首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The main contribution of the presented work was to introduce the use of proteases modified with the soluble polymer polyethylene glycol (PEG) in the bio-finishing process of wool fibres, to target enzyme action to the outer parts of wool fibres, i.e. to avoid the diffusion and consequent destroying of the inner parts of the wool fibre structure, in the case of native proteases using.

Different proteolytic enzymes from Bacillus lentus and Bacillus subtilis in native and PEG-modified forms were investigated and their influence on the modification of wool fibres morphology surface, chemical structure, as well as the hydrolysis of wool proteins, the physico-mechanical properties, and the sorption properties of 1:2 metal complex dye during dyeing were studied. SEM images of wool fibres confirmed smoother and cleaner fibre surfaces without fibre damages using PEG-modified proteases. Modified enzyme products have a benefit effect on the wool fibres felting behaviours (14%) in the case when PEG-modified B. lentus is used, without markedly fibre damage expressed by tensile strength and weight loss of the fibre. Meanwhile the dye exhaustion showed slower but comparable level of dye uptake at the end of the dyeing.  相似文献   


2.
The epoxy resin was removed from semithin (1 μm) sections by immersing them for 30 sec in sodium methoxide (Mayor et al., J. Biophys. Biochem. Cytol., 9: 909-10, 1961) and then processed as follows: (1) left for 1-3 hr at 60 C in a mixture of formalin, 25 ml; glacial acetic acid, 5 ml; CrO3, 3 gm; and distilled water, 75 ml: (2) oxidized 10 min in a 1:1:6 v/v mixture of 2.5% KMnO4, 5% H2SO4 and distilled water: (3) bleached in 1% oxalic acid, and (4) stained for 15 min in aldehyde fuchsin, 0.125% in 70% alcohol, or in a 1% aqueous solution of toluidine blue. The neurosecretory material is selectively stained.  相似文献   

3.
Test tissues consisted of: (1) popliteal lymph nodes of rabbits, removed 6 hr after injection of hind footpads with 0.2 ml of 125 mg/ml solution of 5× crystallized chicken ovalbumin, and (2) lungs from guinea pigs, passively sensitized with rabbit antiovalbumin serum, then anaphylactically shocked by intracardial injection of a 1% chicken ovalbumin solution. Similar control tissues from normal rabbits, and lungs of passively sensitized guinea pigs, but shocked with histamine instead of ovalbumin, were included. Pieces of fresh tissue not exceeding 2 mm3 were fixed as follows: (1) Cyanuration—lymph nodes, 1 hr; lung, 0.5 hr; both at 23-27 C—in anhydrous methanol containing 0.5% w/v cyanuric chloride and 1% v/v N, N-diethylaminoethanol. (2) Control fixatives—all specimens 18-24 hr at 4—6 C—absolute methanol; 95% ethanol; neutral buffered 10% formalin; and an FAA mixture (formalin, conc., 6; glacial acetic acid, 2; 30% ethanol, 92). Freeze-dried material was either left unfixed (a control) or fixed in xylene or toluene containing 0.5% w/'v cyanuric chloride and 1% v/v N, N-diisopropylaminoethanol; time and temperature as for fresh tissues. All tissues were routinely dehydrated, cleared, and vacuum embedded in an ester wax, diethylene glycol distearate, or in paraffin at 52 C. Sections 2-4 μ thick were attached to gelatin-coated slides, the wax removed in petroleum ether, and stained 20 min at 23-27 C in a 0.10% solution of fluorescein isothiocyanate-conjugated rabbit antiovalbumin globulin, washed in phosphate buffered saline 10 min, dehydrated, cleared and covered in a nonfluorescent medium. With ultraviolet illumination, brightly immunofluorescent, anti-genically specific staining was obtained in cyanurated fresh and freeze-dried lymph node and lung tissues. In contrast, specific staining was diminished or absent in comparable tissues reacted in the control fixatives.  相似文献   

4.
This bromine-iodine-gold chloride-reduction sequence stains reticulin in formalin-fixed paraffin sections without risk of sections becoming detached. After hydration, sections are exposed to 0.2% bromine water containing 0.01% KBr for 1 hr, then rinsed and placed for 5 min in a solution consisting of KI, 2 gm; iodine crystals, 1 gm; and distilled water, 100 ml. After this the sections are well washed in distilled water, immersed for 5 min in 1% w/v aqueous solution of chloro-auric acid, again rinsed in distilled water, and the gold is reduced by placing in freshly made 3% H2O2 for 2-4 hr at 37 C, or in 2% oxalic acid for 1-3 hr at the same temperature.  相似文献   

