首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The absolute activities of ADPG(UDPG)-pyrophosphorylase, starch phosphorylase, ADPG(UDPG)-starch synthetase, NDP-kinase and inorganic pyrophosphatase have been studied in high lysine mutant barley Notch-2 and its parent NP 113 grains during development. In general, mutant Notch-2 grains had higher average activities of UDPG-pyrophosphorylase and starch phosphorylase and lower activity of ADPG(UDPG)-starch synthetase per grain than the parent NP 113 during grain development. Activities of NDP-kinase, ADPG-pyrophosphorylase and inorganic pyrophosphatase differed only to a small extent between the mutant Notch-2 and NP 113. It is suggested that the lower activity of ADPG(UDPG)-starch synthetase might be responsible for the reduced accumulation of starch in the mutant Notch-2 grain as compared with parent NP 113 during development.  相似文献   

2.
Dry weight, protein, total free amino acids, levels of nitrogen assimilation, enzymes GDH, GOT and glutamate synthase, hydrolytic enzymes protease and amylase, peroxidase and nitrate reductase have been studied in high lysine barley mutant Notch-2 and its parents, NP 113 grains, during development. Dry weight and protein per grain was higher in NP 113 throughout development. The decrease in protein in Notch-2 mutant is neither due to limitation of amino acids nor to any of the key nitrogen assimilating enzymes as evident from the higher level of free amino acids, nitrate reductase and comparable levels of GDH, GOT and glutamate synthase in it as compared to its parent NP 113. During later stages of development, protease level between NP 113 and Notch-2 was nearly the same. Notch-2 had a lower level of amylase activity per grain. Peroxidase activity was higher in Notch-2 than NP 113 at and after the 17 day stage.  相似文献   

3.
Electron microscopy studies of developing endosperm have shown differences in the synthesis and development of starch granules between high lysine mutant Notch-2 and parent NP 113. The starch granules in Notch-2 were modified and did not develop into characteristic oval granules. Based on iodine absorption and phospholipids analysis, it is suggested that the presence of phospholipids impairs the development of starch granule in Notch-2. This is further confirmed by higher lipid density across starch granule in mutant Notch-2, and its absence in NP 113. Amylopectin from mutant differs from that of NP 113. The results indicate that the lack of geometry and smaller size of starch granules in Notch-2 is ultimately due to specific interaction of lipids with developing starch granules, and this leads to decreased yield.  相似文献   

4.
5.
Enzymes of carbohydrate metabolism in the developing rice grain   总被引:14,自引:5,他引:9       下载免费PDF全文
The levels of reducing and nonreducing sugars, starch, soluble protein, and selected enzymes involved in the metabolism of sucrose, glucose-1-P, and glucose nucleotides were assayed in dehulled developing rice grains (Oryza sativa L. line IR1541-76-3) during the first 3 weeks after flowering. The level of reducing sugars in the grain was highest 5 to 6 days after flowering. The level of nonreducing sugars and the rate of starch accumulation were maximum 11 to 12 days after flowering, when the level of soluble protein was also the highest. The activities of bound and free invertase, sucrose-UDP and sucrose-ADP glucosyltransferases, hexokinase, phosphoglucomutase, nucleoside diphosphokinase, and UDP-glucose and ADP-glucose pyrophosphorylases were high throughout starch deposition, and were maximum, except for nucleoside diphosphokinase which did not increase in activity, between 8 and 18 days after flowering. Soluble primed phosphorylase and ADP glucose-α-glucosyltransferase (starch synthetase) were both present during starch accumulation. Phosphorylase activity was at least 2-fold that of soluble starch synthetase but the synthetase followed more closely the rate of starch accumulation in the grain. The activity of starch synthetase bound to the starch granule also increased progressively with increased starch content of the grain.  相似文献   

