首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bcl-2 promotes premature senescence induced by oncogenic Ras   总被引:4,自引:0,他引:4  
The expression of the apoptosis inhibitory protein, Bcl-2, is increased in naturally senescing human fibroblasts and upon induction of their senescence-like growth arrest by oxidative stress, implying its role in maintaining their extended viability. Oncogenic Ras(V12) protein induces signaling cascades that result in the premature senescence of primary fibroblast cells, which are insensitive to oncogene-dependent apoptosis. Here we show that constitutive expression of Bcl-2 accelerates selected features of the Ras-induced senescence program in primary human fibroblasts. Yet, Bcl-2 also inhibits fibroblast apoptosis induced by exogenous H(2)O(2), while both signals induce an increased endogenous Bcl-2 expression in these cells. Together, these data suggest a context-dependent phenotypic function of Bcl-2 in the regulation of overlapping cell fate specification programs, with potential implications for both physiology and multistep tumorigenesis.  相似文献   

2.
Zhao W  Lin ZX  Zhang ZQ 《Cell research》2004,14(1):60-66
To examine the role of gap junctions in cell senescence, the changes of gap junctions in cisplatin-induced premature senescence of primary cultured fibroblasts were studied and compared with the replicative senescent human fibroblasts.Dye transfer assay for gap junction function and immunofluorescent staining for connexin 43 protein distribution were done respectively. Furthermore, cytofluorimetry and DAPI fluorescence staining were performed for cell cycle and apoptosis analysis, p53 gene expression level was detected with indirect immunofluorescence. We found that cisplatin(10mM) treatment could block cell growth cycle at G1 and induced premature senescence. The premature senescence changes included high frequency of apoptosis, elevation of p53 expression, loss of membranous gap junctions and reduction of dye-transfer capacity. These changes were comparable to the changes of replicative senescence of human fibroblasts. It was also concluded that cisplatin could induce premature senescence concomitant with inhibition of gap junctions in the fibroblasts. Loss of functional gap junctions from the cell membrane may account for the reduced intercellular communication in the premature senescent fibroblasts. The cell system we used may provide a model useful for the study of the gap junction thus promoting agents against premature senescence.  相似文献   

3.
The risk of colorectal cancer (CRC) varies between people, and the cellular mechanisms mediating the differences in risk are largely unknown. Senescence has been implicated as a causative cellular mechanism for many diseases, including cancer, and may affect the risk for CRC. Senescent fibroblasts that accumulate in tissues secondary to aging and oxidative stress have been shown to promote cancer formation via a senescence‐associated secretory phenotype (SASP). In this study, we assessed the role of senescence and the SASP in CRC formation. Using primary human colon tissue, we found an accumulation of senescent fibroblasts in normal tissues from individuals with advanced adenomas or carcinomas in comparison with individuals with no polyps or CRC. In in vitro and ex vivo model systems, we induced senescence using oxidative stress in colon fibroblasts and demonstrated that the senescent fibroblasts secrete GDF15 as an essential SASP factor that promotes cell proliferation, migration, and invasion in colon adenoma and CRC cell lines as well as primary colon organoids via the MAPK and PI3K signaling pathways. In addition, we observed increased mRNA expression of GDF15 in primary normal colon tissue from people at increased risk for CRC in comparison with average risk individuals. These findings implicate the importance of a senescence‐associated tissue microenvironment and the secretory factor GDF15 in promoting CRC formation.  相似文献   

4.
5.
Somatic cells senesce in culture after a finite number of divisions indefinitely arresting their proliferation. DNA damage and senescence increase the cellular number of centrosomes, the 2 microtubule organizing centers that ensure bipolar mitotic spindles. Centrosomes also provide the basal body from which primary cilia extend to sense and transduce various extracellular signals, notably Hedgehog. Primary cilium formation is facilitated by cellular quiescence a temporary cell cycle exit, but the impact of senescence on cilia is unknown. We found that senescent human fibroblasts have increased frequency and length of primary cilia. Levels of the negative ciliary regulator CP110 were reduced in senescent cells, as were levels of key elements of the Hedgehog pathway. Hedgehog inhibition reduced proliferation in young cells with increased cilium length accompanying cell cycle arrest suggesting a regulatory function for Hedgehog in primary ciliation. Depletion of CP110 in young cell populations increased ciliation frequencies and reduced cell proliferation. These data suggest that primary cilia are potentially novel determinants of the reduced cellular proliferation that initiates senescence.  相似文献   