5.
Tissues were fixed at 20° C for 1 hr in 1% OsO4, buffered at pH 7.4 with veronal-acetate (Palade's fixative), soaked 5 min in the same buffer without OsO4, then dehydrated in buffer-acetone mixtures of 30, 50, 75 and 90% acetone content, and finally in anhydrous acetone. Infiltration was accomplished through Vestopal-W-acetone mixtures of 1:3, 1:1, 3:1 to undiluted Vestopal. After polymerisation at 60° C for 24 hr, 1-2 μ sections were cut, dried on slides without adhesive, and stained by any of the following methods. (1) Mayer's acid hemalum: Flood the slides with the staining solution and allow to stand at 20°C for 2-3 hr while the water of the solution evaporates; wash in distilled water, 2 min; differentiate in 1% HCl; rinse 1-2 sec in 10% NH,OH. (2) Iron-trioxyhematein (of Hansen): Apply the staining solution as in method 1; wash 3-5 min in 5% acetic acid; restain for 1-12 hr by flooding with a mixture consisting of staining solution, 2 parts, and 1 part of a 1:1 mixture of 2% acetic acid and 2% H2SO4 (observe under microscope for staining intensity); wash 2 min in distilled water and 1 hr in tap water. (3) Iron-hematoxylin (Heidenhain): Mordant 6 hr in 2.5% iron-alum solution; wash 1 min in distilled water; stain in 1% or 0.5% ripened hematoxylin for 3-12 br; differentiate 8 min in 2.5%, and 15 min in 1% iron-alum solution; wash 1 hr in tap water. (4) Aceto-carmine (Schneider): Stain 12-24 hr; wash 0.5-1.0 min in distilled water. (5) Picrofuchsin: Stain 24-48 hr in 1% acid fuchsin dissolved in saturated aqueous picric acid; differentiate for only 1-2 sec in 96% ethanol. (6) Modified Giemsa: Mix 640 ml of a solution of 9.08 gm KH2PO4 in 1000 ml of distilled water and 360 ml of a solution of 11.88 gm Na2HPO4-2H2O in 1000 ml of distilled water. Soak sections in this buffer, 12 hr. Dissolve 1.0 gm of azur I in 125 ml of boiling distilled water; add 0.5 gm of methylene blue; filter and add hot distilled water until a volume of 250 ml is reached (solution “AM”). Dissolve 1.5 gm of eosin, yellowish, in 250 ml of hot distilled water; filter (solution “E”). Mix 1.5 ml of “AM” in 100 ml of buffer with 3 ml of “E” in 100 ml of buffer. Stain 12-24 hr. Differentiate 3 sec in 25 ml methyl benzoate in 75 ml dioxane; 3 sec in 35 ml methyl benzoate in 65 ml acetone; 3 sec in 30 ml acetone in 70 ml methyl benzoate; and 3 sec in 5 ml acetone in 95 ml methyl benzoate. Dehydrated sections may be covered in a neutral synthetic resin (Caedax was used).  相似文献   

6.
The deoxyrihonucleic acid (DNA) of chromatin undergoar depurinization on mild acid hydrolysis with a picric acid-formaldehyde mixture (Bouin's fluid). The apurinic acid thus formed is degraded by condensation with aniline and is lost from tissue sections, but ribonucleic acid (RNA) in nucleoli and cytoplasm is well preserved. Technique: Fi in Carnoy's fluid (ethanol:acetic acid 3:1 or ethanol:chloroform:acetic acid 6:3:1) or in aldehydes (10% formalin or 2.5% glutaraldehyde bsered to pH 7.0). Hydrolyse deparaEnii sections 12-24 hr at 27-50 C in Bouin's fluid, wash in distilled water, immerse in 25% (v/v) acetic acid, treat 1 hr at 27-30 C with 10% (v/v) dine in 25% acetic acid, wash in 25% acetic acid and then in water. Stain 10-40 min with 03% toluidine blue in 0.05 M potassium biphthalate bder (pH 4.0); rinse in distilled water, pass to 10% (w/v) ammonium molybdate for 1 min, rinse again in water and pass through tert-butanol and xylene to a synthetic resin. Chromatin and chromosomes are pale green; RNA in nucleoli and cytoplasm deep purple.  相似文献   

