共查询到20条相似文献,搜索用时 0 毫秒
1.
Caffeic acid affects early growth, and morphogenetic response of hypocotyl cuttings of mung bean (Phaseolus aureus) 总被引:3,自引:0,他引:3
Caffeic acid (CA) is one of the most common cinnamic acids ubiquitously present in plants and implicated in a variety of interactions including allelopathy among plants and microbes. This study investigated the possible interference of CA with root growth and the process of rhizogenesis in hypocotyl cuttings of mung bean (Phaseolus aureus=Vigna radiata). Results indicated that CA (0-1000 microM) significantly suppressed root growth of mung bean, and impaired adventitious root formation and root length in the mung bean hypocotyl cuttings. Further investigations into the role of CA in hampering root formation indicated its interference with the biochemical processes involved in rooting process at the three stages - root initiation (third day; RI), root expression (fifth day; RE), and post-expression (seventh day; PE) - of rhizogenesis. CA caused significant changes in the activities of proteases, peroxidases (PODs), and polyphenol oxidases (PPOs) during root development and decreased the content of total endogenous phenolics (TP) in the hypocotyl cuttings. The enhanced activity of PODs and PPOs, though, relates to lignification and/or phenolic metabolism during rhizogenesis; yet their protective role to CA-induced stress, especially during the PE phase, is not ruled out. At 1000 microM CA, where rooting was significantly affected, TP content was very high during the RI phase, thus indicating its non-utilization. The study concludes that CA interferes with the rooting potential of mung bean hypocotyl cuttings by altering the activities of PODs and PPOs and the endogenous TP content that play a key role in rhizogenesis. 相似文献
2.
Effect of auxins and plant oligosaccharides on root formation and elongation growth of mung bean hypocotyls 总被引:1,自引:0,他引:1
The interaction of auxins – IAA, IBA or NAA – with galactoglucomannan oligosaccharides (GGMOs) on adventitious root formation and elongation growth of mung bean hypocotyl cuttings was studied. GGMOs induced adventitious roots in the absence of auxins; however, their effect was lower compared with IBA or NAA. On the other hand, in the presence of auxins, GGMOs inhibited adventitious root induction. Their effect depended on the concentration of oligosaccharides and the type of auxin used. The highest inhibition effect of GGMOs at a concentration of 10−8 M in the presence of IBA and NAA was observed. In the presence of IAA their inhibition was non-significant in regard to the concentration. The interaction of auxins with GGMOs resulted in the formation of adventitious roots on a shorter part of hypocotyls compared with the effect of auxins alone. However, roots were induced more extensively along the hypocotyls treated with GGMOs compared with the control. GGMOs inhibited the length of induced adventitious roots in the presence of IAA, while in combination with IBA or NAA they were ineffective. The elongation of hypocotyls induced by IAA or IBA was inhibited by GGMOs, too. However, in the presence of NAA or by endogenous growth they were without any significant effect on elongation growth. These findings suggest that GGMOs in certain concentrations might inhibit rooting and the elongation process dependant on auxin used. 相似文献
3.
The role of ethylene in adventitious root formation and its involvement in auxin-induced rooting were investigated in cuttings ofVigna radiata (L.). Treatment with 30 M indole-3-acetic acid (IAA) for 24 h slightly inhibited rooting, whereas the same concentration of indole-3-butyric acid (IBA) significantly stimulated it. Ethylene derived from 1-aminocyclopropane-1-carboxylic acid (ACC) increased the number of adventitious roots but inhibited their emergence and elongation. Endogenous levels of ethylene, ACC, and malonyl-ACC (MACC) were initially higher in cuttings treated with IAA. This trend was quickly reversed, and cuttings, particularly hypocotyls, treated with IBA produced higher levels of ethylene and had more ACC and MACC during most of the rooting process. Aminoethoxyvinylglycine significantly inhibited rooting, but its inhibitory effect could not be reversed by ACC. The data suggest that the stimulating effect of IBA on rooting is closely associated with its induction of ACC and ethylene biosynthesis. 相似文献
4.
