首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The pH dependence of the chemical reaction rate of p-bromophenacyl bromide (BPB) with His 48 of cobra (Naja naja atra) venom phospholipase A2, in which the alpha-NH2 group had been selectively modified to an alpha-keto group, was studied at 25 degrees C and ionic strength 0.1 in the absence of Ca2+. The pH-dependence curve was monophasic with a midpoint at pH 7.9, which corresponds to the pK value of His 48 of the alpha-NH2-modified enzyme, whereas the curve for the intact enzyme was biphasic, indicating participation of two ionizable groups with pK values of 7.3 and 8.55 (Teshima et al. (1982) J. Biochem. 91, 1778-1788). These two groups were thus identified as His 48 and the alpha-NH2 group, respectively. The pH dependence of the binding constant of Ca2+ to the alpha-NH2-modified enzyme was studied at 25 degrees C and ionic strength 0.1 by measuring the tryptophyl fluorescence changes. The pH-dependence curve was very similar to that for the intact enzyme (Teshima et al. (1981) J. Biochem. 89, 13-20), and it was interpreted in terms of participation of His 48 and Asp 49 (pK 5.4). The absence of participation of the alpha-NH2 group in the Ca2+ binding was thus confirmed. Bindings of monodispersed n-dodecylphosphorylcholine (n-C12PC) and micellar n-hexadecylphosphorylcholine (n-C16PC) to the alpha-NH2-modified enzyme were studied at 25 degrees C and ionic strength 0.1 by the aromatic circular dichroism (CD) and tryptophyl fluorescence methods, respectively. The binding constant of the monodispersed substrate was very similar to that for the intact enzyme (Teshima et al. (1981) J. Biochem. 89, 1163-1174). The binding constant of the micellar substrate to the modified enzyme in the presence of Ca2+ was also very similar to that for the intact enzyme-Ca2+ complex (Teshima et al. (1983) J. Biochem. 94, 223-232), and the pH-dependence curve was interpreted in terms of participation of His 48. On the other hand, the binding constant of the micellar substrate to the modified apoenzyme was much smaller than that for the intact apoenzyme. Nevertheless, the pH-dependence curve could be interpreted in terms of participation of His 48 and Asp 49. From these findings, it was concluded that the ionization state of the alpha-NH2 group of cobra venom phospholipase A2 is essentially irrelevant to the bindings of Ca2+ and also of the monodispersed and micellar substrates.  相似文献   

2.
The hydrolysis of 1,2-dihexanoyl-sn-glycero-3-phosphorylcholine (diC6PC), catalyzed by the phospholipase A2 from the venom of Agkistrodon halys blomhoffii, was studied at 25 degrees C and the ionic strength of 0.1 in the presence of 3-33.3 mM Ca2+, which can saturate the Ca2+-binding site of the enzyme. The initial velocity data, obtained at various concentrations of the substrate below the critical micelle concentration (cmc), were analyzed according to the Michaelis-Menten equation. The pH-dependence curve of the Km value exhibited only one transition below pH 8. The analytical results indicated that the pK value of 6.30 of an ionizable group changed to 6.54 on the binding of the monodispersed substrate. This ionizable group was assigned as the alpha-amino group on the basis of its pK value, which had been determined from the pH dependence of the binding constant of monodispersed n-dodecylphosphorylcholine (n-C12PC) (Ikeda and Samejima (1981) J. Biochem. 90, 799-804, and Haruki et al. (1986) J. Biochem. 99, 99-109). The pH-dependence curve of the kcat value exhibited two transitions, below pH 6.5 and above pH 9.5. The analytical results indicated the participation of two ionizable groups with pK values of 5.55 and 10.50. Deprotonation of the former and protonation of the latter group were found to be essential for the catalysis. The former ionizable group was assigned as His 48 in the active site on the basis of its pK value, which had been determined from the pH dependence of the binding constant of Ca2+ (Ikeda et al. (1981) J. Biochem. 90, 1125-1130).