首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reduction of chromosome number during meiosis is achieved by two successive rounds of chromosome segregation, called meiosis I and meiosis II. While meiosis II is similar to mitosis in that sister kinetochores are bi-oriented and segregate to opposite poles, recombined homologous chromosomes segregate during the first meiotic division. Formation of chiasmata, mono-orientation of sister kinetochores and protection of centromeric cohesion are three major features of meiosis I chromosomes which ensure the reductional nature of chromosome segregation. Here we show that sister chromatids frequently segregate to opposite poles during meiosis I in fission yeast cells that lack both chiasmata and the protector of centromeric cohesion Sgo1. Our data are consistent with the notion that sister kinetochores are frequently bi-oriented in the absence of chiasmata and that Sgo1 prevents equational segregation of sister chromatids during achiasmate meiosis I.Key words: meiosis, chromosome segregation, recombination, kinetochore, Sgo1, fission yeast  相似文献   

2.
The reduction of chromosome number during meiosis is achieved by two successive rounds of chromosome segregation, called meiosis I and meiosis II. While meiosis II is similar to mitosis in that sister kinetochores are bi-oriented and segregate to opposite poles, recombined homologous chromosomes segregate during the first meiotic division. Formation of chiasmata, mono-orientation of sister kinetochores and protection of centromeric cohesion are three major features of meiosis I chromosomes which ensure the reductional nature of chromosome segregation. Here we show that sister chromatids frequently segregate to opposite poles during meiosis I in fission yeast cells that lack both chiasmata and the protector of centromeric cohesion Sgo1. Our data are consistent with the notion that sister kinetochores are frequently bi-oriented in the absence of chiasmata and that Sgo1 prevents equational segregation of sister chromatids during achiasmate meiosis I.  相似文献   

3.
Summary Analysis of reconstructions, prepared from electron micrographs of successive longitudinal serial sections, has led to the conclusion that the somatic telophase chromosome of Tradescantia paludosa contains four cytologically separable chromonemata. The four represent a pair of pairs, that is, two diplospiremes — one with its two chromonemata arranged helically in dextrorse relationship, and the other with its two in sinistrorse relationship — which are associated to form a tetraspireme. During anaphase and telophase the tetraspireme constitutes the chromosome; during prophase and metaphase the tetraspireme represents one of the two chromatids of the chromosome, which is accordingly an octospireme in terms of the number of cytologically identifiable chromonemata. Loose intertwining of the two tetraspiremes during late prophase accounts for the so-called relational coiling.This paper is dedicated to Professor Hans Bauer on his sixtieth birthday anniversary in appreciation of his contributions to the development of modern cytology.The work reported here was supported in part by Research Grants GM-10499 from the National Institutes of Health, U.S. Public Health Service, and GB-290 from the National Science Foundation, and in part by a NATO fellowship awarded to E. Sparvoli by the Italian National Council of Research.  相似文献   

4.
Thymidine-H3 of high specific activity was used to study the distribution of labeled chromatids during meiotic divisions in spermatocytes of a species of grasshopper (Orthoptera). The distribution is regularly semiconservative as has been shown previously for mitosis, i.e., all chromatids are labeled after incorporation of thymidine-H3 into DNA at premeiotic interphase. If incorporation occurs at the interphase preceding this one, the chromosomes arrive at meiotic divisions with the equivalent of one chromatid of each homologue labeled. Chromatid exchanges occur at a frequency which is very nearly that predicted on the assumption that each chiasma represents an exchange between homologous chromatids. However, the exchanges are randomly distributed among chromosomes in a size group, whereas chiasmata are not. A quantitative analysis of the frequency and pattern of exchanges indicates that most of these result from breakage and reciprocal exchange between homologous chromatids. Sister chromatid exchanges are much less frequent and may be limited to premeiotic stages.  相似文献   