M. Adhilakshmi V. Paranidharan D. Balachandar K. Ganesamurthy 《Archives Of Phytopathology And Plant Protection》2013,46(5):571-583
Five strains of Streptomyces sp. were evaluated in vitro for their ability of inhibiting the mycelial growth of Macrophomina phaseolina, the causal agent of root rot of mung bean (Vigna radiata L.). Among the Streptomyces sp. strains tested, PDK showed the maximum in vitro inhibition of mycelial growth of M. phaseolina and recorded an inhibition zone of 21?mm. The strains CBE, MDU, SA and ANR recorded inhibition zones of 18, 16, 13 and 11?mm, respectively. These Streptomyces sp. strains were tested for their growth-promoting efficiency on mung bean seedlings. Among them, CBE and PDK recorded the maximum increase in shoot length, root length and seedling vigour compared with control, followed by MDU. Three Streptomyces sp. strains (CBE, MDU and PDK) that showed higher levels of inhibition of growth of M. phaseolina in dual culture assay and plant growth-promoting activity were tested for their biocontrol activity against root rot under greenhouse and field conditions. Seed treatment or soil application with powder formulation of Streptomyces sp. strains CBE, MDU and PDK was effective in controlling root rot disease; but, combined application through seed and soil increased the efficacy in both the greenhouse and field trials. Among the treatments, seed treatment plus soil application with powder formulation of Streptomyces sp. strain CBE proved to be most effective, which reduced the root rot incidence from 26.8% (with non-bacterised seeds) to 4.0% in Trial I and from 32.0 to 4.9% in Trial II. The above treatment recorded the highest yield in both the field trials, and the yield increase was 78 and 74% over control in Trial I and Trial II, respectively. Isozyme analysis of the Streptomyces sp.-treated plants indicates that seed treatment plus soil application strongly induce the activities of peroxidase (PO-1 and PO-2) and polyphenol oxidase (PPO-2 and PPO-3) in mung bean. Among the three strains tested, Streptomyces sp. strain MDU- treated plants showed higher levels of activities of PO and PPO. Based on the above findings, it can be concluded that both the direct inhibition of pathogen and induced resistance might be involved in the control of root rot of mung bean by Streptomyces sp. 相似文献
5.
Megan E. Reardon 《Journal of Plant Interactions》2017,12(1):295-303
We studied the effects of temperature, carbon dioxide and abscisic acid on mung bean (Vigna radiata). Plants were grown under 26/22°C or 32/28°C (16?h?light/8?h?dark) at 400 or 700?μmol?mol?1 CO2 and received ABA application of 0 or 100?μl (10?μg) every other day for three weeks, after eight days of initial growth, in growth chambers. We measured 24 parameters. As individual factors, in 16 cases temperature; in 8 cases CO2; in 9 cases ABA; and as interactive factors, in 4 cases, each of temperature?×?CO2, and CO2?×?ABA; and in 2 cases, temperature?×?ABA were significant. Higher temperatures increased growth, aboveground biomass, growth indices, photochemical quenching (qP) and nitrogen balance index (NBI). Elevated CO2 increased growth and aboveground biomass. ABA decreased growth, belowground biomass, qP and flavonoids; increased shoot/root mass ratio, chlorophyll and NBI; and had little role in regulating temperature–CO2 effects.
Abbreviations: AN: net CO2 assimilation; E: transpiration; Fv/Fm: maximum quantum yield of PSII; gs: stomatal conductance; LAR: leaf area ratio; LMA: leaf mass per area; LMR: leaf mass ratio;φPSII: effective quantum yield of PSII; qNP: non-photochemical quenching; qP: photochemical quenching; SRMR: shoot to root mass ratio; WUE: water use efficiency 相似文献
6.
