 while the gene in PI 289824 mapped 16.7 cM proximal to Xgwm443. Allelism tests are needed to determine the relationship between the gene in PI 289824 and Lr52. If the reported map positions are correct, the gene in PI 289824 is unique.  相似文献   

6.
Hu  Xu  Reddy  A.S.N. 《Plant molecular biology》1997,34(6):949-959
Pathogenesis-related (PR)-5 proteins are a family of proteins that are induced by different phytopathogens in many plants and share significant sequence similarity with thaumatin. We isolated a complementary DNA (ATLP-3) encoding a PR5-like protein from Arabidopsis which is distinct from two other previously reported PR5 cDNAs from the same plant species. The predicted ATLP-3 protein with its amino-terminal signal sequence is 245 amino acids in length and is acidic with a pI of 4.8. The deduced amino acid sequence of ATLP-3 shows significant sequence similarity with PR5 and thaumatin-like proteins from Arabidopsis and other plants and contains a putative signal sequence at the amino-terminus. The expression of ATLP-3 and a related gene (ATLP-1) that we previously isolated from Arabidopsis was induced by pathogen infection and salicylic acid, a known inducer of pathogenesis-related genes. Southern blot analysis indicates that the ATLP-1 and ATLP-3 are coded by single-copy genes. To study the effect of ATLP-1 and ATLP-3 proteins on fungal growth, the cDNA regions corresponding to putative mature protein were expressed in Escherichia coli and the cDNA encoded proteins were purified. ATLP-1 and ATLP-3 proteins cross-reacted with anti-osmotin and anti-zeamatin antibodies. ATLP-3 protein showed antifungal activity against several fungal pathogens suggesting that ATLP-3 may be involved in plant defense against fungal pathogens.  相似文献   

7.
8.
 The partial resistance to leaf rust in barley is a quantitative resistance that is not based on hypersensitivity. To map the quantitative trait loci (QTLs) for partial resistance to leaf rust, we obtained 103 recombinant inbred lines (RILs) by single-seed descent from a cross between the susceptible parent L94 and the partially resistant parent Vada. These RILs were evaluated at the seedling and adult plant stages in the greenhouse for the latent period (LP) of the rust fungus, and in the field for the level of infection, measured as area under the disease progress curve (AUDPC). A dense genetic map based on 561 AFLP markers had been generated previously for this set of RILs. QTLs for partial resistance to leaf rust were mapped using the “Multiple Interval Mapping” method with the putative QTL markers as cofactors. Six QTLs for partial resistance were identified in this population. Three QTLs, Rphq1, Rphq2 and Rphq3, were effective at the seedling stage and contributed approximately 55% to the phenotypic variance. Five QTLs, Rph2, Rphq3, Rphq4, Rphq5, and/or Rphq6 contributed approximtely. 60% of the phenotypic variance and were effective at the adult plant stage. Therefore, only the QTLs Rphq2 and Rhpq3 were not plant-stage dependent. The identified QTLs showed mainly additive effects and only one significant interaction was detected, i.e. between Rphq1 and Rphq2. The map positions of these QTLs did not coincide with those of the race-specific resistance genes, suggesting that genes for partial resistance and genes for hypersensitive resistance represent entirely different gene families. Also, three QTLs for days to heading, of which two were also involved in plant height, were identified in the present recombinant inbred population. These QTLs had been mapped previously on the same positions in different populations. The perspectives of these results for breeding for durable resistance to leaf rust are discussed. Received: 15 July 1997 / Accepted: 30 December 1997  相似文献   

9.
Effect of gene Lr34 in the enhancement of resistance to leaf rust of wheat   总被引:1,自引:0,他引:1  
Summary Leaf rust resistance gene Lr34 is present in many wheat cultivars throughout the world that have shown durable resistance to leaf rust. Fourteen pair-wise combinations of Lr34 and seedling leaf rust resistance genes were developed by intercrossing near isogenic Thatcher lines. In both seedling and adult plant tests homozygous paired combinations of specific resistance genes with Lr34 had enhanced resistance relative to either parent to different numbers of isolates that were avirulent to the additional resistance genes. The TcLr34, 18 line also expressed enhanced resistance to specific isolates virulent to Lr18 in seedling and adult plant stages. In rust nursery tests, homozygous lines were more resistant than either parent, if the additional leaf rust gene conditioned an effective of resistance when present singly. The ability of Lr34 to interact with other genes conditioning effective resistance may contribute to the durability of leaf rust resistance in cultivars with Lr34. Contribution 1453 Agriculture Canada  相似文献   

