首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
We demonstrated recently that selective side-chain modification of functional cysteine-rich (Tat(21-40)) and arginine-rich (Tat(53-68)) domains of the HIV-1 Tat protein blocks pathogenic activities of these peptides while retaining their immunological characteristics. In the present study, we have synthesized a multiple-peptide conjugate system comprising modified Tat(21-40) and Tat(53-68) peptides (HIV-1-Tat-MPC). Immunization of mice with this highly homogeneous 10.7 kDa HIV-1-Tat-MPC synthetic construct induced an effective immune response in mice. The antibodies generated against HIV-1-Tat-MPC efficiently suppressed Tat-induced viral replication and significantly reduced HIV-associated cytopathic effects in human monocytes. These results indicate that epitope-specific antibodies directed against functional sites of Tat protein using non-pathogenic peptides inhibit HIV pathogenesis. The HIV-1-Tat-MPC, therefore, has potential for the development of a safe, effective, and economical therapeutic vaccine to reduce the progression of HIV infection.  相似文献   

4.
Membrane permeability commonly shared among arginine-rich peptides   总被引:5,自引:0,他引:5  
Delivery of proteins and other macromolecules using membrane-permeable carrier peptides is a recently developed novel technology, which enables us to modulate cellular functions for biological studies with therapeutic potential. One of the most often used carrier peptides is the arginine-rich basic peptide derived from HIV-1 Tat protein [HIV-1 Tat (48-60)]. Using this peptide, efficient intracellular delivery of molecules including proteins, oligonucleic acids and liposomes has been achieved. We have demonstrated that these features were commonly shared among many arginine-rich peptides such as HIV-1 Rev (34-50) and octaarginine. Not only the linear peptides but also branched-chain peptides showed efficient internalization with an optimum number of arginines (approximately eight residues). The structural and mechanistic features of the translocation of these membrane-permeable arginine-rich peptides are reviewed.  相似文献   

5.
6.
The multifarious Tat peptide derived from the HIV-1 virus exhibits antimicrobial activity. In this article, we use Quartz Crystal Microbalance with Dissipation monitoring (QCM-D) to investigate the mechanisms of action of Tat (44-57) and Tat (49-57) on bacterial-mimetic 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC)/1,2-dimyristoyl-sn-glycero-3-phospho-rac-(1-glycerol) (sodium salt) (DMPG) membranes. The results reveal that both peptides disrupt DMPC/DMPG membranes via a surface-active (carpet-like) mechanism. The magnitude of this disruption is dependent on both membrane and peptide properties. Firstly, less disruption was observed on the more negatively charged membranes. Secondly, less disruption was observed for the longer and slightly more hydrophobic Tat (44-57) peptide. As a comparison, the behaviour of the two Tat peptides on mammalian-mimetic DMPC/cholesterol membranes was investigated. Consistent with the literature no membrane disruption was observed. These results suggest that both electrostatic and hydrophobic interactions, as well as peptide geometry, determine the antimicrobial activity of Tat. This should guide the development of more potent Tat antibiotics.  相似文献   

7.
Rapid and efficient delivery of imaging probes to the cell interior using permeation peptides has enabled novel applications in molecular imaging. Membrane permeant peptides based on the HIV-1 Tat basic domain sequence, GRKKRRQRRR, labeled with fluorophores and fluorescent proteins for optical imaging or with appropriate peptide-based motifs or macrocycles to chelate metals, such as technetium for nuclear scintigraphy and gadolinium for magnetic resonance imaging, have been synthesized. In addition, iron oxide complexes have been functionalized with the Tat basic domain peptides for magnetic resonance imaging applications. Herein we review current applications of permeation peptides in molecular imaging and factors influencing permeation peptide internalization. These diagnostic agents show concentrative cell accumulation and rapid kinetics and display cytosolic and focal nuclear accumulation in human cells. Combining methods, dual-labeled permeation peptides incorporating fluorescein maleimide and chelated technetium have allowed for both qualitative and quantitative analysis of cellular uptake. Imaging studies in mice following intravenous administration of prototypic diagnostic permeation peptides show rapid whole-body distribution allowing for various molecular imaging applications. Strategies to develop permeation peptides into molecular imaging probes have included incorporation of targeting motifs such as molecular beacons or protease cleavable domains that enable selective retention, activatable fluorescence, or targeted transduction. These novel permeation peptide conjugates maintain rapid translocation across cell membranes into intracellular compartments and have the potential for targeted in vivo applications in molecular imaging and combination therapy.  相似文献   