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The pH dependence of the binding constant of Ca2+ to a phospholipase A2 of Agkistrodon halys blomhoffii, in which the alpha-amino group had been selectively modified to an alpha-keto group, was studied at 25 degrees C and ionic strength 0.1 by the tryptophyl fluorescence method. The dependence was compared with the results for the intact enzyme (Ikeda et al. (1981) J. Biochem. 90, 1125-1130). The pH-dependence curve could be well interpreted in terms of the participation of the two ionizable groups Asp 49 and His 48, with pK values of 4.70 and 6.69, respectively. These values were slightly different from the respective pK values for the intact enzyme, 5.15 and 6.45. Ca2+ binding to the intact enzyme involves the participation of an additional ionizable group with a pK value of 7.30, which was thus assigned as alpha-amino group. The pH dependence of the binding constant of monodispersed n-dodecylphosphorylcholine (n-C12PC) to the alpha-NH2-modified enzyme was studied at 25 degrees C and ionic strength 0.1 by the aromatic circular dichroism (CD) method. The pH-dependence curve for the modified apoenzyme was interpreted as reflecting the participation of a single ionizable group with a pK value of 4.7, which was assigned to Asp 49 (to which a Ca2+ ion can coordinate) since the curve for the Ca2+ complex lacked this transition: the binding constant was independent of pH. The pH-dependence curves for the intact apoenzyme and its Ca2+ complex involve the participation of an additional ionizable group with pK values of 7.30 and 6.30, respectively (Ikeda & Samejima (1981) J. Biochem. 90, 799-804), which was assigned as the alpha-amino group. The hydrolysis of monodispersed 1,2-dihexanoyl-sn-glycero-3-phosphorylcholine (diC6PC), catalyzed by the intact and the alpha-NH2-modified enzymes was studied by the pH stat method at 25 degrees C, pH 8.2, and ionic strength 0.1 in the presence of 3 mM Ca2+. The Km value for the modified enzyme was found to be very similar to that for the intact enzyme: this was compatible with the results of the direct binding study on the monodispersed n-C12PC under the same conditions. However, the kcat value was about 43% of the value for the intact enzyme, suggesting that the alpha-keto group introduced by the chemical modification perturbed the network of hydrogen bonds in the active site.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
Bindings of cobra venom phospholipases A2 to micelles of n-hexadecylphosphorylcholine were studied by the tryptophyl fluorescence method at 25 degrees C and ionic strength 0.1. The data were analyzed by assuming that the micellar surface has multiple binding sites for the enzyme and these sites are identical and mutually independent. The enzyme binding site was found to accommodate a constant number of substrate (monomer) molecules, N = 10, 5 or 13 for N. naja atra apoenzyme and its Ca2+ complex, and N. naja kaouthia apoenzyme, respectively. The binding constant of the enzymes to the micelle, Kmic = 0.18-3.1 X 10(6) M-1, was 9-160 times greater than that to the monomeric substrate, Kmon = 2 X 10(4) M-1 (Teshima et al. (1981) J. Biochem. 89, 1163-1174). This was interpreted in terms of the presence of an additional substrate-binding site in the enzyme molecule. The binding constant of the enzyme-Ca2+ complex to the micelle was smaller than that for the apoenzyme over a wide range of pH. The pH dependence of the binding constant of the apoenzyme to the micelle was well interpreted in terms of pK shifts of two ionizable groups from 5.4 to 5.53 and 7.55 to 7.95. The pH dependence curve for the Ca2+ complex, which lacked the former transition, was interpreted in terms of the pK shift of only a single ionizable group from 7.25 to 7.55. The former ionizable group was assigned as Asp 49, to which Ca2+ can coordinate, and the latter as His 48 in the active site on the basis of the reported pK values of these ionizable groups in the apoenzyme and Ca2+ complex (Teshima et al. (1981) J. Biochem. 89, 13-20 and Teshima et al. (1982) J. Biochem. 91, 1777-1788). No participation of the alpha-amino group with a pK value of 8.55 was observed.  相似文献   

5.