10.
11.
The leaf rust resistance gene, Lr18, of common wheat cultivars has been derived from Triticum timopheevi and is located on chromosome arm 5BL. Chromosome banding (N-banding) analyses revealed that in the wheat cultivars carrying Lr18 that were examined, which had been bred in 6 different countries, chromosome arm 5BL possessed a specific terminal band not carried by their susceptible parental cultivars. It was suggested that this terminal N-band was introduced from T. timopheevi together with Lr18. N-banding analysis of a T. timopheevi strain showed that one of two timopheevi chromosomes had provided Japanese wheat lines containing Lr18 with the terminal band.  相似文献   

12.
13.
A method is presented to test clones of Cirsium arvense for resistance to root bud infection by the rust fungus Puccinia punctiformis. Root buds were stained and cleared to detect mycelium of the rust. The fraction of root buds infected was determined and used as a measure of resistance. Clones of C. arvense, collected from three sites, were tested for resistance to infection. Variation in resistance was determined between and within sites. The results are discussed with a view to using P. punctiformis to control C. arvense.  相似文献   

14.
A major gene determining non-specific adult-plant disease resistance against stripe rust (Puccinia striiformis) designated Yrns-B1 was mapped by using a cross between ’Lgst.79–74’ (resistant) and ’Winzi’ (susceptible). Analyzing F3 lines of two consecutive experimental years contrary modes of inheritance were observed due to the intermediate character of the gene and the difference in the disease pressure during the seasons. Using the disease scoring data of both experimental years independently two maps were constructed detecting Yrns-B1 20.5 and 21.7 cM, respectively, proximal to the wheat microsatellite (WMS) marker Xgwm493 on the short arm of chromosome 3BS. The genetic relationships to other major genes or to quantitative trait loci controlling adult plant disease resistance against rusts in wheat are discussed. Received: 27 May 1999 / Accepted: 28 September 1999  相似文献   

15.
The objective of this work was to develop a marker for the adult plant leaf rust resistance gene Lr35. The Lr35 gene was originally introgressed into chromosome 2B from Triticum speltoides, a diploid relative of wheat. A segregating population of 96 F 2 plants derived from a cross between the resistant line ThatcherLr35 and the susceptible variety Frisal was analysed. Out of 80 RFLP probes previously mapped on wheat chromosome 2B, 51 detected a polymorphism between the parents of the cross. Three of them were completely linked with the resistance gene Lr35. The co-segregating probe BCD260 was converted into a PCR-based sequence-tagged-site (STS) marker. A set of 48 different breeding lines derived from several European breeding programs was tested with the STS marker. None of these lines has a donor for Lr35 in its pedigree and all of them reacted negatively with the STS marker. As no leaf rust races virulent on Lr35 have been found in different areas of the world, the STS marker for the Lr35 resistance gene is of great value to support the introgression of this gene in combination with other leaf rust (Lr) genes into breeding material by marker-assisted selection. Received: 14 December 1998 / Accepted: 30 January 1999  相似文献   

16.
The stripe rust (or yellow rust) disease caused by Puccinia striiformis Westend is a serious disease of wheat in many areas of the world. The role of NO, which is an important redox‐active signalling molecule in plants, was investigated in the wheat‐stripe rust system. The phenotypes from interactions of the same wheat variety, Lovrin10, with two different clones of stripe rust strains (P. striiformis Westend), namely China yellow rust (CY)22‐2 and CY29‐1, which are immune and susceptible reaction types, respectively. The time course of host endogenous NO detected by electron spin resonance indicated that recognition of an avirulent strain was associated with two peaks of NO production. The first peak of NO accumulated in the early infection stage whereas the second peak accumulated in the latent period; however, only a single peak of NO was observed in the latent period for the virulent strain. Furthermore, the activity of pathogen‐related protein‐phenylalanine ammonia‐lyase was higher in the resistant system than in the susceptible system, which suggested that the first NO production was associated with resistance. Exogenous NO improved the activity of phenylalanine ammonia‐lyase and induced a resistant response of Lovrin10 to the virulent strain CY29‐1, thereby providing further evidence that the first peak of NO production was associated with resistance. These results indicate that the first NO burst in the immune system plays an important role in the resistant reaction of wheat to strip rust.  相似文献   

