首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nonvolatile residue (NVR), a waste stream from the manufacture of nylon 6′6′, contains mainly small carboxylic acids and alcohols, making it a potential fermentation substrate. Above a concentration of 1.3% (wt/vol), NVR inhibited the growth of all microorganisms tested. The most inhibitory of the major NVR components were the monocarboxylic acids (C4 to C6) and ε-caprolactone. The inhibitory effects of NVR could be avoided by using a carbon-limited chemostat. Microorganisms were found that could use all of the major NVR components as carbon and energy sources. One such organism, Pseudomonas cepacia, was grown in a carbon-limited chemostat with a medium feed concentration of 20.5 g of NVR liter−1. At a dilution rate of 0.14 h−1 the yield of biomass (Yx/s, where x is biomass produced and s is substrate used) from NVR was 18% (neglecting the water content of NVR). It was concluded that NVR would be a suitable carbon source for certain industrial fermentation processes such as the production of poly-β-hydroxybutyric acid.  相似文献   

2.
Seasonal changes in utilization of one-year regrowth of chaparral vegetation by Spanish goats were investigated. The dominant shrub species were: oak (Quercus dumosa and Q. wislizenii), chamise (Adenostoma fasciculatum), manzanita (Arctostaphylos glandulosa) and ceanothus (Ceanothus cuneatus, and C. foliosus). Oesophageal and faecal samples were obtained during the spring, summer and autumn seasons of 1979. Mean daily temperatures for the three seasons were 19, 18 and 12° C, respectively. Winter sampling was restricted by cold weather at the 985-m elevation site. Cover was measured from ten permanent transects. Preference of Spanish goats was highly directed towards oak (> 50%) and chamise (> 30%) in all seasons.Correlation of selectivity (percentage botanical composition in the diet) and availability data indicated that goats may be generalist in their feeding strategies, but display some sort of specialized behaviour in selecting between the most dominant species. The observation that selection of herbaceous vegetation was restricted by availability conforms with the recent classification of goats as adaptive mixed feeders rather than browsers.Daily feed intake (g DM/kg BW0.75) was calculated by dividing faecal residue by (100—digestibility in vitro). Intake values were equivalent to maintenance requirements during spring (60 g) and summer (57 g). However, autumn chaparral provided sub-maintenance intake levels (36 g). Condensed tannins (ADF—NAD), estimated as the difference between acid detergent fibre (ADF) and sequential acid detergent residue of neutral detergent residue (NAD), were variable in the clipped shrub samples but low in all dietary samples (2.1 ± 1.8%). The low levels of tannins did not appear to be affecting utilization of this browse.Predictive equations for intake (DMI) and digestibility in vitro (IVOMD) were derived from step-wise regression analysis using the following independent variables: cell wall content (CWC), NAD, cellulose (NADC), NAD sulphuric acid insoluble lignin (NADLs), hemicellulose (NADHC), lignin: ADF—NAD tannins, ash and nitrogen (N) The equation for intake was: DMI (g DM/kg BW0.75) = ?25.67 + 1.80 OMD (n = 56, Syx = 17.72, r = 0.59, P < 0.005), while digestibility (%) was predicted as OMD = 56.98 ? 0.46 CWC ? 0.45 NADLs + 0.65 N + 0.09 DMI (n = 56, Syx = 2.77, r = 0.88, P < 0.005).It is concluded that recently-burnt chaparral vegetation would provide a maintenance browse for Spanish goats during the spring and summer seasons only.  相似文献   