The pH dependence of kinetic parameters for the hydrolysis of mixed micelles of 1,2-dipalmitoyl-sn-glycero-3-phosphorylcholine (diC16PC) with Triton X-100, catalyzed by the intact and the N-terminal alpha-NH2-modified phospholipases A2 (PLA2s) of Agkistrodon halys blomhoffii, was studied at 25 degrees C and ionic strength 0.1 in the presence of saturating amounts of Ca2+. The pH dependence of the kinetic parameters for the hydrolysis of monodispersed diC6PC, catalyzed by the modified enzyme, was also studied under the same conditions, and the data were compared with the previous results for the intact enzyme [Teshima, K. et al. (1986) J. Biochem. 100, 1655-1662]. The pK values of the catalytic group, His 48, and Tyr 52 were found to shift from 5.55 to 7.00 and from 10.50 to 11.50, respectively, on binding of the micellar substrates to the enzyme. On the other hand, no participation of these ionizable groups was observed for the binding of the monodispersed substrate. On the basis of the present finding and the X-ray crystallographic studies on bovine pancreatic PLA2 [Dijkstra, B.W. et. al. (1981) J. Mol. Biol. 147, 97-123] and on a PLA2 of Crotalus atrox venom [Brunie, S. et al. (1985) J. Biol. Chem. 260, 9742-9749], the hydrogen-bonding of Tyr 73, which is involved in the lipid-water interface recognition site, to His 48 and Tyr 52 in the active center was strongly suggested to be important for the hydrolysis of micellar substrates.  相似文献   

6.
The phosphatidylcholine-hydrolyzing phospholipase C, so-called "phospholipase C" (PLC), was isolated from the culture of Bacillus cereus strain IAM 1208. The amino-acid composition and partial N-terminal sequence of the purified enzyme were in good agreement with those expected from the nucleotide sequence for a PLC of strain ATCC 10987 [Johansen et al. (1988) Gene 65, 293-304]. The chain-length dependence of kinetic parameters for the PLC-catalyzed hydrolysis of monodispersed short-chain phosphatidylcholines (diCNPC, N = 3-6) was studied by a pH-stat assay method at 25 degrees C, pH 8.0, and ionic strength 0.2 in the presence of saturating amounts of Zn2+ (0.1 mM). The result was compared with those for snake venom phospholipases A2 [Teshima et al. (1989) J. Biochem. 106, 518-527]. It was found that the interaction of the PLC with the head group of the substrate molecule is very important for the binding. The pH dependences of kinetic parameters for the hydrolysis of monodispersed diC5PC and mixed micelles of diC16PC with Triton X-100 were also studied under the same conditions. An ionizable group, whose pK value is perturbed from 7.77 to 8.30 by substrate binding, was found to be essential to the catalysis. This group was tentatively assigned to His 14 on the basis of the results on X-ray crystallographic and chemical modification studies [Hough et al. (1989) Nature 338, 357-360 and Little (1977) Biochem. J. 167, 399-404].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Bindings of the phospholipase A2 from Trimeresurus flavoviridis to the monodispersed and micellar n-alkylphosphorylcholines (n-CnPC) were studied at 25 degrees C and ionic strength 0.2 by the aromatic CD and tryptophyl fluorescence methods, respectively. The bindings to micelles of the substrate analog were analyzed by assuming that the micellar surface has multiple binding sites for the enzyme and that these sites are identical and mutually independent. The enzyme binding site was found to accommodate a constant number of the substrate (monomer) molecules, N = 9-13. The binding constant to the micelle was about 40 times greater than it was to the monodispersed substrate. The binding constant to the micellar substrate analog increased on the binding of Ca2+ to the enzyme and decreased on modification of the N-terminal alpha-NH2 group, whereas the binding to the monodispersed substrate analog was independent of pH, of the Ca2+ binding, and of the chemical modification of the alpha-NH2 group. The kinetics of the hydrolyses of monodispersed and micellar dihexanoylphosphatidylcholines (diC6PC) were studied at 25 degrees C and ionic strength 0.2 by the pH-stat method in the presence of saturating amounts of Ca2+. The catalytic center activity, kappa cat, as well as the binding constant, 1/Km, for the micellar substrate, were found to be much greater than those for the monodispersed substrate. The binding constant, 1/Km, of the monodispersed substrate was independent of pH; this was in good agreement with that of the substrate analog described above. The pH-dependence curve of kappa cat for the monodispersed substrate exhibited two transitions, one below pH 6.5 and the other above pH 9.5.