首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
To investigate the population structure of the predominant phylogenetic groups within the human adult fecal microbiota, a new oligonucleotide probe designated S-G-Clept-1240-a-A-18 was designed, validated, and used with a set of five 16S rRNA-targeted oligonucleotide probes. Application of the six probes to fecal samples from 27 human adults showed additivity of 70% of the total 16S rRNA detected by the bacterial domain probe. The Bacteroides group-specific probe accounted for 37% ± 16% of the total rRNA, while the enteric group probe accounted for less than 1%. Clostridium leptum subgroup and Clostridium coccoides group-specific probes accounted for 16% ± 7% and 14% ± 6%, respectively, while Bifidobacterium and Lactobacillus groups made up less than 2%.  相似文献   

2.
AIMS: To develop a suite of group-specific, rRNA-targeted oligonucleotide scissor probes for the quantitative detection of the predominant bacterial groups within the ruminal microbial community with the rRNA cleavage reaction-mediated microbial quantification method. METHODS AND RESULTS: Oligonucleotides that complement the conserved sites of the 16S rRNA of phylogenetically defined groups of bacteria that significantly contribute to the anaerobic fermentation of carbohydrates in ruminal ecosystems were selected from among published probes or were newly designed. For each probe, target-specific rRNA cleavage was achieved by optimizing the formamide concentration in the reaction mixture. The set of scissor probes was then used to analyse the bacterial community in the rumen fluids of four healthy dairy cows. In the rumen fluid samples, the genera Bacteroides/Prevotella and Fibrobacter and the Clostridium coccoides-Eubacterium rectale group were detected in abundance, accounting for 44-48%, 2.9-10%, and 9.1-10% of the total 16S rRNA, respectively. The coverage with the probe set was 71-78% of the total bacterial 16S rRNA. CONCLUSIONS: The probe set coupled with the sequence-specific small-subunit rRNA cleavage method can be used to analyse the structure of a ruminal bacterial community. SIGNIFICANCE AND IMPACT OF THE STUDY: The probe set developed in this study provides a tool for comprehensive rRNA-based monitoring of the community members that dominate ruminal ecosystems. As the ruminal microbial community can be perturbed, it is important to track its dynamics by analysing microbiological profiles under specific conditions. The method described here will provide a convenient approach for such tracking.  相似文献   

3.
The probiotic Saccharomyces boulardii is a non-pathogenic yeast that has been proven efficient in the prevention of antimicrobial-associated diarrhea and of Clostridium difficile associated colitis. We evaluated the influence of the administration of S. boulardii on the composition of the fecal microbiota in a human microbiota-associated mouse model. This evaluation was run before, during and after a 7-day oral treatment with amoxicillin clavulanic acid. Predominant groups of bacteria were quantified with fluorescence in situ hybridization combined with flow cytometry using group-specific 16S rRNA targeted oligonucleotide probes designed for the Eubacteria, Bacteroides-Porphyromonas-Prevotella, Clostridium coccoides-Eubacterium rectale, Faecalibacterium prausnitzii, Clostridium histolyticum, Lactobacillus-Enterococcus and Enterobacteriaceae groups and Bifidobacterium species. S. boulardii did not quantitatively alter the total anaerobic microbiota nor the dominant bacterial groups. During the antibiotic treatment in the two groups of mice receiving the yeast or not, the level of Enterobacteriaceae and Bacteroides groups increased when the C. coccoides-E. rectale group decreased dramatically. After the antibiotic treatment was discontinued, the return to the initial level was reached more rapidly in the S. boulardii-treated mice than in the control mice (p<0.05) for the C. coccoides-E. rectale and Bacteroides-Porphyromonas-Prevotella groups. This quicker recovery of normal intestinal microbiota equilibrium after antibiotic therapy could be a mechanism for S. boulardii preventive effect on antibiotic-associated diarrhea in humans.  相似文献   