Paclobutrazol (PB) only slightly stimulated the rooting of mung bean cuttings but, interestingly, the number of adventitious roots formed was dramatically increased when PB was used together with indole-3-butyric acid (IBA). Application of PB in the first phase of root formation, when root initials are induced, caused the greatest enhancement of the promotive effect of IBA on rooting. Investigation of the effect of PB on uptake, transport and metabolism of [5-3 H]-IBA in mung bean cuttings revealed some changes in the rate of metabolism of IBA in comparison with control cuttings. PB was found to be involved in the partitioning of carbohydrates along the cuttings. Application of sucrose, like PB to the base of IBA-treated cuttings enhanced the effect of IBA. The patterns of the effects of PB and IBA, separately and together, on rooting were similar in defoliated and intact cuttings, however the number of roots was much lower in the defoliated cuttings, which lacked a source of assimilates. PB counteracted the effect of GA3 in the upper regions of the cuttings and seemed to increase the sink capacity at the base of the cuttings. The results of the present study clearly demonstrated the enhancing influence of PB on IBA stimulation of the rooting of mung bean cuttings. It is suggested that PB may affect the rate of metabolism of IBA during rooting and the status of the local sink, in the base of the cuttings, thus partially contributing to the enhancement of the rooting-promotive effect of IBA. 相似文献
7.
Batish DR Singh HP Setia N Kaur S Kohli RK 《Zeitschrift für Naturforschung. C, Journal of biosciences》2006,61(9-10):709-714
BOA (2-benzoxazolinone) is a potent phytotoxin present in several graminaceous crops such as rye, maize and wheat. Due to its wide range of phytotoxicity, it is considered as a potential pesticide. A study was conducted to explore the impact of BOA on the radicle and plumule elongation of mung bean (Phaseolus aureus) and associated changes in the macromolecular content - proteins and carbohydrates - and activities of enzymes like amylases, proteases, polyphenol oxidases and peroxidases. BOA significantly reduced the radicle and plumule length of P. aureus, and the contents of proteins and carbohydrates in both root and leaf tissue. On the other hand, activities of hydrolytic enzymes - proteases, amylases, polyphenol oxidases and peroxidases - increased substantially in both root and leaf tissue of P. aureus upon BOA exposure. This indicated that BOA treatment induced stress in P. aureus and enhanced enzyme activities to counter the induced stress and continue the growth. In other words, BOA-induced stress altered the plant biochemical status and related enzyme activities resulting in increased metabolism that serves to provide protection against cellular injury. Such studies providing information about the biomolecular content and enzymatic activities in response to natural products serve as clues for furtherance of knowledge about the modes of action of natural compounds of commercial interest. 相似文献
8.
An aromatic amino acid aminotransferase (aromAT) was purified over 33 000-fold from the shoots and primary leaves of mung beans (Vigna radiata L. Wilczek). The enzyme was purified by ammonium sulfate precipitation, gel filtration and anion exchange followed by fast protein liquid chromatography using Mono Q and Phenylsuperose. The relative amino transferase activities using the most active amino acid substrates were: tryptophan 100, tyrosine 83 and phenylalanine 75, withK
m values of 0.095, 0.08 and 0.07 mM, respectively. The enzyme was able to use 2-oxoglutarate, oxaloacetate and pyruvate as oxo acid substrates at relative activities of 100, 128 and 116 andK
m values of 0.65, 0.25 and 0.24 mM, respectively. In addition to the aromatic amino acids the enzyme was able to transaminate alanine, arginine, aspartate, leucine and lysine to a lesser extent. The reverse reactions between glutamate and the oxo acids indolepyruvate and hydroxyphenylpyruvate occurred at 30 and 40% of the forward reactions of tryptophan and tyrosine, withK
m, values of 0.1 and 0.8 mM, respectively. The enzyme was not inhibited by indoleacetic acid, although -naphthaleneacetic acid did inhibit slightly. Addition of the cofactor pyridoxal phosphate only slightly increased the activity of the purified enzyme. The aromAT had a molecular weight of 55–59 kDa. The possible role of the aromAT in the biosynthesis of indoleacetic acid is discussed.Abbreviations AAT
aspartate aminotransferase
- aromAT
aromatic amino acid aminotransferase
- FPLC
fast protein liquid chromatography
- IPyA
indolepyruvate
- OHPhPy
hydroxyphenylpyruvate
- PLP
pyridoxal phosphate
- TAT
tryptophan aminotransferase 相似文献
9.