5.
The chiasma is a structure that forms between a pair of homologous chromosomes by crossover recombination and physically links the homologous chromosomes during meiosis. Chiasmata are essential for the attachment of the homologous chromosomes to opposite spindle poles (bipolar attachment) and their subsequent segregation to the opposite poles during meiosis I. However, the overall function of chiasmata during meiosis is not fully understood. Here, we show that chiasmata also play a crucial role in the attachment of sister chromatids to the same spindle pole and in their co-segregation during meiosis I in fission yeast. Analysis of cells lacking chiasmata and the cohesin protector Sgo1 showed that loss of chiasmata causes frequent bipolar attachment of sister chromatids during anaphase. Furthermore, high time-resolution analysis of centromere dynamics in various types of chiasmate and achiasmate cells, including those lacking the DNA replication checkpoint factor Mrc1 or the meiotic centromere protein Moa1, showed the following three outcomes: (i) during the pre-anaphase stage, the bipolar attachment of sister chromatids occurs irrespective of chiasma formation; (ii) the chiasma contributes to the elimination of the pre-anaphase bipolar attachment; and (iii) when the bipolar attachment remains during anaphase, the chiasmata generate a bias toward the proper pole during poleward chromosome pulling that results in appropriate chromosome segregation. Based on these results, we propose that chiasmata play a pivotal role in the selection of proper attachments and provide a backup mechanism that promotes correct chromosome segregation when improper attachments remain during anaphase I.  相似文献   

6.
Inverted meiosis is observed in plants (Cyperaceae and Juncaceae) and insects (Coccoidea, Aphididae) with holocentric chromosomes, the centromeres of which occupy from 70 to 90% of the metaphase chromosome length. In the first meiotic division (meiosis I), chiasmata are formed and rodlike bivalents orient equationally, and in anaphase I, sister chromatids segregate to the poles; the diploid chromosome number is maintained. Non-sister chromatids of homologous chromosomes remain in contact during interkinesis and prophase II and segregate in anaphase II, forming haploid chromosome sets. The segregation of sister chromatids in meiosis I was demonstrated by example of three plant species that were heterozygous for chromosomal rearrangements. In these species, sister chromatids, marked with rearrangement, segregated in anaphase I. Using fluorescent antibodies, it was demonstrated that meiotic recombination enzymes Spo11 and Rad5l, typical of canonical meiosis, functioned at the meiotic prophase I of pollen mother cells of Luzula elegance and Rhynchospora pubera. Moreover, antibodies to synaptonemal complexes proteins ASY1 and ZYP1 were visualized as filamentous structures, pointing to probable formation of synaptonemal complexes. In L. elegance, chiasmata are formed by means of chromatin threads containing satellite DNA. According to the hypothesis of the author of this review, equational division of sister chromatids at meiosis I in the organisms with inverted meiosis can be explained by the absence of specific meiotic proteins (shugoshins). These proteins are able to protect cohesins of holocentric centromeres from hydrolysis by separases at meiosis I, as occurs in the organisms with monocentric chromosomes and canonical meiosis. The basic type of inverted meiosis was described in Coccoidea and Aphididae males. In their females, the variants of parthenogenesis were also observed. Until now, the methods of molecular cytogenetics were not applied for the analysis of inverted meiosis in Coccoidea and Aphididae. Evolutionary, inverted meiosis is thought to have appeared secondarily as an adaptation of the molecular mechanisms of canonical meiosis to chromosome holocentrism.  相似文献   

7.
During mitosis, replicated chromosomes (sister chromatids) become attached at the kinetochore by spindle microtubules emanating from opposite poles and segregate equationally. In the first division of meiosis, however, sister chromatids become attached from the same pole and co-segregate, whereas homologous chromosomes connected by chiasmata segregate to opposite poles. Disorder in this specialized chromosome attachment in meiosis is the leading cause of miscarriage in humans. Recent studies have elucidated the molecular mechanisms determining chromosome orientation, and consequently segregation, in meiosis. Comparative studies of meiosis and mitosis have led to the general principle that kinetochore geometry and tension exerted by microtubules synergistically generate chromosome orientation.  相似文献   