7.
For staining in toto, planarians are fixed in a mixture of 10 ml of commercial formalin, 45 ml of 95% ethanol and 2 ml of glacial acetic acid. After treatment with 70% ethanol 3-10 days, they are washed in distilled water and immersed in 10% CuSO4. 5H2O for 3 hr at 50° C, transferred without washing to 1% AgNO3 for 1.0-1.5 hr at 50° C; and then developed in: 10 ml of 1% pyrogallol, 100 ml of 56% ethanol and 1 ml of 0.2% nitric acid. Gold toning, 5% Na2S2O3 and dehydration follow as usual. For staining sections, material is fixed in the same fixative, embedded in paraffin and sectioned at 10 μ. After bringing sections to water, they are immersed in 20% CuSO4. 5H2O for 48 hr at 37° C; then rinsed briefly in distilled water and placed in 7% AgNO3 for 24 hr at 37° C. They are washed briefly in distilled water and reduced in: hydroquincne, 1 gm; Na2SO3, 5 gm and distilled water 100 ml. Gold toning, followed by 5% Na2S2O3 and dehydration completes the process. Any counterstaining may follow.  相似文献   

8.
Pumpkin (Cucurbita moschata) ascorbate oxidase was entrapped within 6% (w/v) Ca-alginate gel beads, and then the beads were treated with 1% (w/v) glutaraldehyde for 20 hr at 4°C. The immobilized ascorbate oxidase was much more stable than the free form. Under the optimum conditions, the immobilized enzyme remained fully active for 3 months and after 50 assays. A linear relationship was found between immobilized ascorbate oxidase activity and l-ascorbic acid concentration in the range of 2 ~ 20 μg/ml. The immobilized preparation could be employed for the simple and rapid determination of l-ascorbic acid in foods.  相似文献   

9.
There is currently considerable interest in the use of enzymes to achieve a variety of finishing effects on wool, but it is apparent that the extent of fibre degradation by enzymes is of major concern during their commercial application. Proteolytic enzymes are known to penetrate and degrade the internal wool structure during processing, causing fibre damage, rather than limiting the degradation to the cuticle cells. The ability to be able to control the exact location of proteolytic attack on wool protein structures will lead to the successful development of enzymatic treatments for achieving a variety of finishing effects for wool-containing products. This present work describes the modification of proteases so that enzymatic modification of wool fibres is restricted to the cuticle scales of the fibres.

Bulk trials have demonstrated that novel modifications of the enzyme enable the reaction of the enzyme with wool to be controlled, so that less degradation of the wool occurs than in similar treatments with the native protease. An anti-felting effect has been achieved without any significant weight loss being caused by the modified protease during the treatment. This novel enzymatic process leads to environmentally friendly production of machine washable wool.  相似文献   


10.
Bactericidal and bacteriostatic activities of an emulsion containing 10.0% (v/v) terpineol, 0.5% (w/v) diphenyliodonium chloride, 11.0% (v/v) ethyl alcohol, and 5.62% saponified mustard oil were tested against a number of different types of organisms. The bactericidal concentration for Salmonella typhosa was 1:400. In the presence of 5.0% horse serum, it increased to 1:250. The bacteriostatic concentration varied from organism to organism; Escherichia coli and Staphylococcus aureus required 4,000 mug/ml for complete bacteriostasis, whereas Corynebacterium diphtheriae, Salmonella paratyphi-A, and Shigella required only 2,000 mug/ml for complete inhibition. A 4.0% concentration of the emulsion killed the spores of Bacillus subtilis within 6 hr.  相似文献   