Summary The connections and structural inter-relations of dictyosomes and endoplasmic reticulum (ER) in cotyledons of germinating mung beans were studied using thick (0.3 m) sections of aldehyde fixed, zinc iodide-osmium tetroxide (ZIO) impregnated tissue. The sections were examined by conventional (100 kV), rather than high voltage, transmission electron microscopy.Continuity of cisternal ER with tubular ER was confirmed and a direct connection of tubular ER totrans dictyosome cisternae was observed as were GERL networks associated withtrans dictyosome cisternae.Dictyosomes also gave rise to an extensive system of very fine tubules (10–20 nm diam) which have not been described previously in plant tissue. These tubules, which originated at thetrans dictyosome face, extended throughout the cytoplasm and were found connected to cisternal ER and tubular ER.The implications of these observations are discussed with regard to present ideas concerning endomembrane flow and protein sorting by the Golgi apparatus. 相似文献
10.
Synergistic effects of plant growth retardants and IBA on the formation of adventitious roots in hypocotyl cuttings of mung bean 总被引:1,自引:0,他引:1
The synergistic effect of plant growth retardants, such as daminozide, paclobutrazol and triadimefon, and of indole-3-butyric acid (IBA) on the formation of adventitious roots in hypocotyl cuttings of mung bean was studied. The three retardants and IBA all stimulated adventitious root growth, but IBA was the most effective. However, mixtures of the retardants with IBA have proven generally more effective than IBA alone in promoting adventitious root formation. When IBA was applied to the hypocotyls one day after cutting preparation followed by the growth retardant on the second day, there were even more adventitious roots produced than if applied in the reverse order. The effectiveness of the treatments were in the order, IBA followed by growth retardant, IBA + growth retardant together, and IBA alone.Abbreviations IBA
indole-3-butyric acid
- GA
gibberellin 相似文献
11.
Waterlogging-induced increase in sugar mobilization, fermentation, and related gene expression in the roots of mung bean (Vigna radiata) 总被引:3,自引:0,他引:3
The objective of this study was to examine the role of root carbohydrate levels and metabolism in the waterlogging tolerance of contrasting mung bean genotypes. An experiment was conducted with two cultivated mung bean (Vigna radiata) genotypes viz., T44 (tolerant) and Pusa Baisakhi (PB) (susceptible), and a wild Vigna species Vigna luteola under pot-culture to study the physiological and molecular mechanism of waterlogging tolerance. Waterlogging resulted in decrease in relative water content (RWC), membrane stability index (MSI) in root and leaf tissues, and chlorophyll (Chl) content in leaves, while the Chl a/b ratio increased. Waterlogging-induced decline in RWC, MSI, Chl and increase in Chl a/b ratio was greater in PB than V. luteola and T44. Waterlogging caused decline in total and non-reducing sugars in all the genotypes and reducing sugars in PB, while the content of reducing sugar increased in V. luteola and T44. The pattern of variation in reducing sugar content in the 3 genotypes was parallel to sucrose synthase (SS) activity. V. luteola and T44 also showed fewer declines in total and non-reducing sugars and greater increase in reducing sugar and SS activity than PB. Activity of alcohol dehydrogenase (ADH) increased up to 8d of waterlogging in V. luteola and T44, while in PB a marginal increase was observed only up to 4d of treatment. Gene expression studies done by RT-PCR in 24h waterlogged plants showed enhanced expression of ADH and SS in the roots of V. luteola and T44, while in PB there was no change in expression level in control or treated plants. PCR band products were cloned and sequenced, and partial cDNAs of 531, 626, and 667; 702, 736, and 744bp of SS and ADH, respectively were obtained. The partial cDNA sequences of cloned SS genes showed 93-100 homologies among different genotypes and with D10266, while in case of ADH the similarity was in the range of 97-100% amongst each other and with Z23170. The results suggest that the availability of sufficient sugar reserve in the roots, activity of SS to provide reducing sugars for glycolytic activity and ADH for the recycling of NADH, and for the continuation of glycolysis, could be one of the important mechanisms of waterlogging tolerance of V. radiata genotype T44 and wild species V. luteola. This was reflected in better RWC and Chl content in leaves, and membrane stability of leaf and root tissue in V. luteola and T44. 相似文献
12.