8.
BACKGROUND: Mitotic chromosome segregation depends on bi-orientation and capture of sister kinetochores by microtubules emanating from opposite spindle poles and the near synchronous loss of sister chromatid cohesion. During meiosis I, in contrast, sister kinetochores orient to the same pole, and homologous kinetochores are captured by microtubules emanating from opposite spindle poles. Additionally, mechanisms exist that prevent complete loss of cohesion during meiosis I. These features ensure that homologs separate during meiosis I and sister chromatids remain together until meiosis II. The mechanisms responsible for orienting kinetochores in mitosis and for causing asynchronous loss of cohesion during meiosis are not well understood. RESULTS: During mitosis in C. elegans, aurora B kinase, AIR-2, is not required for sister chromatid separation, but it is required for chromosome segregation. Condensin recruitment during metaphase requires AIR-2; however, condensin functions during prometaphase, independent of AIR-2. During metaphase, AIR-2 promotes chromosome congression to the metaphase plate, perhaps by inhibiting attachment of chromatids to both spindle poles. During meiosis in AIR-2-depleted oocytes, congression of bivalents appears normal, but segregation fails. Localization of AIR-2 on meiotic bivalents suggests this kinase promotes separation of homologs by promoting the loss of cohesion distal to the single chiasma. Inactivation of the phosphatase that antagonizes AIR-2 causes premature separation of chromatids during meiosis I, in a separase-dependent reaction. CONCLUSIONS: Aurora B functions to resolve chiasmata during meiosis I and to regulate kinetochore function during mitosis. Condensin mediates chromosome condensation during prophase, and condensin-independent pathways contribute to chromosome condensation during metaphase.  相似文献   

9.
During meiosis I, kinetochores of sister chromatids are juxtaposed or fused and mono-orient, while homologous chromosomes that are paired by chiasmata (bivalents) have to biorient. In the absence of chiasmata, biorientation of sister chromatids (univalents), which carries a risk of aneuploidy, has been occasionally detected in several species, including humans. We show in fission yeast that biorientation of fused sister kinetochores predominates during early prometaphase I. Without chiasmata, this undesirable biorientation of univalents persists and eventually evades the spindle assembly checkpoint, provoking abnormal anaphase. When univalents are connected by chiasmata or by an artificial tether, this erroneous attachment is converted to monopolar attachment and stabilized. This stabilization is apparently achieved by a chromosome configuration that brings kinetochores to the outer edge of the bivalent, while bringing Aurora B, a destabilizer of kinetochore-microtubule attachment, inward. Our results elucidate how chiasmata favor biorientation of bivalents over that of univalents at meiosis I.  相似文献   

10.
G. H. Jones 《Chromosoma》1971,34(4):367-382
The autoradiographic analysis of exchanges in tritium-labelled meiotic chromosomes is potentially a useful approach to the study of meiotic exchange events since this method differentially labels meiotic chromatids along their entire length. The main problem encountered in earlier autoradiographic studies is that of distinguishing label exchanges generated at chiasmata from label exchanges generated by sister chromatid exchange. This problem was overcome in the present study by the choice of a meiotic system (male meiosis of Stethophyma grossum) where chiasmata are limited to just one proximally localised chiasma in each bivalent. This system allows the positive identification of chiasma-generated label exchanges and demonstrates convincingly the origin of chiasmata through breakage and rejoining of homologous non-sister chromatids. Sister chromatid exchanges are also readily detected in labelled meiotic chromosomes of this species, where they occur with a mean frequency of 0.35 per chromosome. This frequency is similar to that found in mitotic spermatogonial cells and the exchanges are randomly distributed both within and between chromosomes. These features of meiotic sister chromatid exchanges suggest that they are unrelated to non-sister chiasmatic exchanges and they probably have no special meiotic significance.  相似文献   

11.
Chromatid distribution at mitosis in cultured Wallabia bicolor cells   总被引:1,自引:1,他引:0  
C. R. Geard 《Chromosoma》1973,44(3):301-308
An analysis of labelled centromere regions of chromosomes in metaphase cells of the Swamp Wallaby (Wallabia bicolor) demonstrates conclusively that chromatids do not co-segregate in sets which contain DNA template strands of identical age. Also, there is no tendency for chromatids of homologous chromosome pairs to distribute non-randomly. The data are consistent with the assumption of random distribution of chromatids at mitosis.  相似文献   

12.
C. Tease  G. H. Jones 《Chromosoma》1978,69(2):163-178
Differential staining of the sister-chromatids of meiotic chromosomes of Locusta migratoria was achieved following abdominal implantation of BrdU tablets and fluorescent plus Giemsa (FPG) staining of fixed and squashed testicular follicles. This paper presents a detailed analysis of crossover exchanges between light and dark chromatids in monochiasmate bivalents. Approximately half the bivalents studied had visible exchanges of dark and light chromatids associated with the chiasmata, as expected if chiasmata originate by breakage and rejoining exchange events between randomly selected non-sister chromatids. In all the bivalents studied the visible crossover exchanges coincided exactly with chiasmata thus showing that chiasma movement (terminalisation) does not occur subsequent to crossing-over in Locusta migratoria, and that chiasmata are therefore accurate indicators of crossing over. It was noted that a proportion (9.5%) of chiasmata were associated with apparently anomalous exchanges of dark and light chromatids which could not be explained by conventional crossing-over. Various hypotheses for the origin of these anomalous exchanges are considered.  相似文献   

