首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Muscles of the body and bones of the axial skeleton derive from specialized regions of somites. Somite development is influenced by adjacent structures. In particular, the dorsal neural tube and the overlying ectoderm have been shown to be necessary for the induction of myogenic precursor cells in the dermomyotome. Members of the Wnt family of signaling molecules, which are expressed in the dorsal neural tube and the ectoderm, are postulated to be responsible for this process. It is shown here that ectopically implanted Wnt-1-, -3a-, and -4-expressing cells alter the process of somite compartmentalization in vivo. An enlarged dorsal compartment results from the implantation of Wnt-expressing cells ventrally between the neural tube/notochord and epithelial somites, at the expense of the ventral compartment, the sclerotome. Thus, ectopic Wnt expression is able to override the influence of ventralizing signals arising from notochord and floor plate. This shift of the border between the two compartments was identified by an increase in the domain of Pax-3 expression and a complete loss of Pax-1 expression in somites close to the ectopic Wnt signal. The expanded expression of MyoD and desmin provides evidence that it is the myotome which increases as a result of Wnt signaling. Paraxis expression is also drastically amplified after implantation of Wnt-expressing cells indicating that Wnts are involved in the formation and maintenance of somite epithelium and suggesting that Paraxis is activated through Wnt signaling pathways. Taken together these results suggest that ectopic Wnts disturb the normal balance of signaling molecules within the somite, resulting in an enhanced recruitment of somitic cells into the myogenic lineage.  相似文献   

4.
5.
6.
7.
We describe here for the first time the development of mechanosensory organs in a chelicerate, the spider Cupiennius salei. It has been shown previously that the number of external sense organs increases with each moult. While stage 1 larvae do not have any external sensory structures, stage 2 larvae show a stereotyped pattern of touch sensitive ‘tactile hairs’ on their legs. We show that these mechanosensory organs develop during embryogenesis. In contrast to insects, groups of sensory precursors are recruited from the leg epithelium, rather than single sensory organ progenitors. The groups increase by proliferation, and neural cells delaminate from the cluster, which migrate away to occupy a position proximal to the accessory cells of the sense organ. In addition, we describe the development of putative internal sense organs, which do not differentiate until larval stage 2. We show by RNA interference that, similar to Drosophila, proneural genes are responsible for the formation and subtype identity of sensory organs. Furthermore, we demonstrate an additional function for proneural genes in the coordinated invagination and migration of neural cells during sensory organ formation in the spider.  相似文献   

8.
9.
10.
Members of different vertebrate species share a number of developmental mechanisms and control genes, suggesting that they have similar genetic programs of development. We compared the expression patterns of the Pax-2 protein in Mus musculus and Brachydanio rerio to gain a better understanding of the evolution of developmental control genes. We found that the tissue specificity and the time course of Pax-2 expression relative to specific developmental processes are remarkably similar during the early development of the two organisms. The brain, the optic stalk, the auditory vesicle, the pronephros, and single cells in the spinal cord and the hindbrain express Pax-2 in both species. The Pax-2 expression domain in the prospective brain of E8 mouse embryos has not been described previously. Expression appears first during early neurulation at the junction between the midbrain and hindbrain. However, there are some differences in Pax-2 expression between the two species. Most notable, expression at the midbrain/hindbrain boundary is no longer detectable after E11 in the mouse. Using monoclonal antibodies, we could exclude that primary neurons express Pax-2 in the zebrafish spinal cord. Our results confirm that Pax genes are highly conserved both in sequences and in expression patterns, indicating that they may have a function during early development that has been conserved during vertebrate evolution.  相似文献   

11.
12.
Cnidarians are the simplest animals in which distinct eyes are present. We have previously suggested that cnidarian Pax-Cam might represent a precursor of the Pax-6 class. Here we show that when expressed in Drosophila imaginal discs, Pax-Cam chimeric proteins containing the C-terminal region of EY were capable of eye induction and driving expression of a reporter gene under the control of a known EY target (the sine oculis gene). Whilst these results are consistent with a Pax-6-like function for Pax-Cam, in band shift experiments we were unable to distinguish the DNA-binding behaviour of the Pax-Cam Paired domain from that of a second Acropora Pax protein, Pax-Bam. The ability of a Pax-Bam/EY chimera to also induce eye formation in leg imaginal discs, together with the in vitro data, cast doubt on previously assumed direct relationships between cnidarian Pax genes and the Pax-6 and Pax-2/5/8 classes of bilateral animals.  相似文献   

13.
14.
Mouse P19 embryonal carcinoma cells can differentiate into various cell types depending on culture conditions. Here we show that the expression of the mesodermal genes Brachyury (Bra) and Goosecoid (Gsc) are under regulatory control in P19 cells. When P19 cells were cultured in a tissue culture dish in the presence of serum, Bra and Gsc were unexpectedly expressed. Expression of Bra and Gsc was greatly reduced with culture time, and expression levels at 144 h of culture were below 25% those at 48 h of culture. Members of the Tgf-beta family such as Activin and Nodal have been known to up-regulate expression of mesodermal genes. Treatment with SB431542, an Alk4/5/7 inhibitor, decreased Bra and Gsc in a dose-dependent manner, whereas it induced the expression of the neuroectodermal genes Mash-1 and Pax-6. Quantitative RT-PCR and dsRNAi transfection indicated Nodal as a possible ligand responsible for the regulation of Bra and Gsc. In addition, exogenous Nodal increased expression of Bra and Gsc in a dose-dependent manner. Serum concentration in culture medium positively related to expression of Nodal, Bra, Gsc, and Cripto, which encodes a membrane-tethered protein required for Nodal signaling. Addition of the culture supernatant of P19 cells at 144 h of culture to medium decreased expression of these genes. The present study reveals that stimulation and inhibition of the Nodal pathway increases mesodermal genes and neuroectodermal genes, respectively, indicating the importance of control of Nodal and Cripto expression for mesodermal formation and neurogenesis.  相似文献   

15.
16.
17.
18.
A P19 embryonal carcinoma stem cell line carrying an insertion of the E. coli LacZ gene in an endogenous copy of the Pax-3 gene was identified. Expression of the Pax-3/LacZ fusion gene in neuroectodermal and mesodermal lineages following induction of differentiation by chemical treatments (retinoic acid and dimethylsulfoxide) was characterized using this line and is consistent with the previous localization of Pax-3 expression in the embryo to mitotically active cells of the dorsal neuroectoderm and the adjacent segmented dermomyotome. Pax-3/LacZ marked stem cells were also utilized as target cells in mixing experiments with unmarked P19 cells that had been differentiated by pretreatment with chemical inducers. Induction of beta-galactosidase and neuroectodermal markers in the target cells demonstrates that: (1) some differentiated P19 cell derivatives transiently express endogenous Pax-3- and neuroectoderm-inducing activities, (2) undifferentiated target stem cells respond to these activities even in the presence of leukemia inhibitory factor and (3) the endogenous activities can be distinguished from, and are more potent than, retinoic acid treatment in inducing neuroectoderm. These observations demonstrate that P19 embryonal carcinoma cells provide a useful in vitro system for analysis of the cellular interactions responsible for neuroectoderm induction in mammals.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号