4.
A culture-independent molecular phylogenetic approach was used to study prokaryotic diversity in an anaerobic sludge digester. Two 16S rRNA gene libraries were constructed using total genomic DNA, and amplified by polymerase chain reaction (PCR) using primers specific for archaeal or bacterial domains. Phylogenetic analysis of 246 and 579 almost full-length 16S rRNA genes for Archaea and Bacteria, respectively, was performed using the ARB software package. Phylogenetic groups affiliated with the Archaea belong to Euryarchaeota and Crenarchaeota. Interestingly, we detected a novel monophyletic group of 164 clones representing 66.6% of the archaeal library. Culture enrichment and probe hybridization show that this group grows better under formate or H2-CO2. Within the bacterial library 95.6% of the operational taxonomic units (OTUs) represent novel putative phylotypes never described before, and affiliated with eight divisions. The Bacteroidetes phylum is the most abundant and diversified phylogenetic group representing 38.8% of the OTUs, followed by the gram-positives (27.7%) and the Proteobacteria (21.3%). Sequences affiliated with phylogenetic divisions represented by few cultivated representatives such as the Chloroflexi, Synergistes, Thermotogales or candidate divisions such as OP9 and OP8 are represented by <5% of the total OTUs. A comprehensive set of 15 16S and 23S rRNA-targeted oligonucleotide hybridization probes was used to quantify these major groups by dot blot hybridization within 12 digester samples. In contrast to the clone library, Firmicutes and Actinobacteria together accounted for 21.8 +/- 14.9% representing the most abundant phyla. They were surprisingly followed by the Chloroflexi representing 20.2 +/- 4.6% of the total 16S rRNA. The Proteobacteria and the Bacteroidetes group accounted for 14.4 +/- 4.9% and 14.5 +/- 4.3%, respectively, WWE1, a novel lineage, accounted for 11.9 +/- 3.1% while Planctomycetes and Synergistes represented <2% each. Using the novel set of probes we extended the coverage of bacterial populations from 52% to 85.3% of the total rRNA within the digester samples.  相似文献   

5.
Six 16S rRNA-targeted oligonucleotide probes were designed, validated, and used to quantify predominant groups of anaerobic bacteria in human fecal samples. A set of two probes was specific for species of the Bacteroides fragilis group and the species Bacteroides distasonis. Two others were designed to detect species of the Clostridium histolyticum and the Clostridium lituseburense groups. Another probe was designed for the genera Streptococcus and Lactococcus, and the final probe was designed for the species of the Clostridium coccoides-Eubacterium rectale group. The temperature of dissociation of each of the probes was determined. The specificities of the probes for a collection of target and reference organisms were tested by dot blot hybridization and fluorescent in situ hybridization (FISH). The new probes were used in initial FISH experiments to enumerate human fecal bacteria. The combination of the two Bacteroides-specific probes detected a mean of 5.4 × 1010 cells per g (dry weight) of feces; the Clostridium coccoides-Eubacterium rectale group-specific probe detected a mean of 7.2 × 1010 cells per g (dry weight) of feces. The Clostridium histolyticum, Clostridium lituseburense, and Streptococcus-Lactococcus group-specific probes detected only numbers of cells ranging from 1 × 107 to 7 × 108 per g (dry weight) of feces. Three of the newly designed probes and three additional probes were used in further FISH experiments to study the fecal flora composition of nine volunteers over a period of 8 months. The combination of probes was able to detect at least two-thirds of the fecal flora. The normal biological variations within the fecal populations of the volunteers were determined and indicated that these variations should be considered when evaluating the effects of agents modulating the flora.  相似文献   