13.
U-type exchanges occur with a frequency of about 2/meiocyte in some plants of Tulipa hageri. Most, if not all, of these exchanges are between sister chromatids and they may be incomplete. These events clearly depend on some special property of first meiotic prophase cells since they do not occur during mitosis. However, their relationship to chiasmata is at present obscure.  相似文献   

14.
15.
Lee BH  Kiburz BM  Amon A 《Current biology : CB》2004,14(24):2168-2182
BACKGROUND: The meiotic cell cycle, the cell division cycle that leads to the generation of gametes, is unique in that a single DNA replication phase is followed by two chromosome segregation phases. During meiosis I, homologous chromosomes are segregated, and during meiosis II, as in mitosis, sister chromatids are partitioned. For homolog segregation to occur during meiosis I, physical linkages called chiasmata need to form between homologs, sister chromatid cohesion has to be lost in a stepwise manner, and sister kinetochores must attach to microtubules emanating from the same spindle pole (coorientation). RESULTS: Here we show that the meiosis-specific factor Spo13 functions in two key aspects of meiotic chromosome segregation. In cells lacking SPO13, cohesin, which is the protein complex that holds sister chromatids together, is not protected from removal around kinetochores during meiosis I but is instead lost along the entire length of the chromosomes. We furthermore find that Spo13 promotes sister kinetochore coorientation by maintaining the monopolin complex at kinetochores. In the absence of SPO13, Mam1 and Lrs4 disassociate from kinetochores prematurely during pro-metaphase I and metaphase I, resulting in a partial defect in sister kinetochore coorientation in spo13 Delta cells. CONCLUSIONS: Our results indicate that Spo13 has the ability to regulate both the stepwise loss of sister chromatid cohesion and kinetochore coorientation, two essential features of meiotic chromosome segregation.  相似文献   

16.
Tettigonia ussuriana and T. dolichopoda maritima differ in the length of tegmina, details in venation, and in females in details of the subgenital plate. The two species of the genus Tettigonia have the same number and morphology of autosomes but a different morphology of the X chromosome: in T. ussuriana it is metacentric, whereas in T. dolichopoda maritima acrocentric. In both species, euchromatic zones and breaks of one or to chromatids during meiosis and mitosis in the X chromosome were observed. Additionally, B chromosomes were noted in most individuals of both species.  相似文献   

17.
Dinoflagellates are a highly diversified group of unicellular protists that present fascinating nuclear features which have intrigued researchers for many years. As examples, a dense nuclear matrix accommodates permanently condensed chromosomes that are composed of fibers organized without histones and nucleosomes in stacked rows of parallel nested arches. The macromolecular chromosome structure corresponds to cholesteric liquid crystals with a constant left-handed twist. RNA acts to maintain the chromosome structure. Whole mounted chromosomes have a left-handed screw-like configuration with coils which progressively increase their pitch. This helical arrangement seems to be the result of a couple of narrow strands coiling together. Chromosomes do not show Q, G and C banding patterns. However, a roughly spherical differentiated upper end (primitive kinetochore?) and two differentiated coiling regions, the upper one composed of two to three coils where a couple of sister strands run together and parallel to each other, and the lower one where sister strands run out of phase by 180 degrees angular difference along the immediate next turns, can be distinguished. The chromosome segregation into two daughter chromatids begins at the telomere that attaches to the nuclear envelope, follows along the chromosome axis constituting first a Y-shaped and afterwards a V-shaped chromosome, which packs the newly synthesized DNA inside the "old" chromosome. Dividing chromosomes remain highly condensed, and the diameters of the new chromatids and the undivided chromosome are similar, but the number of arches is twice as large in G1 as in G2. The nuclear envelope remains through the cell cycle and shows spindle fibers, which penetrate intranuclear cytoplasmic channels during mitosis constituting an extra nuclear spindle. These and other cytogenetic features suggest that dinoflagellates are a group of enigmatic protists, unique and different from the usual eukaryotes. In contrast, DNA sequence studies propose that dinoflagellates are true eukaryotes, closely related to Apicomplexa, and ciliates (Alveolata), suggesting that the unusual features of chromosome and nuclear organization are not primitive but derived characters. Nevertheless, dinoflagellates have reached enigmatic specific nuclear and chromosome solutions, extremely far from those of other living beings.  相似文献   