3.
A statistical analysis was made of the structures of 95 proteins of known sequence belonging to 13 families of erystallographically known conformations, with the object of predicting helices, loops and β-structures. The short-range interactions of the polypeptide chains were assumed to be due to amino acid residue pairs separated by m residues (m = 0, 1, 2, … 6). Four prediction functions (helix, loop, random coil and β-structure) were estimated by a linear combination of statistical quantities of different m values, modified from those which have been used for the x2-test, as a measure of the statistical constraint. The coefficients used in the combination were determined to make the number of correct assignments as large as possible. The coefficients (cm1 values) for helix prediction showed that the contribution of residue pairs separated by one residue is the most important. This seems contradictory to the accepted idea that residue pairs separated by two or three residues are most important. The coefficients (cm2 values) for loop prediction suggest that the long-range interactions (m ≥ 7) are as important as the short-range interactions (m ≤ 6), because the coefficients do not decrease as m increases.The proportion of residues correctly predicted as helical was 85.3% (58.8% for an alternative definition as an index of error, %cor. ass. 2), while the proportion of correct assignments of loops was 64.4% (%cor. ass. 2). Predictions of β-structures were made with 90.1% of the residues correct (52.3% for %corr. ass. 2), on the basis of a different set of statistical data. Initiation sites for β-structures can be inferred to be regions rich in Ile, Val, Leu and Phe. Predictions were also made for both the light and heavy chains of human EU myeloma immunoglobulin G1.  相似文献   

4.

Background and purpose

Rapid increases in atmospheric carbon dioxide concentration ([CO2]) may increase crop residue production and carbon: nitrogen (C:N) ratio. Whether the incorporation of residues produced under elevated [CO2] will limit soil N availability and fertilizer N recovery in the plant is unknown. This study investigated the interaction between crop residue incorporation and elevated [CO2] on the growth, grain yield and the recovery of 15N-labeled fertilizer by wheat (Triticum aestivum L. cv. Yitpi) under controlled environmental conditions.

Methods

Residue for ambient and elevated [CO2] treatments, obtained from wheat grown previously under ambient and elevated [CO2], respectively, was incorporated into two soils (from a cereal-legume rotation and a cereal-fallow rotation) 1 month before the sowing of wheat. At the early vegetative stage 15N-labeled granular urea (10.22 atom%) was applied at 50 kg?N ha?1 and the wheat grown to maturity.

Results

When residue was not incorporated into the soil, elevated [CO2] increased wheat shoot (16 %) and root biomass (41 %), grain yield (19 %), total N uptake (4 %) and grain N removal (8 %). However, the positive [CO2] fertilization effect on these parameters was absent in the soil amended with residue. In the absence of residue, elevated [CO2] increased fertilizer N recovery in the plant (7 %), but when residue was incorporated elevated [CO2] decreased fertilizer N recovery.

Conclusions

A higher fertilizer application rate will be required under future elevated [CO2] atmospheres to replenish the extra N removed in grains from cropping systems if no residue is incorporated, or to facilitate the [CO2] fertilization effect on grain yield by overcoming N immobilization resulting from residue amendment.  相似文献   

5.
Genes dhaF and dhaG encoding the α and β subunits of glycerol dehydratase reactivation factor (GDHtR) were amplified from the genomic DNA of Klebsiella pneumoniae XJPD-Li. The identity of the deduced amino acid sequence of the β subunit was relatively low compared with that of K. pneumoniae (U30903), where the 96th amino acid residue was found to be the more active amino acid histidine instead of glutamine in K. pneumoniae (U30903). A specific GDHtR activity of approximately 30 U/mg was attained in Escherichia coli BL21 (pET-28a (+)-dhaFG). His6-tagged GDHtR was purified by Ni-nitrilotriacetate chromatography, and the enzyme was purified 2.6-fold in a yield of 20.7%. The study showed that both glycerol and O2-inactivated glycerol dehydratase (GDHt) could be quickly reactivated by GDHtR in the presence of ATP, Mg2+ and coenzyme B12. However, the glycerol-inactivated GDHt was more easily reactivated than O2-inactivated GDHt. In the first 10 min of the reactivation reaction, the average reactivation rate was 0.18 and 0.12 μmol/min for glycerol and O2-inactivated GDHt, respectively.  相似文献   