Harminder Pal Singh Shalinder Kaur Daizy R. Batish Ravinder Kumar Kohli 《Plant Growth Regulation》2009,57(1):21-30
Caffeic acid (CA), which is ubiquitously present in plants, is a potent phytotoxin affecting plant growth and physiology.
The aim of our study was to investigate whether CA-induced inhibition of adventitious root formation (ARF) in mung bean {Vigna radiata (L.) Wilczek [Phaseolus aureus Roxb.]} involves the induction of conventional stress responses. The effect of CA (0–1000 μM) on ARF in mung bean was determined
by measuring the generation of reactive oxygen species (ROS) in terms of malondialdehyde and hydrogen peroxide (H2O2) content, root oxidizability and changes in levels of antioxidant enzymes. Our results show that CA significantly enhanced
MDA content, indicating severe lipid peroxidation, and increased H2O2 accumulation and root oxidizability in the lower rooted hypocotylar region (LRHR) of mung bean, thereby inducing oxidative
stress and cellular damage. In response to CA, there was a significant upregulation in the activities of scavenging enzymes,
such as superoxide dismutase, ascorbate peroxidase, guaiacol peroxidase, catalase and glutathione reductase, in LRHRs of mung
bean. Based on these results, we conclude that CA inhibits ARF in mung bean hypocotyls by inducing ROS-generated oxidative
stress and upregulating the activities of antioxidant enzymes. 相似文献
13.
Kamel Ahmed Hussein Tartoura 《Acta Physiologiae Plantarum》2001,23(2):149-156
Endogenous levels of free and conjugated IAA, auxin protectors (Prs) and peroxidase (PER) activity and their relation to adventitious
root initiation (ARI) were investigated at the potential sites of adventitious rooting in relation to exogenous application
of 250 μM ABA during the first 120 h after treatment. Cuttings from 7-day-old mung bean [Vigna radiata (L.) Wilcz.] seedlings were treated with 125, 250, and 500 μM ABA for 24 h. ABA significantly stimulated ARI but extremely
inhibited epicotyl growth as compared to control. Free and conjugated IAA were measured by reversed-phase high performance
liquid chromatography while Prs and PER activities were measured spectrophotometrically. The present results also indicate
that endogenous free IAA levels peaked later in ABA-treated cuttings than that in control, suggesting that ABA extended the
length of the induction phase of rooting process in treated cuttings and that might explain the significant delay of the appearance
of roots at the treated cuttings. Higher level of IAA conjugates was found in ABA-treated cuttings than that in untreated
ones. Pr level also peaked later in ABA-treated cuttings than that in control, indicating that ABA extended the period of
Pr activity. An initial temporary decrease of PER activity was found in associating with high levels of free IAA and Prs during
most of the primary events, while the opposite occurred during the secondary events of adventitious rooting process in both
treated and untreated cuttings. Thus, ABA may stimulate ARI in mung bean Vigna radiata cuttings by regulating the concentration and /or activities of endogenous IAA, Prs, and PER activity in favor of inducing
a large number of adventitious roots at their potential sites of adventitious rooting. 相似文献
14.
Daizy R. Batish Pansy Gupta Harminder Pal Singh Ravinder Kumar Kohli 《Plant Growth Regulation》2006,49(2-3):229-235
A study was undertaken to explore the effect of l-DOPA (l-3,4-dihydroxyphenylalanine) on the rooting potential of hypocotyl cuttings of mung bean (Phaseolus aureus Roxb. var. SML-32) and related biochemical changes at the post-expression phase. At lower concentrations of (0.0001–0.1 mM) l-DOPA, there was no change in rooting potential, though the average number of roots per cutting and root length were significantly decreased (except at 0.0001 mM). However, at 1.0 mM concentration, a 50% inhibition in rooting potential was noticed and the root number and length were severely reduced. In contrast, at 2.5 mM l-DOPA, none of the hypocotyl cutting rooted. The decrease in rooting potential was associated with a significant effect on the biochemical changes measured in terms of protein and carbohydrate metabolism and activity of peroxidases. In the l-DOPA treated hypocotyl cuttings, there was a significant reduction in the protein and carbohydrate content, whereas activities of associated enzymes proteases and amylases decreased, particularly at higher treatment concentration (>1.0 mM). It indicated negative effect of l-DOPA on these two important metabolic processes. Likewise, activity of peroxidases also decreased in the l-DOPA treated hypocotyl mung bean cuttings thereby indicating its role in suppressing rhizogenesis as the enzyme is involved in lignification process during cell division. l-DOPA suppressed mitotic activity in the root tip cells of onion indicating thereby its interference with the cell division, which is required for the formation of new meristematic tissue during rhizogenesis. Based on the obtained results, it is concluded that l-DOPA interferes with the various biochemical processes in the mung bean hypocotyl cuttings thereby affecting their rooting potential. 相似文献
15.