6.
The human gut microflora plays a key role in nutrition and health. It has been extensively studied by conventional culture techniques. However these methods are difficult, time consuming and their results not always consistent. Furthermore microscopic counts indicate that only 20 to 40% of the total flora can be cultivated. Among the predominant species of the human gut, Fusobacterium prausnitzii was reported either as one of the most frequent and numerous species or was seldom retrieved. We designed and validated a specific rRNA-targeted oligonucleotide probe, called S-*-Fprau-0645-a-A-23, to accurately detect and quantify F. prausnitzii and relatives within the human fecal microflora. The target group accounted for 5.3 +/- 3% of total bacterial 16S rRNA using dot blot hybridization (10 human fecal samples) and 16.5 +/- 7% of cells stained with Dapi using in situ hybridization (10 other human fecal samples). A specific morphology seemed to be typical and dominant: two cells forming an asymmetrical double droplet. This work showed that F. prausnitzii and phylogenetically related species represent a dominant group within the human fecal flora.  相似文献   

7.
Vertical distributions of dominant bacterial populations in saline meromictic Lake Kaiike were investigated throughout the water column and sediment by quantitative oligonucleotide probe membrane hybridization. Three oligonucleotide probes specific for the small-subunit (SSU) rRNA of three groups of Chlorobiaceae were newly designed. In addition, three general domain (Bacteria, Archaea, and Eukarya)-specific probes, two delta-Proteobacteria-specific probes, a Chlorobiaceae-specific probe, and a Chloroflexi-specific probe were used after optimization of their washing conditions. The abundance of the sum of SSU rRNAs hybridizing with probes specific for three groups of Chlorobiaceae relative to total SSU rRNA peaked in the chemocline, accounting for up to 68%. The abundance of the delta-proteobacterial SSU rRNA relative to total SSU rRNA rapidly increased just below the chemocline up to 29% in anoxic water and peaked at the 2- to 3-cm sediment depth at ca. 34%. The abundance of SSU rRNAs hybridizing with the probe specific for the phylum Chloroflexi relative to total SSU rRNA was highest (31 to 54%) in the top of the sediment but then steeply declined with depth and became stable at 11 to 19%, indicating the robust coexistence of sulfate-reducing bacteria and Chloroflexi in the top of the sediment. Any SSU rRNA of Chloroflexi in the water column was under the detection limit. The summation of the signals of group-specific probes used in this study accounted for up to 89% of total SSU rRNA, suggesting that the DGGE-oligonucleotide probe hybridization approach, in contrast to conventional culture-dependent approaches, was very effective in covering dominant populations.  相似文献   

8.
For the detection of six groups of anaerobic bacteria in human feces, we designed seven new 16S rRNA-based oligonucleotide probes. This set of probes extends the current set of probes and gives more data on the composition of the human gut flora. Probes were designed for Phascolarctobacterium and relatives (Phasco741), Veillonella (Veil223), Eubacterium hallii and relatives (Ehal1469), Lachnospira and relatives (Lach571), and Eubacterium cylindroides and relatives (Ecyl387), and two probes were designed for Ruminococcus and relatives (Rbro730 and Rfla729). The hybridization conditions for the new probes were optimized for fluorescent in situ hybridization, and the probes were validated against a set of reference organisms. The probes were applied to fecal samples of 11 volunteers to enumerate their target bacterial groups. The Phasco741 and Veil223 probes both detected average numbers below 1% of the total number of bacteria as determined with the bacterial kingdom-specific Bact338 probe. The Ecyl387 probe detected about 1.4%, the Lach571 and Ehal1469 probes detected 3.8 and 3.6%, respectively, and a combination of the Rbro730 and Rfla729 probes detected 10.3%. A set of 15 probes consisting of probes previously described and those presented here were evaluated in hybridization with the fecal samples of the same volunteers. Together, the group-specific probes detected 90% of the total bacterial cells.  相似文献   