11.
The following procedure is recommended: Fix ces-todes and trematodes (while held flat between glass slides) 0.5-2.0 hr. in the following mixture: formalin, 15; acetic acid (gl.), 5; glycerol, 10; 95% ethyl alcohol, 24; distilled H2O, 46; all proportions by volume. After freeing them from the slides, wash thoroughly in running water and stain immediately thereafter. Stock staining solution: ferric ammonium alum (violet cryst.), 2 g.; distilled H2O (cold) 100 ml.; after solution, add 2 ml. concentrated H2SO4, bring to a boil; add 1 g. coelestin blue B (Nat. Aniline), boil 3-5 min.; cool and add 10 ml. absolute methyl alcohol and 10 ml. glycerol. Dilute 1 vol. with 3 vol. distilled H20 for use. Stain 5-30 min., depending on size of specimens. Wash with 2 changes 0.5 hr. each of distilled H2O, then 50% isopropyl alcohol 12-16 hr., 50% isopropyl alcohol 2 hr., followed by graded isopropyl alcohol for dehydration. Ether: ethyl alcohol (equal parts), 1 hr., is followed by embedding in celloidin in a sheet just thick enough to cover the specimens. Trim embedded specimens and dehydrate with isopropyl alcohol, 80%, 90% and absolute. Clear in beechwood creosote. Mount in balsam with cover glasses that overlap the edges of the celloidin 1-2 mm. While drying at 37°C, refill edges of mount with fresh balsam as needed. When dry, remove excess balsam and ring the edges with ordinary gloss enamel paint.  相似文献   

12.
Brains of rat with surgical lesions 3-5 days old are fixed in 10% neutralized formalin (excess of CaCO3), 20 μ serial frozen sections cut therefrom and kept in neutralized formalin for an additional 24-48 hr. The sections are soaked in distilled water 12-24 hr, transferred to 50% alcohol containing 0.75 ml of concentrated NH4OH (sp. gr. 0.91) per 100 ml 12-24 hr, placed in distilled water 2-3 hr and then in silver-pyridine solution (AgNO3 3% aq., 20 ml; pyridine, 1 ml) for 48 hr. Test sections are transferred directly to each one of 3 ammoniated silver-solutions, pH 12.8, 13.0 and 13.2, made as follows: To 200 ml of solution 1 (silver nitrate, 6.4 gm; alcohol 96%, 220 ml; NH4OH (sp. gr. 0.91), 28 ml and distilled water, 440 ml) is added respectively 8-12 ml, 12-16 ml and 16-20 ml of solution 2 (2% NaOH) to give the pH desired. The test sections are studied and the optimal ammoniated silver solution chosen. Two baths of ammoniated silver are used, the section placed with continuous agitation into the first bath for 30 sec and the second bath for 60 sec. The sections are then transferred directly into a reducing bath (formalin 10%, 2ml; alcohol 96%, 5 ml; citric acid 1%, 1.5 ml and distilled water, 4.5 ml) for 2 min and from there to 5% Na2S2O3 for 1 min, rinsed in 3 changes of distilled water, dehydrated and mounted.  相似文献   

13.
Immerse pieces of brain tissue 4 wk in solutions A and B, mixed just before use: A. K2Cr2O7, 1 gm; HgCl2, 1 gm; boiling distilled water, 85 ml. Boil A for 15 min, cool to 2 C and add: B. K2CrO4, 0.8 gm; Na2WO4, 0.5 gm; distilled water, 20 ml. Rinse in water and immerse 24 hr in LiOH, 0.5 gm; KNO3, 15 gm; distilled water, 100 ml. Wash 24 hr in several changes of 0.2% acetic acid and then for 2 hr in tap water. Dehydrate and embed in celloidin. Process a 60 μ section through 70 and 95% ethanol, a 3:1 mixture of absolute ethanol and chloroform, and toluene. Immerse it for 5 min in a solution containing methyl benzoate, 25 ml; benzyl alcohol, 100 ml; chloroform, 75 ml. Orient the section on a chemically clean slide and let air-dry 5-10 min. Process through toluene, 3:1 ethanol-chloroform and 95% ethanol. Place the section for 5-60 min at 60 C in a solution made up of: Luxol fast blue G (Matheson, Coleman and Bell), 1 gm; 95% ethanol, 1000 ml; 10% acetic acid, 5 ml. Hydrate to water and immerse in 0.05% Li2CO3 for 3-4 min. Differentiate in 70% ethanol and place in water. Immerse for 5-15 min in a mixture of two solutions: A. cresylechtviolet (Otto C. Watzka, Montreal), 2 gm; 1 M acetic acid, 185 ml; B. 1 M sodium acetate, 15 ml; distilled water, 400 ml; absolute ethanol, 200 ml. Dehydrate to 3:1 ethanol-chloroform. Clear in toluene and apply a coverslip. The technique produces fast Golgi-Cox impregnated neurons against a background of counterstained myelinated fibers. Patterns of the myelinated fibers can be used to localize impregnated neurons.  相似文献   