8.
We have used the backbone cyclic proteinomimetics approach to develop peptides that functionally mimic the arginine-rich motif (ARM) of the HIV-1 Tat protein. This consensus sequence serves both as a nuclear localization signal (NLS) and as an RNA binding domain. Based on the NMR structure of Tat, we have designed and synthesized a backbone cyclic ARM mimetic peptide library. The peptides were screened for their ability to mediate nuclear import of the corresponding BSA conjugates in permeabilized cells. One peptide, designated "Tat11," displayed active NLS properties. Nuclear import of Tat11-BSA was found to proceed by the same distinct pathway used by the Tat-NLS and not by the common importin alpha pathway, which is used by the SV40-NLS. Most of the Tat-derived backbone cyclic peptides display selective inhibitory activity as demonstrated by the inhibition of the nuclear import mediated by the Tat-NLS and not by the SV40-NLS. The Tat-ARM-derived peptides, including Tat-11, also inhibited binding of the HIV-1 Rev-ARM to its corresponding RNA element (Rev response element) with inhibition constants of 5 nm. Here we have shown for the first time (a) a functional mimetic of a protein sequence, which activates a nuclear import receptor and (b) a mimetic of a protein sequence with a dual functionality. Tat11 is a lead compound which can potentially inhibit the HIV-1 life cycle by a dual mechanism: inhibition of nuclear import and of RNA binding.  相似文献   

9.
The availability of the complete genome sequence of Bacillus subtilis has allowed the prediction of all exported proteins of this Gram-positive eubacterium. Recently, approximately 180 secretory and 114 lipoprotein signal peptides were predicted to direct protein export from the cytoplasm. Whereas most exported proteins appear to use the Sec pathway, 69 of these proteins could potentially use the Tat pathway, as their signal peptides contain RR- or KR-motifs. In the present studies, proteomic techniques were applied to verify how many extracellular B. subtilis proteins follow the Tat pathway. Strikingly, the extracellular accumulation of 13 proteins with potential RR/KR-signal peptides was Tat-independent, showing that their RR/KR-motifs are not recognized by the Tat machinery. In fact, only the phosphodiesterase PhoD was shown to be secreted in a strictly Tat-dependent manner. Sodium azide-inhibition of SecA strongly affected the extracellular appearance of de novo synthesized proteins, including the lipase LipA and two other proteins with predicted RR/KR-signal peptides. The SecA-dependent export of pre-LipA is particularly remarkable, because its RR-signal peptide conforms well to stringent criteria for the prediction of Tat-dependent export in Escherichia coli. Taken together, our observations show that the Tat pathway makes a highly selective contribution to the extracellular proteome of B. subtilis.  相似文献   

10.
Intracellularly acting peptide modulators of signaling enzymes provide a powerful means to regulate signaling events. Delivery of peptides into cells is facilitated by conjugation to carrier peptides, such as Tat. When peptides are irreversibly conjugated to Tat, Tat-mediated subcellular localization may predominate, resulting in mislocalization of the peptide cargo. We have used intracellularly acting peptides, conjugated to Tat by a disulfide bond, to modulate protein kinase C (PKC) signaling; these PKC-modulating peptides are released from Tat upon intracellular delivery. Previously, the distribution of these peptides within tissue and throughout the body had not been demonstrated. We show here intravascular delivery of a PKC-peptide, reversibly conjugated to Tat, resulted in distribution throughout cardiac tissue. In addition, a single injection resulted in selective modulation of PKC activity in many organs. Therefore, intracellularly acting peptide modulators of signaling enzymes, reversibly conjugated to Tat, have extensive biodistribution and can be used to modulate signaling pathways in vivo.  相似文献   