6.
α-Glucuronidase A from Aspergillus tubingensis was found to be capable of liberating 4-O-methyl-D-glucuronic acid (MeGlcA) only from those beechwood glucuronoxylan fragments in which the acid is attached to the non-reducing terminal xylopyranosyl residue. Reduced aldotetrauronic acid, 4-O-methyl-D-glucuronosyl-α-1,2-D-xylopyranosyl-β-1,4-xylopyranosyl-β-1,4-xylitol, was found to be a suitable substrate to follow the stereochemical course of the hydrolytic reaction catalyzed by the purified enzyme. The configuration of the liberated MeGlcA was followed in a D2O reaction mixture by 1H-NMR spectroscopy. It was unambiguously established that MeGlcA was released from the substrate as its β-anomer from which the α-anomer was formed on mutarotation. This result represents the first experimental evidence for the inverting character of a microbial α-glucuronidase, a member of glycosyl hydrolase family 67 (EC 3.1.1.139).  相似文献   

7.
Here we describe the isolation of a novel C-terminally amidated octadecapeptide—SVIGCWTKSIPPRPCFVK-amide—that contains a disulphide loop between Cys5 and Cys15 that is consistent with a Bowman-Birk type protease inhibitor, from the skin secretion of the Chinese Bamboo odorous frog, Huia versabilis. Named HV-BBI, the peptide is encoded by a single precursor of 62 amino acid residues whose primary structure was deduced from cloned skin cDNA. The precursor exhibits the typical organization of that encoding an amphibian skin peptide with a highly-conserved signal peptide, an intervening acidic amino acid residue-rich domain and a single HV-BBI-encoding domain located towards the C-terminus. A synthetic replicate of HV-BBI, with the wild-type K (Lys-8) residue in the presumed P1 position, was found to be a potent inhibitor of trypsin with a Ki just slightly less than 19 nM. Substitution at this site with R (Arg) resulted in a significant reduction in potency (Ki 57 nM), whereas replacement of K with F (Phe) resulted in the complete abolition of trypsin inhibitory activity. Thus, HV-BBI is a potent inhibitor of trypsin and the lysyl (K) residue that occupies the P1 position appears to be optimal for potency of action against this protease.  相似文献   

8.
Aspartate-β-semialdehyde dehydrogenase (ASADH) from Escherichia coli is inhibited by l- and d-cystine, and by other cystine derivatives. Enzyme inhibition is quantitatively reversed by addition of dithiothreitol (DTT), dithioerythrytol, β-mercaptoethanol, di-mercaptopropanol or glutathione to the cystine-inactivated enzyme. Cystine labeling of the enzyme is a pH dependent process and is optimal at pH values ranging from 7.0 to 7.5. Both the cysteine incorporation profile and the inactivation curve of the enzyme as a function of pH suggest that a group(s) with pKa of 8.5 could be involved in cystine binding. Stoichiometry of the inactivation reaction indicates that one cysteine residue from the enzyme subunit is reactive against cystine, as found by direct incorporation of radioactive cystine into the enzyme and by free-thiol titration of the enzyme with 5,5′-dithiobis-2-nitrobenzoic acid (DTNB) before and after the cystine treatment. One mole of cysteine is released from each mol of cystine after reaction with the enzyme. ASA, NADP and NADPH did not prevent cystine inhibition. The [35S]cysteine-labelled enzyme can be visualized after electrophoresis in polyacrylamide gels and further detection by autoradiography. After pepsin treatment of the [35S]cysteine-inactivated enzyme, a main radioactive peptide was isolated by HPLC. The amino acid sequence of this peptide was determined as FVGGN(Cys)2TVSL, thus demonstrating that the essential 135Cys is the amino acid residue modified by the treatment with cystine.  相似文献   