14.
Wool is an important agricultural commodity with merino wool being rated alongside the finest quality fibres, which include the goat fibres Mohair and Cashmere. Although pigmented wool merinos have become extremely rare, the market for this wool is increasing. In Portugal, there are two merino breeds: white and black, descendants of animals originally bred on the Iberian Peninsula. These breeds have the potential to assist in our understanding of how protein expression relates to wool traits of importance to the textile industry. Herein, we study the characteristics and protein expression profiles of wool from ewes of the Portuguese black and white merino (n=15). Both breeds had very similar results for fibre diameter (25 µm) and curvature (105 to 111°/mm). Significant between-breed differences were found in the two types of keratin-associated proteins (KAPs): high-sulphur proteins (HSPs) and high-glycine–tyrosine proteins (HGTPs). The expression of HSPs, KAP2-3 and KAP2-4, decreased expression in the pigmented animals, whereas KAP13-1 was found in higher amounts. Likewise, the expression of the ultra-high-sulphur proteins, KAP4-3 and KAP4-7-like, was reduced in black sheep to half the levels of the white wools, whereas the HGTPs, KAP6, KAP6-1, KAP6-2 and KAP16-2, were more abundant in black sheep. These results suggest structural differences between the black and white merino wool, because of differences among some KAPs. These differences have important implications for the textile industry.  相似文献   

15.
Concentration of Bacteriophages from Natural Waters   总被引:3,自引:2,他引:1  
The methods used for concentrating animal viruses from drinking water were found to be unsuitable for the concentration of bacteriophages from natural waters. The factors affecting recovery were investigated and a concentration procedure devised which is amenable to larger scale and field use. This procedure involves: (1) passage of the water through a sand filter; (2) removal of dissolved organic material with an anion exchange resin; (3) addition of MgCl2 to a final concentration of 5 times 10-4 m ; (4) adjustment of the pH value to 3°8; (5) adsorption of the bacteriophages on to fibre glass and cellulose nitrate filters; (6) elution of bound phage with 3% (w/v) beef extract, and (7) concentration by ultrafiltration of the resulting eluates. Using this procedure a wide range of test bacteriophages was concentrated from 41 to 5 ml with recoveries ranging from 18–80%—concentration factors of 200–900 fold.  相似文献   

16.
Mammalian pancreatic alpha granules were differentially stained with phosphotungstic acid haematoxylin. Paraffin sections were dewaxed and hydrated, oxidised 5-40 sec in freshly prepared 0.3% KMnO4 acidified with 0.3% (w/v) H2SO4, decolourised in 4% potassium metabisulphite, mordanted 20 min to 2 hr in 4% iron alum, stained in phosphotungstic acid haematoxylin 16-48 hr, rinsed in 95% ethanol until no stain runs from the tissue, dehydrated in absolute ethanol, cleared in xylene, and covered in synthetic resin. Advantages of this procedure are: (1) consistent, reproducible staining; (2) applicability to all the common laboratory mammals and man; (3) wide latitude at each stage, permitting its use as a routine method; and (4) superior visualization of alpha granules, due to suppression of background staining and absence of glare. For fixation, formalin-acetic or Bouin's solution is recommended.  相似文献   

17.
Mitochondria were stained in liver, kidney, pancreas, adrenal and intestinal mucosa of rat and mouse. Tissues 1 mm thick, were fixed in a mixture of saturated aqueous HgCl2, 90 ml; formalin (37-38% HCHO), 10 ml, at room temperature (25°C) for 1 hr. Deparaffinized sections 3-4μ thick were treated with Lugol's iodine (U.S.P.) followed by Na2S2O3 (5%), rinsed in water and the ribonucleic acid removed by any of the following procedures: 0.2 M McIlavaine's buffer, pH 7.0, 2 hr, or 0.2 M phosphate buffer, pH 7.0, 2 hr at 37°C; 0.1% aqueous ribonuclease, 2 hr at 37°C; 5% aqueous trichloracetic acid overnight at 37°C; or 1% KOH at room temperature for 1 hr. After washing in water, sections were treated with a saturated solution of ferric ammonium alum at 37°C for 8-12 hr and colored by Regaud's ripened hematoxylin for 18 hr. They were then differentiated in 1% ferric ammonium alum solution while under microscopic observation.  相似文献   