11.
Soluble proteins of the human immunodeficiency virus (HIV) might play a significant role in the pathogenesis of HIV infection. The addition of synthetic Tat peptides, but not that of the recombinant Nef or Vif protein, inhibited proliferative responses of CD4+ tetanus antigen-specific, exogenous interleukin-2 (IL-2)-independent T-cell clones in a dose-dependent manner. In addition, Tat peptides inhibited the anti-CD3 monoclonal antibody-induced proliferative responses of both purified CD4+ and CD8+ T cells. Tat did not affect proliferative responses induced by phorbol myristate acetate plus ionomycin. The Tat peptides at the concentrations used (0.1 to 3 micrograms/ml) did not affect the viability of the cells as determined by trypan blue exclusion. Treatment of Tat peptides with polyclonal Tat antibodies abrogated the inhibitory effect of Tat. Soluble Tat proteins secreted by HeLa cells transfected with the tat gene also inhibited antigen-induced proliferation of the T-cell clones. Tat inhibited the anti-CD3 monoclonal antibody-induced IL-2 mRNA expression and IL-2 secretion but did not affect IL-2 receptor alpha-chain mRNA or protein expression on peripheral blood T cells. Finally, treatment of T-cell clones with the Tat peptide did not affect the antigen-induced increase in intracellular calcium, hydrolysis of phosphatidyl inositol to inositol trisphosphate, or translocation of protein kinase C from the cytosol to the membrane. These studies demonstrate that the mechanism of the Tat-mediated inhibition of T-cell functions involves a phospholipase C gamma 1-independent pathway.  相似文献   

12.
The Tat (twin-arginine protein translocation) system initially discovered in the thylakoid membrane of chloroplasts has been described recently for a variety of eubacterial organisms. Although in Escherichia coli four Tat proteins with calculated membrane spanning domains have been demonstrated to mediate Tat-dependent transport, a specific transport system for twin-arginine signal peptide containing phosphodiesterase PhoD of Bacillus subtilis consists of one TatA/TatC (TatAd/TatCd) pair of proteins. Here, we show that TatAd was found beside its membrane-integrated localization in the cytosol were it interacted with prePhoD. prePhoD was efficiently co-immunoprecipitated by TatAd. Inefficient co-immunoprecipitation of mature PhoD and missing interaction to Sec-dependent and cytosolic peptides by TatAd demonstrated a particular role of the twin-arginine signal peptide for this interaction. Affinity of prePhoD to TatAd was interfered by peptides containing the twin-arginine motif but remained active when the arginine residues were substituted. The selective binding of TatAd to peptides derived from the signal peptide of PhoD elucidated the function of the twin-arginine motif as a target site for pre-protein TatAd interaction. Substitution of the binding motif demonstrated the pivotal role of basic amino acid residues for TatA binding. These features suggest that TatA interacts prior to membrane integration with its pre-protein substrate and could therefore assist targeting of twin-arginine pre-proteins.  相似文献   

13.
The human immunodeficiency virus-1 (HIV-1) protein Tat binds to cell surface antigens and can regulate cellular responses. Tat has similar immunosuppressive effects as transforming growth factor-beta (TGF beta) and both inhibit lymphocyte proliferation. TGF beta is expressed by primary human articular chondrocytes and is their most potent growth factor. The present study analyzed the interactions of TGF beta and HIV Tat in the regulation of human articular chondrocytes. Synthetic or recombinant full-length Tat (1-86) induced chondrocyte proliferation and this was of similar magnitude as the response to TGF beta. Tat peptides that did not contain the RGD motif had similar chondrocyte stimulatory activity as full-length Tat. Among a series of Tat peptides, peptide 38-62 which contains the basic domain was the only one active, suggesting that this region is responsible for the effects on chondrocyte proliferation. Full-length Tat and peptide 38-62 synergized with TGF beta and induced proliferative responses that were greater than those obtained with any combination of the known chondrocyte growth factors. Further characterization of the interactions between Tat and TGF beta showed that Tat increased synthesis and TGF beta activity and TGF beta 1 mRNA levels. The stimulatory effects of Tat and peptide 38-62 on chondrocyte proliferation were reduced by neutralizing antibodies to TGF beta and by TGF beta antisense oligonucleotides. These results identify a virally encoded protein and a synthetic peptide derived from it as novel and potent chondrocyte growth stimuli which act at least in part through the induction of TGF beta.  相似文献   