9.
The recombinant l-haloacid dehalogenase from the marine bacterium Psychromonas ingrahamii has been cloned and over-expressed in Escherichia coli. It shows activity towards monobromoacetic (100 %), monochloroacetic acid (62 %), S-chloropropionic acid (42 %), S-bromopropionic acid (31 %), dichloroacetic acid (28 %) and 2-chlorobutyric acid (10 %), respectively. The l-haloacid dehalogenase has highest activity towards substrates with shorter carbon chain lengths (≤C3), without preference towards a chlorine or bromine at the α-carbon position. Despite being isolated from a psychrophilic bacterium, the enzyme has mesophilic properties with an optimal temperature for activity of 45 °C. It retains above 70 % of its activity after being incubated at 65 °C for 90 min before being assayed at 25 °C. The enzyme is relatively stable in organic solvents as demonstrated by activity and thermal shift analysis. The V max and K m were calculated to be 0.6 μM min?1 mg?1 and 1.36 mM with monobromoacetic acid, respectively. This solvent-resistant and stable l-haloacid dehalogenase from P. ingrahamii has potential to be used as a biocatalyst in industrial processes.  相似文献   

10.
Purified HeLa cell tRNA methylases have been used for site-specific methylations of Escherichia coli formylmethionine transfer ribonucleic acid (tRNAfMet). Guanine-N2-methylase catalyzed the methylation of a specific guanine residue (G27) and adenine-1-methylase that of a specific adenine residue (A59). The combined action of both of these enzymes leads to a total incorporation of two methyl groups and results in the methylation of both G27 and A59.The effect of introducing additional methyl groups on the function of tRNA has been studied by a comparison in vitro of the biological properties of tRNAfMet and enzymically methylated tRNAfMet. It was found that none of the following properties of E. coli tRNAfMet are altered to any significant extent by methylation: (a) rate, extent, and specificity of aminoacylation, (b) ability of methionyl-tRNA to be enzymically formylated, and (c) ability of formylmethionyl-tRNA to initiate protein synthesis in cell-free extracts of E. coli in the presence of f2 RNA as messenger. Also, the temperature versus absorbance profile of the doubly methylated tRNAfmet was virtually identical to that of the E. coli tRNAfMet, and enzymically methylated tRNAfmet resembled tRNAfMet in that both were resistant to deacylation by E. coli, N-acylaminoacyl-tRNA hydrolase.  相似文献   

11.
Pheophytinization of chlorophyll (Chl) c1, which was isolated from the diatom Chaetoceros gracilis, was kinetically analyzed under weakly acidic conditions, and was compared with that of protochlorophyllide (PChlide) a and chlorophyllide (Chlide) a. Chl c1 possessing a trans-acrylic acid residue at the 17-position exhibited slower pheophytinization kinetics than PChlide a and Chlide a, both of which possessed a propionic acid residue at the same position. The difference in pheophytinization properties between Chl c1 and (P)Chlide a was ascribable to the electronegativity of the 17-substituent in Chl c1 larger than that of (P)Chlide a due to the C171–C172 double bond with the conjugated 172-carboxy group in Chl c1. Demetalation kinetics of PChlide a was slower than that of Chlide a, which originated from the effect of the π-macrocyclic structures.  相似文献   

12.
The effectiveness of eight thiol ligands for removing methylmercury (CH3Hg(II)) from its glutathione and hemoglobin complexes in hemolyzed erythrocytes has been studied by 1H nuclear magnetic resonance spectroscopy. These complexes are the predominant methylmercury species in human erythrocytes. The effectiveness was determined from the exchange-averaged chemical shift of the resonance for the proton on the α-carbon of the cysteinyl residue and from the intensity of the resonance for the methylene protons of the glycine residue of reduced glutathione (GSH), both of which provide a measure of the amount of glutathione in the CH3Hg(II)-complexed form. The thiol ligands were found to release GSH from its CH3Hg(II) complex in the order 2, 3-dimercap-tosuccinic acid > mercaptosuccinic acid > cysteine > mercaptoacetic acid > D-penicillamine > 2, 3-dimercaptopropanesulfonic acid > N-acetyl-D,L-penicillamine > D.L-homocysteine.  相似文献   