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Effects of Ca2+ on the kinetic parameters for the hydrolysis of mixed micelles of 1,2-dipalmitoyl-sn-glycero-3-phosphorylcholine (diC16PC) with Triton X-100, catalyzed by a cobra (Naja naja atra) (Group I) and a Habu (Trimeresurus flavoviridis) (Group II) PLA2s, were studied and compared with the results reported for other Group I and II enzymes. The substrate bindings to Group I enzymes were independent of the Ca2+ binding, whereas the substrate bindings to Group II enzymes were facilitated more than 10 times by the Ca2+ binding to the enzymes. The result for Group II enzymes, but not Group I enzymes, seemed compatible with the hypothesis for interpreting the catalytic mechanism that an intermediate complex should be stabilized by the coordination of the bound Ca2+ with the phosphoryl group and the carbonyl oxygen atom of the ester bond at the sn-2 position of the bound substrate molecule [Verheij et al. (1980) Biochemistry 19, 743-750 and (1981) Rev. Physiol. Biochem. Pharmacol. 91, 91-203]. The pH dependence of the kinetic parameters for the hydrolysis of the mixed micellar diC16PC, catalyzed by the cobra (N. naja atra) (Group I) and Habu (T. flavoviridis) (Group II) PLA2s, was also studied. The pK values of the catalytic group, His 48, and Tyr 52 for N. naja atra PLA2, shifted from 7.25 to 7.70 and from 10.30 to 10.85, respectively, and the corresponding values for T. flavoviridis PLA2 shifted from 5.80 to 6.95 and from 10.10 to 10.76, respectively, on binding of the micellar substrates to the enzymes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Phospholipases A2 (PLA2s) are classified into two groups, I and II, according to differences in the polypeptide-chain length and intramolecular disulfide bondings. The hydrolysis of monodispersed 1,2-dihexanoyl-sn-glycero-3-phosphorylcholine (diC6PC), catalyzed by bovine pancreas PLA2 (Group I) was studied at 25 degrees C and ionic strength 0.2, and the initial velocity data were analyzed by means of the Michaelis-Menten equation. The Michaelis constant, Km, was found to be practically independent of Ca2+ concentration and also of pH value. The latter result indicates no participation of the ionizable groups in the active site in the substrate binding. The pH-dependence curve of the logarithm of the catalytic center activity, kcat, obtained in the presence of a practically saturating amount of Ca2+, showed three transitions ascribable to the participation of three ionizable groups with pK values of 5.00, 8.40, and 9.50. The respective groups were tentatively assigned to the catalytic group His 48, the N-terminal alpha-amino group, and invariant Tyr 52, which is located in close proximity to the imidazole ring of His 48. Deprotonation of His 48 and protonation of Tyr 52 were shown to be essential to the catalysis. The importance of the ionization state of the alpha-amino group was also indicated.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The pH dependence of the human prostatic acid phosphatase-catalyzed hydrolysis of p-nitrophenyl phosphate and beta-glyceryl phosphate has been studied over a wide range of pH and the values of Km and V calculated with the aid of the Cleland HYPER program. The pH dependence of Km shows the effect of substrate ionization: pK values of 5.6 and 6.4 are observed as for the respective values of free substrates. The pH dependence of both Km and V for each substrate reveals the involvement of an ionizable group in the ES complex which is ascribed to a phosphohistidine-enzyme intermediate. The small deuterium solvent isotope effects which are observed on V are consistent with values observed for solvolysis of phosphoramidates. The measured data for Km indicates limits on burst-titration experiments of prostatic acid phosphatase (orthophosphoric-monoester phosphohydrolase, EC 3.1.3.2).  相似文献   

11.