14.
Our previous studies have shown that the His tag cleaved from fusion proteins contained two distinct components P1 and P2. P1 has been identified to be a His-tagged peptide of G-H-H-H-H-H-H-H-H-H-H-S-S-G-H-I-E-G-R resulted from initiator methionine deletion, and P2 contains an unknown moiety at the second residue glycine of the tag (x-G-H-H-H-H-H-H-H-H-H-H-S-S-G-H-I-E-G-R, x = 178.0 Da). This study aimed to determine the structure of the modification by using a combination of protein isotope labeling and mass spectrometry. His-tagged FKBP was expressed in (15)N and (13)C labeling growth media respectively. Isotopic labeled His-tagged proteins ((15)N-His-FKBP and (13)C-His-FKBP) were isolated by affinity chromatography and subjected to Xa digestions to release the labeled His tag. Subsequent analyses of the released His tag by MALDI-TOF-MS indicated a mass difference of 178.0 +/- 0.2 Da, between the two (15)N-labeled peptides P1 and P2, suggesting that the modification moiety contained no nitrogen. A mass difference of 184.0 +/- 0.2 Da was observed on MALDI between (13)C-labeled peptide P1 and P2, indicating six carbons in the modification group. Also, comparing the mass shift on MALDI spectra of P1 and P2 after hydrogen/deuterium exchange revealed that the modification moiety had five hydroxyl groups. It was concluded that the modification was a gluconic acid derivative attached to the N-terminus of His-tagged proteins expressed in bacteria. The proposed structure was further confirmed by MALDI analysis of periodate oxidation products of His-tagged peptides.  相似文献   

15.
Chugh A  Eudes F 《The FEBS journal》2008,275(10):2403-2414
The uptake of five fluorescein labeled cell-penetrating peptides (Tat, Tat(2), mutated-Tat, peptide vascular endothelial-cadherin and transportan) was studied in wheat immature embryos. Interestingly, permeabilization treatment of the embryos with toluene/ethanol (1 : 20, v/v with permeabilization buffer) resulted in a remarkably higher uptake of cell-penetrating peptides, whereas nonpermeabilized embryos failed to show significant cell-penetrating peptide uptake, as observed under fluorescence microscope and by fluorimetric analysis. Among the cell-penetrating peptides investigated, Tat monomer (Tat) showed highest fluorescence uptake (4.2-fold greater) in permeabilized embryos than the nonpermeabilized embryos. On the other hand, mutated-Tat serving as negative control did not show comparable fluorescence levels even in permeabilized embryos. A glucuronidase histochemical assay revealed that Tat peptides can efficiently deliver functionally active beta-glucuronidase (GUS) enzyme in permeabilized immature embryos. Tat(2)-mediated GUS enzyme delivery showed the highest number of embryos with GUS uptake (92.2%) upon permeabilization treatment with toluene/ethanol (1 : 40, v/v with permeabilization buffer) whereas only 51.8% of nonpermeabilized embryos showed Tat(2)-mediated GUS uptake. Low temperature, endocytosis and macropinocytosis inhibitors reduced delivery of the Tat(2)-GUS enzyme cargo complex. The results suggest that more than one mechanism of cell entry is involved simultaneously in cell-penetrating peptide-cargo uptake in wheat immature embryos. We also studied Tat(2)-plasmid DNA (carrying Act-1GUS) complex formation by gel retardation assay, DNaseI protection assay and confocal laser microscopy. Permeabilized embryos transfected with Tat(2)-plasmid DNA complex showed 3.3-fold higher transient GUS gene expression than the nonpermeabilized embryos. Furthermore, addition of cationic transfecting agent Lipofectamine 2000 to the Tat(2)-plasmid DNA complex resulted in 1.5-fold higher transient GUS gene expression in the embryos. This is the first report demonstrating translocation of various cell-penetrating peptides and their potential to deliver macromolecules in wheat immature embryos in the presence of a cell membrane permeabilizing agent.  相似文献   