Microorganisms and plants sustain themselves under iron-deprived conditions by releasing siderophores. Among others, fluorescent pseudomonads are known to exert extensive biocontrol action against soil and root borne phytopathogens through release of antimicrobials and siderophores. In this study, production and regulation of siderophores by fluorescent Pseudomonas strain GRP3A was studied. Among various media tested, standard succinate medium (SSM) promoted maximum siderophore production of 56.59 mg l(-1). There were low levels of siderophore in complex media like King's B medium, trypticase soya medium and nutrient medium (41.27, 29.86 and 27.63 mg l(-1)), respectively. In defferrated SSM, siderophore level was quantified to be 68.74 mg l(-1). Supplementation with iron (FeCl3) resulted in decreased siderophore levels depending on concentration. Siderophore production was promoted by Zn2+ (78.94 mg l(-1)), Cu2+ (68.80 mg l(-1)) whereas Co2+ (57.33 mg l(-1)) and Fe3+ reduced siderophore production (37.44 mg l(-1) as compared to control (55.97 mg l(-1)). Strain GRP3A showed plant growth promotion under iron limited conditions. 相似文献
16.
A comparison of cellulose synthesized in vitro from primary walls of etiolated mung bean (Vigna radiata) seedlings and secondary walls of cotton fibers (Gossypium hirsutum) was made by applying conditions found to be essential for in vitro cellulose I assembly from cotton (Kudlicka et al., 1995, Plant Physiology, vol. 107, pp. 111–123). Mung bean fractions including the plasma membrane (PM), the first solubilized fraction (SE1), and the second solubilized fraction (SE2), incorporated more radioactive UDP-Glc into the total product than the same fractions from secondary walls. A significant difference was found with the mild digitonin solubilized fraction (SE1), which produced eight times more total product than the SE1 fraction of cotton. However, the SE1 fraction from cotton produced a larger quantity of cellulose (32.1%) than from mung bean (6.9%). Treatment of the in vitro product by acetic/nitric acid reagent (AN) for varying periods of time demonstrated that cellulose synthesized in vitro from mung bean was more easily degraded than cellulose from cotton fibers. This would suggest that cellulose I produced in vitro from the cotton SE1 fraction may have a higher crystallinity and DP than cellulose I produced in vitro from mung bean. The fibrils of cellulose produced by the SE, fraction of mung bean were loosely associated and not arranged into a compact bundle as in case of cellulose I synthesized by the cotton SE1 fraction. The electron diffraction patterns (ED) of both products show reflections characteristic for cellulose I. Products from the SE2 fraction of mung bean and cotton reveal similarities with the cellulose II allomorph synthesized, as well as abundant β-1,3-glucan. 相似文献
17.