13.
Ten minutes after uptake of 2,4-dichlorophenoxyacetic acid-1-14C(2,4-D-1-14C) by excised Ribes sativum leaves, 37·8 % of the radioactivity in water-soluble metabolites was in glyoxylic acid. When 2,4-D- 2-14C was supplied under the same conditions, 23·0 % of the radioactivity of the water-soluble rnetabolites was in glyoxylic acid. Radioactive glycine and glyoxylic acid, isolated from Ribes sativum 6 hr after uptake of 2,4-D-1-14C, contained essentially all of the 14C in the carboxyl-carbon atoms. When 2,4-D-2-14C was the precursor, the glycine isolated contained 64·8 % of its radioactivity in C2, while 60·0 % of the radioactivity in glyoxylic acid was in C2. The side-chain label of 2,4-D-2-14C-4-36Cl was more efficiently incorporated into ethanol-insoluble plant residue than the ring-label. The metabolism of glyoxylic acid-1-14C and 2,4-D-1-14C in excised Ribes sativum leaves were compared. The data suggest a cleavage of the acetate-moiety of 2,4-D resulting in a C2 compound, perhaps glyoxylate.  相似文献   

14.
2,6-Dichlorobenzamide (BAM), a persistent metabolite from the herbicide 2,6-dichlorobenzonitrile (dichlobenil), is the pesticide residue most frequently detected in Danish groundwater. A BAM-mineralizing bacterial community was enriched from dichlobenil-treated soil sampled from the courtyard of a former plant nursery. A BAM-mineralizing bacterium (designated strain MSH1) was cultivated and identified by 16S rRNA gene sequencing and fatty acid analysis as being closely related to members of the genus Aminobacter, including the only cultured BAM degrader, Aminobacter sp. strain ASI1. Strain MSH1 mineralized 15 to 64% of the added [ring-U-14C]BAM to 14CO2 with BAM at initial concentrations in the range of 7.9 nM to 263.1 μM provided as the sole carbon, nitrogen, and energy source. A quantitative enzyme-linked immunoassay analysis with antibodies against BAM revealed residue concentrations of 0.35 to 18.05 nM BAM following incubation for 10 days, corresponding to a BAM depletion of 95.6 to 99.9%. In contrast to the Aminobacter sp. strain ASI1, strain MSH1 also mineralized the herbicide itself along with several metabolites, including ortho-chlorobenzonitrile, ortho-chlorobenzoic acid, and benzonitrile, making it the first known dichlobenil-mineralizing bacterium. Aminobacter type strains not previously exposed to dichlobenil or BAM were capable of degrading nonchlorinated structural analogs. Combined, these results suggest that closely related Aminobacter strains may have a selective advantage in BAM-contaminated environments, since they are able to use this metabolite or structurally related compounds as a carbon and nitrogen source.  相似文献   

15.
Hamster liver glutathione peroxidase was purified to homogeneity in three chromatographic steps and with 30% yield. The purified enzyme had a specific activity of approximately 500 μmol cumene hydroperoxide reduced/min/mg of protein at 37 °C, pH 7.6, and 0.25 mm GSH. The enzyme was shown to be a tetramer of indistinguishable subunits, the molecular weight of which was approximately 23,000 as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A single isoelectric point of 5.0 was attributed to the active enzyme. Amino acid analysis determined that selenocysteine, identified as its carboxymethyl derivative, was the only form of selenium. One residue of cysteine was found to be present in each glutathione peroxidase subunit. The presence of tryptophan was colorimetrically determined. Pseudo-first-order kinetics of inactivation of the enzyme by iodoacetate was observed at neutral pH with GSH as the only reducing agent. An optimal pH of 8.0 at 37 °C and an activation energy of 3 kcal/mol at pH 7.6 were found. A ter-uni-ping-pong mechanism was shown by the use of an integrated-rate equation. At pH 7.6, the apparent second-order rate constants for reaction of glutathione peroxidase with hydroperoxides were as follows: k1 (t-butyl hydroperoxide), 7.06 × 105 mm min?1; k1 (cumene hydroperoxide), 1.04 × 106 mm?1 min?1; k1 (p-menthane hydroperoxide), 1.2 × 106 mm?1 min?1; k1 (diisopropylbenzene hydroperoxide), 1.7 × 106 mm?1 min?1; k1 (linoleic acid hydroperoxide), 2.36 × 106 mm?1 min?1; k1 (ethyl hydroperoxide), 2.5 × 106 mm?1 min?1; and k1 (hydrogen peroxide), 2.98 × 106 mm?1 min?1. It is concluded that for bulky hydroperoxides, the more hydrophobic the substrate, the faster its reduction by glutathione peroxidase.  相似文献   