16.
17.
The antigenic diversity of human immunodeficiency virus type 1 (HIV-1) represents a significant challenge for vaccine design as well as the comprehensive assessment of HIV-1-specific immune responses in infected persons. In this study we assessed the impact of antigen variability on the characterization of HIV-1-specific T-cell responses by using an HIV-1 database to determine the sequence variability at each position in all expressed HIV-1 proteins and a comprehensive data set of CD8 T-cell responses to a reference strain of HIV-1 in infected persons. Gamma interferon Elispot analysis of HIV-1 clade B-specific T-cell responses to 504 overlapping peptides spanning the entire expressed HIV-1 genome derived from 57 infected subjects demonstrated that the average amino acid variability within a peptide (entropy) was inversely correlated to the measured frequency at which the peptide was recognized (P = 6 x 10(-7)). Subsequent studies in six persons to assess T-cell responses against p24 Gag, Tat, and Vpr peptides based on autologous virus sequences demonstrated that 29% (12 of 42) of targeted peptides were only detected with peptides representing the autologous virus strain compared to the HIV-1 clade B consensus sequence. The use of autologous peptides also allowed the detection of significantly stronger HIV-1-specific T-cell responses in the more variable regulatory and accessory HIV-1 proteins Tat and Vpr (P = 0.007). Taken together, these data indicate that accurate assessment of T-cell responses directed against the more variable regulatory and accessory HIV-1 proteins requires reagents based on autologous virus sequences. They also demonstrate that CD8 T-cell responses to the variable HIV-1 proteins are more common than previously reported.  相似文献   

18.
Environmentally sensitive labels constitute a new, attractive tool for monitoring biomolecular interactions. 3-Hydroxychromone derivatives are of particular interest because they undergo excited-state intramolecular proton transfer (ESIPT) showing dual emission highly sensitive to environmental hydration. To overcome the drawbacks of the previously developed label for sensing protein-DNA interactions based on 2-furanyl-3-hydroxychromone (FC), a series of hydration-sensitive labels based on 3-hydroxy-4'-methoxyflavone have been synthesized. As compared to FC, the new labels display higher sensitivity of the ratio of their two emission bands (N*/T*) to solvent polarity and H-bond donor ability, as well as higher fluorescence quantum yields in water. Moreover, they show higher pK(a) values of their 3-hydroxyl group, allowing their application at neutral pH without interference of anionic forms. To illustrate the applications of these labels, we covalently coupled them to the N-terminus of the Tat(44-61) peptide that corresponds to the basic domain of the HIV-1 Tat protein. This coupling did not modify the nucleic acid chaperone properties of the peptide. Binding of oligonucleotides of varying length, sequence, and strandedness to the labeled peptides induced dramatic change in the N*/T* ratio of their two emission bands. This change indicated that the level of probe hydration in the peptide/oligonucleotide complexes decreases in the following order: short ssDNAs ? long ssDNAs > DNA hairpins > dsDNAs. The level of probe hydration was related to the ability of the probe to stack with the DNA bases or base pairs in the various complexes. The changes in the N*/T* ratio upon interaction of the labeled Tat peptides with DNA were about 3-fold larger with the new probes as compared to the parent FC label, in line with the higher sensitivity of the new probes to the environment. One of these labels, presenting the most compact geometry, showed the highest sensitivity, probably due to its optimal stacking with the DNA bases. Thus, the new hydration-sensitive labels appear as improved highly sensitive tools to site-selectively monitor the binding of peptides to oligonucleotides and nucleic acids.  相似文献   

19.
Expressed prostatic secretion (EPS) is a proximal fluid directly derived from the prostate and, in the case of prostate cancer (PCa), is hypothesized to contain a repertoire of cancer-relevant proteins. Quantitative analysis of the EPS proteome may enable identification of proteins with utility for PCa diagnosis and prognosis. The present investigation demonstrates selective quantitation of proteins in EPS samples from PCa patients using a stable isotope labeled proteome standard (SILAP) generated through the selective harvest of the "secretome" from the PC3 prostate cancer cell line grown in stable isotope labeled cell culture medium. This stable isotope labeled secretome was digested with trypsin and equivalently added to each EPS digest, after which the resultant mixtures were analyzed by liquid chromatography-tandem mass spectrometry for peptide identification and quantification. Relative quantification of endogenous EPS peptides was accomplished by comparison of reconstructed mass chromatograms to those of the chemically identical SILAP peptides. A total of 86 proteins were quantified from 263 peptides in all of the EPS samples, 38 of which were found to be relevant to PCa. This work demonstrates the feasibility of using a SILAP secretome standard to simultaneously quantify many PCa-relevant proteins in EPS samples.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号