9.
For the detection of six groups of anaerobic bacteria in human feces, we designed seven new 16S rRNA-based oligonucleotide probes. This set of probes extends the current set of probes and gives more data on the composition of the human gut flora. Probes were designed for Phascolarctobacterium and relatives (Phasco741), Veillonella (Veil223), Eubacterium hallii and relatives (Ehal1469), Lachnospira and relatives (Lach571), and Eubacterium cylindroides and relatives (Ecyl387), and two probes were designed for Ruminococcus and relatives (Rbro730 and Rfla729). The hybridization conditions for the new probes were optimized for fluorescent in situ hybridization, and the probes were validated against a set of reference organisms. The probes were applied to fecal samples of 11 volunteers to enumerate their target bacterial groups. The Phasco741 and Veil223 probes both detected average numbers below 1% of the total number of bacteria as determined with the bacterial kingdom-specific Bact338 probe. The Ecyl387 probe detected about 1.4%, the Lach571 and Ehal1469 probes detected 3.8 and 3.6%, respectively, and a combination of the Rbro730 and Rfla729 probes detected 10.3%. A set of 15 probes consisting of probes previously described and those presented here were evaluated in hybridization with the fecal samples of the same volunteers. Together, the group-specific probes detected 90% of the total bacterial cells.  相似文献   

10.
Target site inaccessibility represents a significant problem for fluorescent in situ hybridisation (FISH) of 16S rRNA oligonucleotide probes. For this reason, the Clep1156 probe targeting 16S rRNA of the Clostridium leptum phylogenetic subgroup used for dot blot experiments could not be used until now for FISH. Considering that bacteria from the C. leptum subgroup are very abundant in the human faecal microbiota and may play a significant role in host health, we have used unlabelled helper and competitor oligonucleotides to improve the 16S rRNA in situ accessibility and specificity of the Clep1156 probe and applied this approach to enumerate C. leptum bacteria in this ecosystem. Nine C. leptum target strains and five non-target strains were selected to develop and validate the helper-competitor strategy. Depending on the target strains, the use of helpers enhanced the fluorescence intensity signal of Clep1156 from 0.4-fold to 8.4-fold with a mean value of 3.6-fold, switching this probe from the brightness class V-VI (masked sites) to III-IV (accessible sites). The simultaneous use of helper and competitor oligonucleotides with Clep1156 probe allowed the expected specificity without disturbing in situ accessibility. Quantified by FISH combined with flow cytometry, C. leptum bacteria in human faecal samples (n=22) represented 19 +/- 7% of bacteria on average [4.9-37.5]. We conclude that helper oligonucleotides are very useful to circumvent the problem of target site in situ accessibility, especially when probe design is limited to only one 16S rRNA area and that helpers and competitors may be efficiently combined.  相似文献   

11.
Vertical distributions of dominant bacterial populations in saline meromictic Lake Kaiike were investigated throughout the water column and sediment by quantitative oligonucleotide probe membrane hybridization. Three oligonucleotide probes specific for the small-subunit (SSU) rRNA of three groups of Chlorobiaceae were newly designed. In addition, three general domain (Bacteria, Archaea, and Eukarya)-specific probes, two δ-Proteobacteria-specific probes, a Chlorobiaceae-specific probe, and a Chloroflexi-specific probe were used after optimization of their washing conditions. The abundance of the sum of SSU rRNAs hybridizing with probes specific for three groups of Chlorobiaceae relative to total SSU rRNA peaked in the chemocline, accounting for up to 68%. The abundance of the δ-proteobacterial SSU rRNA relative to total SSU rRNA rapidly increased just below the chemocline up to 29% in anoxic water and peaked at the 2- to 3-cm sediment depth at ca. 34%. The abundance of SSU rRNAs hybridizing with the probe specific for the phylum Chloroflexi relative to total SSU rRNA was highest (31 to 54%) in the top of the sediment but then steeply declined with depth and became stable at 11 to 19%, indicating the robust coexistence of sulfate-reducing bacteria and Chloroflexi in the top of the sediment. Any SSU rRNA of Chloroflexi in the water column was under the detection limit. The summation of the signals of group-specific probes used in this study accounted for up to 89% of total SSU rRNA, suggesting that the DGGE-oligonucleotide probe hybridization approach, in contrast to conventional culture-dependent approaches, was very effective in covering dominant populations.  相似文献   