6.
7.
Cellular senescence represents a powerful tumor suppressor mechanism to prevent proliferation and invasion of malignant cells. Since tumor cells as well as primary fibroblasts lacking the lysosomal cysteine-type carboxypeptidase cathepsin X exhibit a reduced invasive capacity, we hypothesized that the underlying reason may be the induction of cellular senescence. To investigate the cellular and molecular mechanisms leading to diminished migration/invasion of cathepsin X-deficient cells, we have analyzed murine embryonic fibroblasts (MEF) derived from cathepsin X-deficient mice and neonatal human dermal fibroblasts (NHDF) transfected with siRNAs targeting cathepsin X. Remarkably, both cell types exhibited a flattened and enlarged cell body, a characteristic phenotype of senescent cells. Additional evidence for accelerated senescence was obtained by detection of the common senescence marker β-galactosidase. Further examination revealed increased expression levels of senescence-associated genes such as p16, p21, p53, and caveolin in these cells along with a reduced proliferation rate. The accelerated cellular senescence induced by cathepsin X deficiency was rescued by simultaneous expression of exogenous cathepsin X. Finally, cell cycle analysis confirmed a marked reduction of the synthesis rate and prolongation of the S-phase, while susceptibility to apoptosis of cathepsin X-deficient cells remained unchanged. In conclusion, cathepsin X deficiency leads to accelerated cellular senescence and consequently to diminished cellular proliferation and migration/invasion implying a potential role of cathepsin X in bypassing cellular senescence.  相似文献   

8.
Somatic cells undergo a permanent cell cycle arrest, called cellular senescence, after a limited number of cell divisions in vitro. Both the tumor suppressor protein p53 and the stress-response protein p66(shc) are suggested to regulate the molecular events associated with senescence. This study was undertaken to investigate the effect of different oxygen tensions and oxidative stress on cell longevity and to establish the role of p53 and p66(shc) in cells undergoing senescence. As a model of cellular senescence, primary fetal bovine fibroblasts were cultured in either 20% O(2) or 5% O(2) atmospheres until senescence was reached. Fibroblasts cultured under 20% O(2) tension underwent senescence after 30 population doublings (PD), whereas fibroblasts cultured under 5% O(2) tension did not exhibit signs of senescence. Oxidative stress, as measured by protein carbonyl content, was significantly elevated in senescent cells compared to their younger counterparts and to fibroblasts cultured under 5% O(2) at the same PD. p53 mRNA gradually decreased in 20% O(2) cultured fibroblasts until senescence was reached, whereas p53 protein levels were significantly increased as well as p53 phosphorylation on serine 20, suggesting that p53 might be stabilized by posttranslational modifications during senescence. Senescence was also associated with high levels of p66(shc) mRNA and protein levels, while the levels remained low and stable in dividing fibroblasts under 5% O(2) atmosphere. Taken together, our results show an effect of oxidative stress on the replicative life span of fetal bovine fibroblasts as well as an involvement of p53, serine 20-p53 phosphorylation and p66(shc) in senescence.  相似文献   

9.
The mitochondrial theory of aging predicts that functional alterations in mitochondria leading to reactive oxygen species (ROS) production contribute to the aging process in most if not all species. Using cellular senescence as a model for human aging, we have recently reported partial uncoupling of the respiratory chain in senescent human fibroblasts. In the present communication, we address a potential cause-effect relationship between impaired mitochondrial coupling and premature senescence. Chronic exposure of human fibroblasts to the chemical uncoupler carbonylcyanide p-trifluoromethoxyphenylhydrazone (FCCP) led to a temporary, reversible uncoupling of oxidative phosphorylation. FCCP inhibited cell proliferation in a dose-dependent manner, and a significant proportion of the cells entered premature senescence within 12 days. Unexpectedly, chronic exposure of cells to FCCP led to a significant increase in ROS production, and the inhibitory effect of FCCP on cell proliferation was eliminated by the antioxidant N-acetyl-cysteine. However, antioxidant treatment did not prevent premature senescence, suggesting that a reduction in the level of oxidative phosphorylation contributes to phenotypical changes characteristic of senescent human fibroblasts. To assess whether this mechanism might be conserved in evolution, the influence of mitochondrial uncoupling on replicative life span of yeast cells was also addressed. Similar to our findings in human fibroblasts, partial uncoupling of oxidative phsophorylation in yeast cells led to a substantial decrease in the mother-cell-specific life span and a concomitant incrase in ROS, indicating that life span shortening by mild mitochondrial uncoupling may represent a "public" mechanism of aging.  相似文献   