16.
The structure and composition of the cutin monomers from the flower petals of Vicia faba were determined by hydrogenolysis (LiAlH4) or deuterolysis (LiAlD4) followed by thin layer chromatography and combined gas-liquid chromatography and mass spectrometry. The major components were 10, 16-dihydroxyhexadecanoic acid (79.8%), 9, 16-dihydroxyhexadecanoic acid (4.2%), 16-hydroxyhexadecanoic acid (4.2%), 18-hydroxyoctadecanoic acid (1.6%), and hexadecanoic acid (2.4%). These results show that flower petal cutin is very similar to leaf cutin of V. faba. Developing petals readily incorporated exogenous [1-14C]palmitic acid into cutin. Direct conversion of the exogeneous acid into 16-hydroxyhexadecanoic acid, 10, 16-dihydroxy-, and 9, 16-dihydroxyhexadecanoic acid was demonstrated by radio gas-liquid chromatography of their chemical degradation products. About 1% of the exogenous [1-14C]palmitic acid was incorporated into C27, C29, and C31n-alkanes, which were identified by combined gas-liquid chromatography and mass spectrometry as the major components of the hydrocarbons of V. faba flowers. The radioactivity distribution among these three alkanes (C27, 15%; C29, 48%; C31, 38%) was similar to the per cent composition of the alkanes (C27, 12%; C29, 43%; C31, 44%). [1-14C]Stearic acid was also incorporated into C27, C29, and C31n-alkanes in good yield (3%). Trichloroacetate, which has been postulated to be an inhibitor of fatty acid elongation, inhibited the conversion of [1-14C]stearic acid to alkanes, and the inhibition was greatest for the longer alkanes. Developing flower petals also incorporated exogenous C28, C30, and C32 acids into alkanes in 0.5% to 5% yields. [G-3H]n-octacosanoic acid (C28) was incorporated into C27, C29, and C31n-alkanes. [G-3H]n-triacontanoic acid (C30) was incorporated mainly into C29 and C31 alkanes, whereas [9, 10, 11-3H]n-dotriacontanoic acid (C32) was converted mainly to C31 alkane. Trichloroacetate inhibited the conversion of the exogenous acids into alkanes with carbon chains longer than the exogenous acid, and at the same time increased the amount of the direct decarboxylation product formed. These results clearly demonstrate direct decarboxylation as well as elongation and decarboxylation of exogenous fatty acids, and thus constitute the most direct evidence thus far obtained for an elongation-decarboxylation mechanism for the biosynthesis of alkanes.  相似文献   

17.
With increasing concerns of microalgal-biodiesel, algal residues after lipid extraction are raising great attention for energy production. A batch test of 15 days under mesophilic condition was conducted to evaluate the effects of inoculum to substrate ratios (ISRs) on the methane production by anaerobic digestion of Chlorella sp. residue. The stability and progress of the reaction from algal residue to methane were monitored by measuring the pH, volatile fatty acids (VFAs), total ammoniacal nitrogen (TAN), methane volume on a daily basis. The results indicated that the values obtained were 26.6, 191.6, 195.6 and 210.6 ml CH4/g volatile solid (VS) for ISRs of 1:2, 1:1, 2:1 and 3:1. The methane production was significantly decreased as the ISR was lower than 1:1, which was resulting from the poor methanogenesis inhibited by NH4 +-N. It would be of great importance that determination of ISRs might provide useful information on how to initialize a batch digester with algal residue as material.  相似文献   