12.
随着16 S rRNA序列资源的不断丰富,以及寡核苷酸微阵列基因芯片技术的不断进步,检测复杂微生物菌落中的微生物种群构成成为可能.现有的序列特异性探针设计算法缺乏足够的覆盖度、灵活性以及效率,不能满足大规模细菌检测基因芯片的设计要求.很多组特异性探针设计算法的思路多局限于针对某个目标序列组设计唯一的组特异性探针.在很多应用场合,设计单个探针检测组内所有目标序列的目标是很难达到的.因此,设计多个探针通过组合方式进行检测是很有必要的.每个探针能特异性地检测组内一部分目标序列,通过组合就能提高覆盖率.然而,在所有可能的探针组合中找到一个优化的探针组合是很耗时的.提出了一个可行的基于相对熵和遗传算法的组合探针设计算法.  相似文献   

13.
16S rRNA-targeted oligonucleotide probes were designed for butyrate-producing bacteria from human feces. Three new cluster-specific probes detected bacteria related to Roseburia intestinalis, Faecalibacterium prausnitzii, and Eubacterium hallii at mean populations of 2.3, 3.8, and 0.6%, respectively, in samples from 10 individuals. Additional species-level probes accounted for no more than 1%, with a mean of 7.7%, of the total human fecal microbiota identified as butyrate producers in this study. Bacteria related to E. hallii and the genera Roseburia and Faecalibacterium are therefore among the most abundant known butyrate-producing bacteria in human feces.  相似文献   

14.
Clostridium perfringens and Clostridium difficile are pathogenic clostridia potentially associated with gastrointestinal infections and allergy in infants. To enable the molecular detection and quantification of these species in the infant gut, two 16S rRNA oligonucleotide probes were developed: Cdif198 for C. difficile and Cperf191 for C. perfringens. We defined the probes in silico using the RDP sequence database. The probes were then validated using FISH combined with flow cytometry and a collection of target and non-target strains, and faecal samples inoculated with dilutions of C. difficile and C. perfringens strains. These new probes were used to assess the composition of the intestinal microbiota of 33 infants of 1.5 to 18.5 months of age, associated with a panel of 8 probes targeting the predominant faecal bacterial groups of humans. The probes designed allowed detection and quantification of the relative proportions of C. difficile (0.5+/-1.0%) and C. perfringens (2.1+/-2.3%) in the microbiota of infants.  相似文献   

15.
16.
A method for quantifying eubacterial cell densities in dilute communities of small bacterioplankton is presented. Cells in water samples were stained with 4',6-diamidino-2-phenylindole (DAPI), transferred to gelatin-coated slides, and hybridized with rhodamine-labeled oligonucleotide probes specific for kingdom-level 16S rRNA sequences. Between 48 and 69% of the cells captured on membrane filters were transferred to gelatin-coated slides. The number of DAPI-stained cells that were visualized with eubacterial probes varied from 35 to 67%. Only 2 to 4% of these cells also fluoresced following hybridization with a probe designed to target a eukaryotic 16S rRNA sequence. Between 0.1 and 6% of the bacterioplankton in these samples were autofluorescent and may have been mistaken as cells that hybridized with fluorescent oligonucleotide probes. Dual staining allows precise estimates of the efficiency of transfers of cells to gelatin films and can be used to measure the percentage of the total bacterioplankton that also hybridize with fluorescent oligonucleotide probes, indicating specific phylogenetic groups.  相似文献   