6.
1. Lactogenesis was initiated in pregnant rats by ovariectomy, thereby causing progesterone withdrawal, after which the mammary tissue was analysed for contents of enzymes and metabolites concerned with the biosynthesis of lactose. 2. Lactose synthesis increased about 126-fold with little or no accompanying change in the contents of most metabolic intermediates or in the adenine nucleotide energy charge. 3. Comparison of mass-action ratios with equilibrium constants showed that phosphoglucomutase (EC 2.7.5.1), UDP-glucose pyrophosphorylase (EC 2.7.7.9) and UDP-glucose epimerase (EC 5.1.3.2.) catalysed reactions close to equilibrium. Nucleoside diphosphokinase (EC 2.7.4.6.) activity was very high and probably equilibrates the UTP-UDP and ATP-ADP couples. Lactose synthetase and hexokinase (EC 2.7.1.1) appeared to catalyse rate-limiting reactions. 4. Large increases were seen of UDP-glucose pyrophosphorylase (5-fold), lactose synthetase A protein (3.8-fold) and alpha-lactalbumin (28-fold), but not of hexokinase, phosphoglucomutase, UDP-glucose epimerase, nucleoside diphosphokinase or glucose 6-phosphate dehydrogenase (EC 1.1.1.49) activities. 5. It appeared that the increased lactose synthesis was largely accounted for by the increased lactose synthetase A protein activity and alpha-lactalbumin.  相似文献   

7.
Photosynthesis and translocation rates were studied in high lysine barley mutant Notch-2 and its parent NP 113. Photosynthesis rates were higher in the  相似文献   

8.
Enzymes associated with sucrose metabolism in root, stem, leaf and grain of Sorghum vulgare Pers. (cv. JS 263) were studied at the ripening stage. Sucrose phosphate synthetase was dominating in the leaf and sucrose synthetase in the grain. Invertases were more active in leaf, root and stem tissues than in grains. The maximum activities of ADPG pyrophosphorylase and UDPG pyrophosphorylase were found in grains and leaves, respectively. Sucrose synthetase from grains catalyses both synthesis and cleavage of sucrose but the two activities differed in their responses to the effect of temperature, pH and type of buffer. The Km values of the enzyme for UDPG, ADPG, GDPG, TDPG and CDPG were 8.5, 5.3, 16.8 2.2 and 10.7 mM, and for UDP and ADP they were 17.2 and 55.0 mM respectively.  相似文献   

9.
The mechanism of the sucrose synthetase reaction has been probed by the technique of positional isotope exchange. [beta-18O2, alpha beta-18O]UDP-Glc has been synthesized starting from oxygen-18-labeled phosphate and the combined activities of carbamate kinase, hexokinase, phosphoglucomutase, and uridine diphosphoglucose pyrophosphorylase. The oxygen-18 at the alpha beta-bridge position of the labeled UDP-Glc has been shown to cause a 0.014 ppm upfield chemical shift in the 31P NMR spectrum of both the alpha- and beta-phosphorus atoms in UDP-Glc relative to the unlabeled compound. The chemical shift induced by each of the beta-nonbridge oxygen-18 atoms was 0.030 ppm. Incubation of [beta-18O2, alpha beta-18O]UDP-Glc with sucrose synthetase in the presence and absence of 2,5-anhydromannitol did not result in any significant exchange of an oxygen-18 from the beta-nonbridge position to the anomeric oxygen of the glucose moiety. It can thus be concluded that either sucrose synthetase does not catalyze the cleavage of the scissile carbon-oxygen bond of UDP-Glc in the absence of fructose or, alternatively, the beta-phosphoryl group of the newly formed UDP is rotationally immobilized.  相似文献   

10.
Uniformly labeled uridine diphosphoglucose (UDP(U-13C)G) was prepared by a two-step enzymatic synthesis. (U-13C) G-6-P was prepared quantitatively by incubating (U-13C) glucose, ATP, MgS04, and hexokinase. UDP(U-13C) Glucose was prepared by incubation of (U-13C)G-6-P with UDPG pyrophosphorylase, phosphoglucomutase, inorganic pyrophosphatase, UTP, and glucose-1, 6-diphosphate in pH 7.5, 100 mM Tris-HCl buffer. After purification over Biogel P-2 and subsequent preparative HPLC, UDP (U-13C)G was obtained in 50% yield. UDP(U-13C)G was characterized by 13C NMR and FAB-MS.  相似文献   