10.
Multiple mechanisms of senescence induction exist including telomere attrition, oxidative stress, oncogene expression and DNA damage signalling. The regulation of the cellular changes required to respond to these stimuli and create the complex senescent cell phenotype has many different mechanisms. MiRNAs present one mechanism by which genes with diverse functions on multiple pathways can be simultaneously regulated. In this study we investigated 12 miRNAs previously identified as senescence regulators. Using pathway analysis of their target genes we tested the relevance of miRNA regulation in the induction of senescence. Our analysis highlighted the potential of these senescence-associated miRNAs (SA-miRNAs) to regulate the cell cycle, cytoskeletal remodelling and proliferation signalling logically required to create a senescent cell. The reanalysis of publicly available gene expression data from studies exploring different senescence stimuli also revealed their potential to regulate core senescence processes, regardless of stimuli. We also identified stimulus specific apoptosis survival pathways theoretically regulated by the SA-miRNAs. Furthermore the observation that miR-499 and miR-34c had the potential to regulate all 4 of the senescence induction types we studied highlights their future potential as novel drug targets for senescence induction.  相似文献   

11.
Telomere shortening limits the proliferation of primary human fibroblasts by the induction of senescence, which is mediated by ataxia telangiectasia mutated‐dependent activation of p53. Here, we show that CHK2 deletion impairs the induction of senescence in mouse and human fibroblasts. By contrast, CHK2 deletion did not improve the stem‐cell function, organ maintenance and lifespan of telomere dysfunctional mice and did not prevent the induction of p53/p21, apoptosis and cell‐cycle arrest in telomere dysfunctional progenitor cells. Together, these results indicate that CHK2 mediates the induction of senescence in fibroblasts, but is dispensable for the induction of telomere dysfunction checkpoints at the stem and progenitor cell level in vivo.  相似文献   

12.
13.
Tetraploidy can arise from various mitotic or cleavage defects in mammalian cells, and inheritance of multiple centrosomes induces aneuploidy when tetraploid cells continue to cycle. Arrest of the tetraploid cell cycle is therefore potentially a critical cellular control. We report here that primary rat embryo fibroblasts (REF52) and human foreskin fibroblasts become senescent in tetraploid G1 after drug- or small interfering RNA (siRNA)-induced failure of cell cleavage. In contrast, T-antigen–transformed REF52 and p53+/+ HCT116 tumor cells rapidly become aneuploid by continuing to cycle after cleavage failure. Tetraploid primary cells quickly become quiescent, as determined by loss of the Ki-67 proliferation marker and of the fluorescent ubiquitination-based cell cycle indicator/late cell cycle marker geminin. Arrest is not due to DNA damage, as the γ-H2AX DNA damage marker remains at control levels after tetraploidy induction. Arrested tetraploid cells finally become senescent, as determined by SA-β-galactosidase activity. Tetraploid arrest is dependent on p16INK4a expression, as siRNA suppression of p16INK4a bypasses tetraploid arrest, permitting primary cells to become aneuploid. We conclude that tetraploid primary cells can become senescent without DNA damage and that induction of senescence is critical to tetraploidy arrest.  相似文献   

14.
In advanced age, increases in oxidative stress and inflammation impair endothelial function, which contributes to the development of cardiovascular disease (CVD). One plausible source of this oxidative stress and inflammation is an increase in the abundance of senescent endothelial cells. Cellular senescence is a cell cycle arrest that occurs in response to various damaging stimuli. In the present study, we tested the hypothesis that advanced age results in endothelial cell telomere dysfunction that induces senescence. In both human and mouse endothelial cells, advanced age resulted in an increased abundance of dysfunctional telomeres, characterized by activation of DNA damage signaling at telomeric DNA. To test whether this results in senescence, we selectively reduced the telomere shelterin protein telomere repeat binding factor 2 (Trf2) from endothelial cells of young mice. Trf2 reduction increased endothelial cell telomere dysfunction and resulted in cellular senescence. Furthermore, induction of endothelial cell telomere dysfunction increased inflammatory signaling and oxidative stress, resulting in impairments in endothelial function. Finally, we demonstrate that endothelial cell telomere dysfunction-induced senescence impairs glucose tolerance. This likely occurs through increases in inflammatory signaling in the liver and adipose tissue, as well as reductions in microvascular density and vasodilation to metabolic stimuli. Cumulatively, the findings of the present study identify age-related telomere dysfunction as a mechanism that leads to endothelial cell senescence. Furthermore, these data provide compelling evidence that senescent endothelial cells contribute to age-related increases in oxidative stress and inflammation that impair arterial and metabolic function.  相似文献   