17.
A method for quantifying eubacterial cell densities in dilute communities of small bacterioplankton is presented. Cells in water samples were stained with 4',6-diamidino-2-phenylindole (DAPI), transferred to gelatin-coated slides, and hybridized with rhodamine-labeled oligonucleotide probes specific for kingdom-level 16S rRNA sequences. Between 48 and 69% of the cells captured on membrane filters were transferred to gelatin-coated slides. The number of DAPI-stained cells that were visualized with eubacterial probes varied from 35 to 67%. Only 2 to 4% of these cells also fluoresced following hybridization with a probe designed to target a eukaryotic 16S rRNA sequence. Between 0.1 and 6% of the bacterioplankton in these samples were autofluorescent and may have been mistaken as cells that hybridized with fluorescent oligonucleotide probes. Dual staining allows precise estimates of the efficiency of transfers of cells to gelatin films and can be used to measure the percentage of the total bacterioplankton that also hybridize with fluorescent oligonucleotide probes, indicating specific phylogenetic groups.  相似文献   

18.
Two 16S rRNA-targeted oligonucleotide probes, Mcell-1026 and Mcell-181, were developed for specific detection of the acidophilic methanotroph Methylocella palustris using fluorescence in situ hybridization (FISH). The fluorescence signal of probe Mcell-181 was enhanced by its combined application with the oligonucleotide helper probe H158. Mcell-1026 and Mcell-181, as well as 16S rRNA oligonucleotide probes with reported group specificity for either type I methanotrophs (probes M-84 and M-705) or the Methylosinus/Methylocystis group of type II methanotrophs (probes MA-221 and M-450), were used in FISH to determine the abundance of distinct methanotroph groups in a Sphagnum peat sample of pH 4.2. M. palustris was enumerated at greater than 10(6) cells per g of peat (wet weight), while the detectable population size of type I methanotrophs was three orders of magnitude below the population level of M. palustris. The cell counts with probe MA-221 suggested that only 10(4) type II methanotrophs per g of peat (wet weight) were present, while the use of probe M-450 revealed more than 10(6) type II methanotroph cells per g of the same samples. This discrepancy was due to the fact that probe M-450 targets almost all currently known strains of Methylosinus and Methylocystis, whereas probe MA-221, originally described as group specific, does not detect a large proportion of Methylocystis strains. The total number of methanotrophic bacteria detected by FISH was 3.0 (+/-0.2) x 10(6) cells per g (wet weight) of peat. This was about 0.8% of the total bacterial cell number. Thus, our study clearly suggests that M. palustris and a defined population of Methylocystis spp. were the predominant methanotrophs detectable by FISH in an acidic Sphagnum peat bog.  相似文献   

19.
Lignans are dietary diphenolic compounds which require activation by intestinal bacteria to exert possible beneficial health effects. The intestinal ecosystem plays a crucial role in lignan metabolism, but the organisms involved are poorly described. To characterize the bacterial communities responsible for secoisolariciresinol (SECO) activation, i.e., the communities that produce the enterolignans enterodiol (ED) and enterolactone (EL), a study with 24 human subjects was undertaken. SECO activation was detected in all tested fecal samples. The intestinal bacteria involved in ED production were part of the dominant microbiota (6 x 10(8) CFU g(-1)), as revealed by most-probable-number enumerations. Conversely, organisms that catalyzed the formation of EL occurred at a mean concentration of approximately 3 x 10(5) CFU g(-1). Women tended to have higher concentrations of both ED- and EL-producing organisms than men. Significantly larger amounts of EL were produced by fecal dilutions from individuals with moderate to high concentrations of EL-producing bacteria. Two organisms able to demethylate and dehydroxylate SECO were isolated from human feces. Based on 16S rRNA gene sequence analyses, they were named Peptostreptococcus productus SECO-Mt75m3 and Eggerthella lenta SECO-Mt75m2. A new 16S rRNA-targeted oligonucleotide probe specific for P. productus and related species was designed and further used in fluorescent in situ hybridization experiments, along with five additional group-specific probes. Significantly higher proportions of P. productus and related species (P = 0.012), as well as bacteria belonging to the Atopobium group (P = 0.035), were typical of individuals with moderate to high concentrations of EL-producing communities.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号