11.
1. Carbomoyl-phosphate synthetase in Schistosoma mansoni utilizes L-glutamine as well as ammonia as nitrogen donor but does not require N-acetyl-L-glutamate for the activity. 2. The enzyme activity was inhibited by UDP, UTP, ADP and AMP, among which UDP was the most effective. 3. Aspartate carbamoyltransferase and dihydroorotase were also found and copurified with the synthetase. 4. Relative activities among these three enzymes were 1:30-60:3-8 throughout the purification. 5. These results suggest that the synthetase plays a key role in the control of pyrimidine biosynthesis de novo.  相似文献   

12.
Studies on the nutritional requirements for optimal exopolysaccharide (EPS) production by Sphingomonas paucimobilis-GS1, in a synthetic medium revealed sucrose (40 g/L) and glutamate (0.5 g/L) or KNO3 (1 g/L) to be the most suitable carbon and nitrogen sources, respectively. Ammonium salts were unfavorable to EPS accumulation, and inorganic phosphate above 10 mM affected the polymer quality. Specific activities of the EPS precursor-forming enzymes, UDP glucose pyrophosphorylase (UDPGPP) and phosphoglucomutase (PGluM), were four to five times lower, whereas that of UDPglucose dehydrogenase (UDPGDH) was 15–20 times lower under media conditions not favoring EPS production than under conditions favoring EPS accumulation. The activity of hexokinase (HK), however, remained constant. Considerably lower specific activities of PGluM and UDPGPP were also detected in some of the non-mucoid mutants.  相似文献   

13.
Uniformly labeled uridine diphosphoglucose (UDP(U-13C)G) was prepared by a two-step enzymatic synthesis. (U-13C) G-6-P was prepared quantitatively by incubating (U-13C) glucose, ATP, MgS04, and hexokinase. UDP(U-13C) Glucose was prepared by incubation of (U-13C)G-6-P with UDPG pyrophosphorylase, phosphoglucomutase, inorganic pyrophosphatase, UTP, and glucose-1, 6-diphosphate in pH 7.5, 100 mM Tris-HCl buffer. After purification over Biogel P-2 and subsequent preparative HPLC, UDP (U-13C)G was obtained in 50% yield. UDP(U-13C)G was characterized by 13C NMR and FAB-MS.  相似文献   

14.
Essential differences are established between the activities in enzymes of monophosphohexoses' transformation in the Zajdela hepatoma and liver of tumour-bearing rats. So, a very low hexokinase activity is observed in the liver, the activity of phosphoglucomutase and glucose-6-phosphate being high. In hepatoma cells the activity of hexokinase is relatively high and that of phosphoglucomutase, glucose-6-phosphate phosphatase and dehydrogenases--glucose-6-phosphate and 6-phosphogluconate inhibiting the activity of phosphoglucomutase is considerably lower. Significant differences are also found in the ratios of the glucose, glucose-6-phosphate, fructose and fructose-6-phosphate concentrations, that evidences for changes in the regulatory mechanisms in the hepatoma cells.  相似文献   

15.
Two pools of hexokinase activities differing in sensitivity to ADP inhibition were characterised in maize roots. In order to evaluate how glucose utilisation could be affected by these hexokinases, glucose-6-P and NDP-5'-sugar levels were measured after a D-[U-14C]glucose pulse in root extracts in the presence of 0 or 1 mM ADP. Analysis of radio-labelled activated sugars by paper chromatography revealed that: (1) without ADP, nearly 20% of the 14C appeared in NDP-5'-sugars; (2) 0.1 mM ADP inhibited 14C-NDP-5'-sugar formation by 85%; and (3) with 1 mM ADP, 14C-NDP-5'-sugars were undetectable, but substantial (14%) 14C accumulated as glucose-6-P. Mannoheptulose, a hexokinase inhibitor, blocked the NDP-5'-sugar formation, but did not modify the amount of 14C-glucose-6-P in root extracts either with or without ADP. The analysis of the hexokinase activities with 0.8 mM glucose in maize root extracts showed that: (1) mitochondrial hexokinase activity was totally inhibited by 30 mM mannoheptulose; and (2) the cytosolic hexokinase was inhibited by only 30%. These data suggest that NDP-5'-sugar synthesis is sensitive to ADP fluctuations and that mannoheptulose affects preferentially the mitochondrial-bound hexokinase, but the cytosolic form is less sensitive. We propose that the mitochondrial hexokinase is the main energy charge sensor in this pathway in maize.  相似文献   