18.
Nutritional Requirements of Methanosarcina sp. Strain TM-1   总被引:2,自引:1,他引:1       下载免费PDF全文
Methanosarcina sp. strain TM-1, an acetotrophic, thermophilic methanogen isolated from an anaerobic sludge digestor, was originally reported to require an anaerobic sludge supernatant for growth. It was found that the sludge supernatant could be replaced with yeast extract (1 g/liter), 6 mM bicarbonate-30% CO2, and trace metals, with a doubling time on methanol of 14 h. For growth on either methanol or acetate, yeast extract could be replaced with CaCl2 · 2H2O (13.6 μM minimum) and the vitamin p-aminobenzoic acid (PABA, ca. 3 nM minimum), with a doubling time on methanol of 8 to 9 h. Filter-sterilized folic acid at 0.3 μM could not replace PABA. The antimetabolite sulfanilamide (20 mM) inhibited growth of and methanogenesis by Methanosarcina sp. strain TM-1, and this inhibition was reversed by the addition of 0.3 μM PABA. When a defined medium buffered with 20 mM N,N-bis(2-hydroxyethyl)-2-aminoethanesulfonic acid was used, it was shown that Methanosarcina sp. strain TM-1 required 6 mM bicarbonate-30% CO2 for optimal growth and methanogenesis from methanol. Cells growing on acetate were less dependent on bicarbonate-CO2. When we used a defined medium in which the only organic compounds present were methanol or acetate, nitrilotriacetic acid (0.2 mM), and PABA, it was possible to limit batch cultures of Methanosarcina sp. strain TM-1 for nitrogen at NH4+ concentrations at or below 2.0 mM, in marked contrast with Methanosarcina barkeri 227, which fixes dinitrogen when grown under NH4+ limitation.  相似文献   

19.
Cyclocarya paliurus is a unique plant growing in central China with hypoglycaemic and hypolipaemia effects. To make better use of this functional food resource, cell suspension cultures and triterpenic acid accumulation were studied. Stable and uniform cell suspension cultures were established in liquid basal Murashige and Skoog medium supplemented with 2,4-dichlorophenoxy acetic acid (0.5 mg/L), naphthalene acetic acid (0.3 mg/L) and cytokinin (1.0 mg/L). According to the growth curve and triterpenic acid accumulation curve, the 8 ~ 10th day postinoculation was the optimum time for subculture, and the 14th day was the optimum time for harvest. Murashige and Skoog medium and woody plant medium were suitable for both cell growth and triterpenic acid accumulation. 3% sucrose (w/v), 60 mM total nitrogen (NO3 ?/NH4 + = 2/1), 1.25 mM KH2PO4, 2 mM CaCl2, and 2 mM MgSO4 were all found to be fit for cell growth and triterpenic acid accumulation in a cell suspension culture of Cyclocarya paliurus. Total triterpenic acid, ursolic acid and oleanolic acid content in suspended cultured cells were all significantly higher than that of leaves and calluses (P ? 0.01), with levels up to 6.24, 2.28, and 0.94% (of dry weight), respectively. The betulinic acid content of suspended cultured cells also reached 0.82%, which was significantly higher than that of calluses. These results suggest that suspended cultured cells of Cyclocarya paliurus were rich in triterpenic acids and could be used for the production of total triterpenic acid, ursolic acid, oleanolic acid and betulinic acid.  相似文献   

20.
The Met-168 residue in penicillin acylase from Kluyvera citrophila was changed to Ala by oligonucleotide site-directed mutagenesis. The Ala-168 mutant exhibited different substrate specificity than wild-type and enhanced thermal stability. The thermodynamic profiles for penicillin G hydrolysis catalyzed by both enzymes were obtained from the temperature dependence of the steady-state kinetic parameters Km and kcat. The high values of enthalpy and entropy of activation determined for the binding of substrate suggest that an induced-fit-like mechanism takes place. The Met→Ala168 mutation unstabilizes the first transition-state (E··S) and the enzyme-substrate complex (ES) causing a decrease in association equilibrium and specificity constants in the enzyme. However, no change is observed in the acyl-enzyme formation. It is concluded that residue 168 is involved in the enzyme conformational rearrangements caused by the interaction of the acid moiety of the substrate at the active site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号