15.
16.
17.
With the aim to identify events involved in the determination of p53-dependent apoptosis versus growth arrest, we used rat embryo fibroblasts expressing a temperature-sensitive mutant (tsA58) of the SV40 large tumour antigen (LT). Heat-inactivation of LT leads to p53 activation and commitment to a senescent-like state (REtsA15 cell line) or apoptosis (REtsAF cell line). We report that senescence is associated with high levels of the anti-apoptotic Bcl-2 protein and a cell cycle arrest in G1 phase, whereas apoptosis is associated with low levels of Bcl-2 and a cell cycle arrest in G2 phase. Here we show that Bcl-2, which can inhibit apoptosis and proliferation, turns the apoptotic phenotype into a senescent-like phenotype in G2 phase. This result suggests that Bcl-2-dependent inhibition of apoptosis could be crucial for the commitment to replicative senescence, whereas its ability to inhibit G1 progression would not be required.  相似文献   

18.
Replicative senescence is induced by critical telomere shortening and limits the proliferation of primary cells to a finite number of divisions. To characterize the activity status of the replicative senescence program in the context of cell cycle activity, we analyzed the senescence phenotypes and signaling pathways in quiescent and growth-stimulated primary human fibroblasts in vitro and liver cells in vivo. This study shows that replicative senescence signaling operates at a low level in cells with shortened telomeres but becomes fully activated when cells are stimulated to enter the cell cycle. This study also shows that the dysfunctional telomeres and nontelomeric DNA lesions in senescent cells do not elicit a DNA damage signal unless the cells are induced to enter the cell cycle by mitogen stimulation. The amplification of senescence signaling and DNA damage responses by mitogen stimulation in cells with shortened telomeres is mediated in part through the MEK/mitogen-activated protein kinase pathway. These findings have implications for the further understanding of replicative senescence and analysis of its role in vivo.  相似文献   

19.
Primary human fibroblasts in tissue culture undergo a limited number of cell divisions before entering a non-replicative "senescent" state. At early population doublings (PD), fibroblasts are proliferation-competent displaying exponential growth. During further cell passaging, an increasing number of cells become cell cycle arrested and finally senescent. This transition from proliferating to senescent cells is driven by a number of endogenous and exogenous stress factors. Here, we have developed a new quantitative model for the stepwise transition from proliferating human fibroblasts (P) via reversibly cell cycle arrested (C) to irreversibly arrested senescent cells (S). In this model, the transition from P to C and to S is driven by a stress function γ and a cellular stress response function F which describes the time-delayed cellular response to experimentally induced irradiation stress. The application of this model based on senescence marker quantification at the single-cell level allowed to discriminate between the cellular states P, C, and S and delivers the transition rates between the P, C and S states for different human fibroblast cell types. Model-derived quantification unexpectedly revealed significant differences in the stress response of different fibroblast cell lines. Evaluating marker specificity, we found that SA-β-Gal is a good quantitative marker for cellular senescence in WI-38 and BJ cells, however much less so in MRC-5 cells. Furthermore we found that WI-38 cells are more sensitive to stress than BJ and MRC-5 cells. Thus, the explicit separation of stress induction from the cellular stress response, and the differentiation between three cellular states P, C and S allows for the first time to quantitatively assess the response of primary human fibroblasts towards endogenous and exogenous stress during cellular ageing.  相似文献   

20.
Cellular senescence can result from short, dysfunctional telomeres, oxidative stress, or oncogene expression, and may contribute to aging. To investigate the role of cellular senescence in aging it is necessary to define the time-dependent molecular events by which it is characterized. Here we investigated changes in levels of key proteins involved in cell cycle regulation, DNA replication, and stress resistance in senescing human fibroblasts following oxidative stress. An immediate response in stressed cells was dephosphorylation of retinoblastoma (Rb) and cessation of DNA synthesis. This was followed by sequential induction of p53, p21, and p16. Increase in hypophosphorylated Rb and induction of p53 and p21 by a single stress treatment was transient, whereas sustained induction or dephosphorylation were achieved by a second stress. Down-regulation of the critical DNA replication initiation factor Cdc6 occurred early after stress concurring with p53 induction, and was followed by a decrease in Mcm2 levels. A late event in the stress-induced molecular sequence was the induction of SOD1, catalase, and HSP27 coinciding with development of the fully senescent phenotype. Our data suggest that loss of proliferative capacity in oxidatively stressed cells is a multistep process regulated by time-dependent molecular events that may play differential roles in induction and maintenance of cellular senescence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号