18.
SUMMARY: The rates of growth of bacteria on Hevea latex systems in the presence and absence of ammonia have been derived from colony count data obtained on a modified Kligler's iron agar medium. For fresh latex, ammoniated field latex, and ammoniated latex concentrate, variations in the bacterial populations encountered are given for a period of about one year's testing, with some data on commercial samples of latex concentrate. Field latex at routine collection contained about 8 × 106 bacteria/ml. This could be reduced by 62% by the use of sterile tapping cups. In the routine latex, the mixed population grew logarithmically after a lag phase of 2·1/2–3 hr. In clean latex the lag phase was extended to 4 hr. On ammoniation to 0.3% (w/w), the population was reduced over about 2 hr, but subsequently logarithmic growth recurred, without a lag phase. On concentration and further ammoniation to 0·7% (w/w), the count dropped still further, levels of 10/ml or less being achieved in clean conditions, but very slow logarithmic growth again occurred with a lag phase preceding it.  相似文献   

19.
Tissue fixed in 10% formalin, formalin-95% ethanol 1:s CaCO2 or phosphate buffer neutralized formalin, or methanol-chloroform 2:1, was dehydrated and embedded in paraffin or double-embedded by infiltration in 1% celloidin followed by a chloroform-paraffin sequence. Sections were attached to slides with either albumen or gelatine adhesive and processed throughout at room temperature of 24-26 C. For either method, mordanting 30-60 min in 1% iron alum was followed by a 10 min wash in 4 changes of distilled water. For brazilin-toluidne blue O, myelin was stained for 20-60 min, depending upon section thickness, in a self-differentiating solution consisting of: 0.15% Li2CO3 75 ml; 6% brazilin in 95% ethanol, 25 ml; and NaIO3 75 mg. After a thorough washing, Nissl material was stained for 3-8 min in a solution consisting of: 0.1 M acetic acid, 90 ml; 0.1 M sodium acetate, 10 ml; and 1% toluidine blue 0, 2.5 ml. For hematoxylin-Darrow red, myelin was stained for 2-6 hr in a self-differentiating solution consisting of: 0.15% Li2,CO3 95 ml; 10% hematoxylin in 95% ethanol, 5 ml; and NaIO3 25 mg. After a thorough washing, Nissl material was stained for 20 min or less in a solution consisting of: 0.1 M acetic acid, 90 ml; 0.1 M sodium acetate, 10 ml; Darrow red, 25 mg. This mixture was first boiled, cooled to room temperature and filtered. In both methods, washing, dehydration, clearing, and mounting completed the process. In the brazilin-toluidine blue technic, myelin sheaths were stained reddish purple; neuronal nuclei light blue with dark granules of chromatin; nucleoli dark blue; and cytoplasm blue with dark blue Nissl granules. In the hematoxylin-Darrow red procedure, myelin sheaths were blue-black; nuclei light red with dark granules of chromatin; nucleoli almost black; and cytoplasm red with bright red Nissl granules.  相似文献   

20.
Merino sheep were given continuous intravenous infusions of L-mimosine for periods of 1 1/2, 2 or 21 days; efficacy as a defleecing procedure and effects on subsequent wool growth were measured. In addition, the amino acids tyrosine, phenylalanine and cystine were investigates as antagonists to the effects of mimosine. Infusions for 1 1/2 or 2 days at the daily rate of 80-120 mg/kg caused a cessation of wool growth by 1 1/2-2 days from the start of infusion, and all sheep were subsequently defleeced. It was estimated that, on average, fibre growth stopped for 10 1/2-13 days in four sheep after a 2-day infusion, and for 5 1/2 and 9 1/2 days in two sheep after an infusion for 1 1/2 days. There was considerable variation in the time taken for new fibres to recommence growth. During the period 3-5 weeks after infusion of mimosine, length growth rate was consistently greater than the pretreatment rate. Likewise, fibre diameter was greater in three out of the four sheep. As a result, the volume growth rate of fibres was greater post-treatment than it was pretreatment. Infusion for 3 weeks at the daily rate of 21-24 mg/kg did not stop wool growth. However, both length growth rate and fibre diameter were considerably depressed, and after 12 days' infusion, fibre diameter and volume growth rate were reduced to less than half the pretreatment values, and wool fibres were very weak. After the mimosine infusion stopped, fibre diameter increased to above pretreatment values and remained ther for the period of 2-3 weeks studied. The concurrent infusion of tyrosine, phenylalanine or cystine with mimosine failed to prevent any of the effects of mimosine on wool growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号