AIMS: This study was conducted to test the hypothesis that the bacterial strains possessing 1-aminocyclopropane-1-carboxylic acid (ACC)-deaminase activity may also promote growth of inoculated plants and could increase nodulation in legumes upon co-inoculation with rhizobia. METHODS AND RESULTS: Several rhizobacteria were isolated from maize rhizosphere through enrichment on ACC as a sole N source. Purified isolates were screened for growth promotion in maize under axenic conditions and for in vitro ACC-deaminase activity. A significant positive correlation was observed between in vitro ACC-deaminase activity of bacterial cells and root elongation. None of the isolates produced auxins. Bradyrhizobium japonicum produced less amount of auxins but did not carry ACC-deaminase activity. Results of pot experiment revealed that co-inoculation with Bradyrhizobium and plant growth promoting rhizobacteria (PGPR) isolates enhanced the nodulation in mung bean compared with inoculation with Bradyrhizobium alone. CONCLUSIONS: It is highly expected that inoculation with rhizobacteria containing ACC-deaminase hydrolysed endogenous ACC into ammonia and alpha-ketobutyrate instead of ethylene. Consequently, root and shoot growth as well as nodulation were promoted. SIGNIFICANCE AND IMPACT OF THE STUDY: The ACC-deaminase trait could be employed as an efficient tool to screen effective PGPR, which could be successfully used as biofertilizers to increase the growth of inoculated plants as well as nodulation in legumes. 相似文献
18.
Indole-3-butyric acid at 25 μM with methyl jasmonate (MJ) at 100 μM in Panax ginseng synergistically stimulated both root growth and ginsenoside accumulation compared with 100 μM MJ alone. Productivity of ginsenoside
was 10 mg l−1 d−1 compared to 7.3 mg l−1 d−1 with MJ elicitation alone. 相似文献
19.
Root-infecting fungal pathogens and also parasites, which do not cause major disease symptoms cause problems of contamination in pot cultures of arbuscular mycorrhizal (AM) fungi. We investigated the effect of the AM fungus, Glomus coronatum Giovannetti on disease caused by binucleate Rhizoctonia sp. (BNR) and R. solani in mung bean in the absence (P0) and presence (P1) of added soil phosphorus (P). When G. coronatum and BNR or R. solani were inoculated at the same time, G. coronatum improved the growth of the plants and reduced colonization of roots by BNR, but not by R. solani. R. solani reduced the growth of non-mycorrhizal mung bean in P0 soil 6 weeks after inoculation, whereas BNR had no effect on growth. G. coronatum reduced the severity of disease caused by BNR or R. solani on mung bean in both soil P treatments. When G. coronatum was established in the roots 3 weeks before BNR or R. solani was added to the potting mix, there was no significant effect of BNR or R. solani on growth of mung bean. Prior colonization by G. coronatum slightly reduced indices of disease caused by BNR or R. solani. In both experiments, addition of P stimulated plant growth and reduced the colonization of roots by BNR, but had little effect on disease severity. We conclude that the reduction of the effect of BNR or R. solani on mung bean could not be explained by improved P nutrition, but could be attributed to the presence of G. coronatum within and among the roots. 相似文献
20.
Comparative effect of IBA, BSAA and 5,6-Cl2-IAA-Me on the rooting of hypocotyl in mung bean 总被引:4,自引:0,他引:4
Mung bean hypocotyl cuttings were treated with indole-3-butyric acid (IBA), 3-(benzo[b]selenienyl)acetic acid (BSAA) and 5,6-dichloroindole-3-acetic acid methyl ester (5,6-Cl2-IAA-Me) at different concentrations, respectively. Each chemical produced the maximum number of adventitious roots at a different concentration. Compared with IBA treatment, 5,6-Cl2-IAA-Me and BSAA treatments significantly increased root numbers on hypocotyl cuttings at lower concentration, particularly of 5,6-Cl2-IAA-Me treatment. Combinations of paclobutrazol (PB) with either 5,6-Cl2-IAA-Me or BSAA significantly stimulated the production of more adventitious roots than either chemical alone or combined. Capillary electrophoresis analysis have shown that the levels of IAA, IBA and BSAA in IBA plus PB or BSAA plus PB treatments were higher than those of IBA or BSAA alone. It was suggested that the cause of the synergistic effect of IBA (or BSAA) plus PB treatment might be due to increased endogenous auxin level. The activities of peroxidase and IAA oxidase in the rooting zone coincided with root development, indicating that the activities of these two enzymes were positively correlated to rooting. Peroxidase and IAA oxidase activity in all treatments started 24 h and 12 h after cutting, respectively. It is suggested that the major role of IAA oxidase differed from that of peroxidase in adventitious root formation. 相似文献