18.
By means of combined experiments of X-irradiation and 3H-thymidine labeling of the chromosomes which are in the phase of synthesis, and the subsequent analysis at metaphase on the autoradiographs of the chromosomal damage induced during interphase, it was shown that in somatic cells from a quasi-diploid Chinese hamster line cultured in vitro the chromosomes change their response to radiation from single (chromosome type aberrations) to double (chromatid type aberrations) in late G1. These results are interpreted to indicate that the chromosome splits into two chromatids in G1, before DNA replication. — By extending the observations at the second metaphase after irradiation, it was also seen that cells irradiated while in G2 or late S when they reach the second post-irradiation mitosis still exhibit, beside chromosome type aberrations, many chromatid exchanges, some of which are labeled. Two hypotheses are suggested to account for this unexpected reappearance of chromatid aberrations at the second post-irradiation division. The first hypothesis is that they arise from half-chromatid aberrations. The second hypothesis, which derives from a new interpretation of the mechanisms of production of chromosome aberrations recently forwarded by Evans, is that they arise from gaps or achromatic lesions which undergo, as the cells go through the next cycle, a two-step repair process culminating in the production of aberrations.This work was supported in part by grant No. RH-00304 from the Division of Radiological Health, Bureau of State Services, Public Health Service, U.S.A.  相似文献   

19.
A. T. Sumner 《Chromosoma》1991,100(6):410-418
Changes in the morphology of human and murine chromosomes during the different stages of mitosis have been examined by scanning electron microscopy. Two important findings have emerged from this study. The first is that prophase chromosomes do not become split into pairs of chromatids until late prophase or early metaphase. This entails two distinct processes of condensation, the earlier one starting as condensations of chromosomes into chromomeres which then fuse to form a cylindrical body. After this cylindrical body has split in two longitudinally, further condensation occurs by mechanisms that probably include coiling of the chromatids as well as other processes. The second finding is that the centromeric heterochromatin does not split in two at the same time as the rest of the chromosome, but remains undivided until anaphase. It is proposed that the function of centromeric heterochromatin is to hold the chromatids together until anaphase, when they are separated by the concerted action of topoisomerase II acting on numerous similar sites provided by the repetitive nature of the satellite DNA in the heterochromatin. A lower limit to the size of blocks of centromeric heterochromatin is placed by the need for adequate mechanical strength to hold the chromatids together, and a higher limit by the necessity for rapid splitting of the heterochromatin at anaphase. Beyond these limits malsegregation will occur, leading to aneuploidy. Because the centromere remains undivided until anaphase, it cannot undergo the later stage of condensation found in the chromosome arms after separation into chromatids, and therefore the centromere remains as a constriction.by U. Scheer  相似文献   

20.
The purpose of this paper is to review current knowledge and understandings of gene control and cell differentiation, based upon an appreciation of a possible role that nuclear microanatomy and considerations of steric symmetry might play. Metaphase sister chromatids have identical base codes but show a mirror image symmetry of higher order coiling. Chromosomes in the interphase nucleus have spatially well defined domains and are anatomically distinct and ordered. Chromosomes are known to have interactions i.e. sex chromosome inactivation, PEV, etc. An hypothesis of gene activation is made based on steric interactions among chromosomes and between chromosomes and activating and repressor proteins. These interactions may be influenced by the handedness of higher order chromatid coiling, since homologues show mirror-image symmetrical coiling in metaphase, which might be retained to a certain degree in interphase. This may result in a binary switching of genes. All possible combinations of chromatids in the interphase nucleus, would be enabled by a differential segregation of homologous chromatids at mitosis. To conserve patterns of interchromatid interactions, there must be a programmed segregation of chromatids towards one of the two spindle pole attachments. This orientation might be effected by preferential attachment of microtubules to kinetochore attachment sites, by steric hindrance of the kinetochore by condensed chromatin which initially allows only unidirectional tubule attachment, or possibly by a tethering of interacting chromatids which would migrate en masse. An attempt to apply this hypothesis to some illustrative pathological conditions is made.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号