16.
17.
Enzymes of carbohydrate metabolism in developing Hordeum distichum grain   总被引:1,自引:0,他引:1  
Variations in activity of several enzymes associated with carbohydrate metabolism were recorded during the development of barley endosperm. The enzymes investigated were: sucrose-UDP (ADP) glucosyl transferase; invertase; UDPG (ADPG) pyrophosphorylase; hexokinase; glucose-6-phosphate ketoisomerase; phosphoglucomutase, and nucleosidediphosphokinase.  相似文献   

18.
J.S. Tsay  W.L. Kuo  C.G. Kuo 《Phytochemistry》1983,22(7):1573-1576
The levels of free sugars, starch and enzymes involved in starch metabolism—sucrose synthetase, UDP and ADP glucose pyrophosphorylase, phosphorylase and starch synthetase—were assayed during seed development of three cultivars of mung bean (Vigna radiata). Free sugars and starch increased with increasing seed weight. Changes in levels of sucrose synthetase, UDP- and ADP-glucose pyrophosphorylases, and phosphorylase were paralleled by changes in starch accumulation. After the maximum activity levels of these enzymes had been reached, maximum activities of soluble starch synthetase and starch granule-bound starch synthetase occurred. There were high activities of sucrose synthetase and phosphorylase at maximum rates of starch accumulation. Thus, starch could be synthesized via the ADP glucose pathway in mung bean seeds. However, phosphorylase may account for the starch accumulation in the early stages of mung bean seed development.  相似文献   

19.
Infection of Escherichia coli with phage T4 induces a large increase in ribonucleotide reductase activity. We show that hydroxyurea inhibits T4-induced CDP, ADP, UDP, and GDP reductase activities in vitro. Moreover, there are significant differences in the degree of inhibition of each ribonucleotide reductase activity. The reductase activities for CDP and ADP are more sensitive to hydroxyurea than those for UDP and GDP, particularly at high hydroxyurea molarities. As little as 5 x 10(-4)M hydroxyurea lowers CDP and ADP reductase activities to 25 to 30% whereas as much as 0.5 M hydroxyurea is needed to lower UDP and GDP reductase activities to 50%.  相似文献   

20.
Gibberellic acid (GA) stimulated both the elongation of Avena sativa stem segments and increased synthesis of cell wall material. The effects of GA on glucose metabolism, as related to cell wall synthesis, have been investigated in order to find specific events regulated by GA. GA caused a decline in the levels of glucose, glucose 6-phosphate, and fructose 6-phosphate if exogenous sugar was not supplied to the segments, whereas the hormone caused no change in the levels of glucose 6-phosphate, fructose 6-phosphate, UDP-glucose, or the adenylate energy charge if the segments were incubated in 0.1 m glucose. No GA-induced change could be demonstrated in the activities of hexokinase, phosphoglucomutase, UDP-glucose pyrophosphorylase, or polysaccharide synthetases using UDP-glucose, UDP-galactose, UDP-xylose, and UDP-arabinose as substrates. GA stimulated the activity of GDP-glucose-dependent β-glucan synthetase by 2- to 4-fold over the control. When glucan synthetase was assayed using UDP-glucose as substrate, only β-1,3-linked glucan was synthesized in vitro, whereas with GDP-glucose, only β-1,4-linked glucan was synthesized. These results suggest that one part of the mechanism by which GA stimulates cell wall synthesis concurrently with elongation in Avena stem segments may be through a stimulation of cell wall polysaccharide synthetase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号