17.
Zhan G  Chen X  Kang Z  Huang L  Wang M  Wan A  Cheng P  Cao S  Jin S 《Fungal biology》2012,116(6):643-653
Stripe rust (yellow rust) of wheat, caused by Puccinia striiformis f. sp. tritici, is one of the most important diseases in both China and the United States. The Chinese and US populations of the stripe rust fungus were compared for their virulence phenotypes on wheat cultivars used to differentiate races of the pathogen in China and the US and molecular genotypes using simple sequence repeat (SSR) markers. From 86 Chinese isolates, 54 races were identified based on reactions on the 17 Chinese differentials and 52 races were identified based on the 20 US differentials. The selected 51 US isolates, representing 50 races based on the US differentials, were identified as 41 races using the Chinese differentials. A total of 132 virulence phenotypes were identified from the 137 isolates based on reactions on both Chinese and US differentials. None of the isolates from the two countries had identical virulence phenotypes on both sets of differentials. From the 137 isolates, SSR markers identified 102 genotypes, of which 71 from China and 31 from the US. The virulence data clustered the 137 isolates into 20 virulence groups (VGs) and the marker data clustered the isolates into seven molecular groups (MGs). Virulence and SSR data had a low (r = 0.34), but significant (P = 0.01) correlation. Principal component analyses using either the virulence data or the SSR data separated the isolates into three groups: group a consisting of only Chinese isolates, group b consisting of both Chinese and US isolates and group c consisting of mostly US isolates. A neighbour-joining tree generated using the molecular data suggested that the P. striiformis f. sp. tritici populations of China and the US in general evolved independently.  相似文献   

18.
19.
Leaf rust, caused by the fungus Puccinia triticina Eriks,is one of the most serious diseases of wheat (Triticum aestivum AABBDD, 2n=6x=42) worldwide. Growing resistant cultivars is an efficient and economical method of reducing losses to leaf rust. Here we report a new leaf rust resistance gene, Lr39, transferred from Aegilops tauschii into common wheat. Lr39 conditions both seedling and adult plant resistance to the leaf rust pathogen. The inter- and intra-chromosomal mapping of the Lr39 gene showed that it is different from all previously described Lr genes. We used monosomic analysis for the inter-chromosomal mapping and wheat microsatellite markers for the intra-chromosomal mapping. The monosomic and ditelosomic analysis indicated that Lr39 is independent of the centromere on the short arm of chromosome 2D. Eight microsatellite markers for 2DS were used for linkage analysis on a population of 57 F2 plants derived from a cross of an Ae. tauschii-derived wheat, cv. Wichita line TA4186 (possessing Lr39), with Wichita monosomics for the D-genome chromosomes. The microsatellite marker analysis confirmed the location of the gene on 2DS. Three markers were polymorphic and linked to the gene. The closest marker Xgwm210 mapped 10.7 cM from Lr39. The location of Lr39 near the telomere of 2DS distinguishes it from the Lr2 and Lr22 loci, which are located on 2DS proximal to Xgwm210. Received: 19 April 2000 / Accepted: 15 May 2000  相似文献   

20.
The COP9 (constitutive photomorphogenesis 9) signalosome (CSN) is a protein complex involved in the ubiquitin proteasome system and a common host target of diverse pathogens in Arabidopsis. The known derubylation function of the COP9 complex is carried out by subunit 5 encoded by AtCSN5A or AtCSN5B in Arabidopsis. A single CSN5‐like gene (designated as TaCSN5) with three homeologues was identified on the long arms of wheat (Triticum aestivum L.) group 2 chromosomes. In this study, we identified and characterized the function of TaCSN5 in response to infection by the leaf rust pathogen. Down‐regulation of all three TaCSN5 homeologues or mutations in the homeologues on chromosomes 2A or 2D resulted in significantly enhanced resistance to leaf rust. Enhanced leaf rust resistance corresponded to a seven‐fold increase in PR1 (pathogenesis‐related gene 1) expression. Collectively, the data indicate that the wheat COP9 subunit 5‐like gene acts as a negative regulator of wheat leaf rust resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号