W L Mock  J T Tsay 《Biochemistry》1986,25(10):2920-2927
The substrate analogue 2-(1-carboxy-2-phenylethyl)-4-phenylazophenol is a potent competitive inhibitor of carboxypeptidase A. Upon ligation to the active site, the azophenol moiety undergoes a shift of pKa from a value of 8.76 to a value of 4.9; this provides an index of the Lewis acidity of the active site zinc ion. Examination of the pH dependence of Ki for the inhibitor shows maximum effectiveness in neutral solution (limiting Ki = 7.6 X 10(-7) M), with an increase in Ki in acid (pK1 = 6.16) and in alkaline solution (pK2 = 9.71, pK3 = 8.76). It is concluded that a proton-accepting enzymic functional group with the lower pKa (6.2) controls inhibitor binding, that ionization of this group is also manifested in the hydrolysis of peptide substrates (kcat/Km), and that the identity of this group is the water molecule that binds to the active site metal ion in the uncomplexed enzyme (H2OZn2+L3). Reverse protonation state inhibition is demonstrated, and conventional concepts regarding the mechanism of peptide hydrolysis by the enzyme are brought into question.  相似文献   

12.
The pH dependence of Vmax and Vmax/Km for hydrolysis of Dnp-Pro-Leu-Gly-Leu-Trp-Ala-D-Arg-NH2 at the Gly-Leu bond by porcine synovial collagenase and gelatinase was determined in the pH range 5-10. Both enzymes exhibited bell-shaped dependencies on pH for these two kinetic parameters, indicating that activity is dependent on at least two ionizable groups, one of which must be unprotonated and the other protonated. For collagenase, Vmax/Km data indicate that in the substrate-free enzyme, these groups have apparent pK values of 7.0 and 9.5, while the Vmax profile indicates similar pK values of 6.8 and 10.1 for the enzyme-substrate complex. The corresponding pH profiles of gelatinase were similar to those of collagenase, indicating the importance of groups with apparent pK values of 5.9 and 10.0 for the free enzyme and 5.9 and 11.1 for the enzyme-substrate complex. When these kinetic constants were determined in D2O using the peptide substrate, there was no significant effect on Vmax or Km for collagenase or Km for gelatinase. However, there was a deuterium isotope effect of approximately 1.5 on Vmax for gelatinase. These results indicate that a proton transfer step is not involved in the rate-limiting step for collagenase, but may be limiting with gelatinase. The Arrhenius activation energies for peptide bond hydrolysis of the synthetic peptide as well as the natural substrates were also determined for both enzymes. The activation energy (81 kcal) for hydrolysis of collagen by collagenase was nine times greater than that determined for the synthetic substrate (9.2 kcal). In contrast, the activation energy for hydrolysis of gelatin by gelatinase (26.3 kcal) was only 2.4 times greater than that for the synthetic substrate (11 kcal).  相似文献   

13.
Phospholipases A2 are classified into two groups, I and II, according to differences in the polypeptide-chain length and the intramolecular-disulfide bondings. The effects of Ca2+ on the kinetic parameters for the hydrolysis of monodispersed and micellar phosphatidylcholines, catalyzed by a cobra (Naja naja atra) enzyme (Group I) and by mamushi (Agkistrodon halys blomhoffii) and habu (Trimeresurus flavoviridis) enzymes (Group II), were studied by the pH-statassay method at 25 degrees C, pH 8.0-8.2, and ionic strength 0.1-0.2. The results were compared with those reported for the other Group I and II enzymes. The Ca2+ binding was clearly shown to be essential for the catalysis of all the phospholipases A2. However, the substrate binding to Group I enzymes was found to be independent of the Ca2+ binding. On the other hand, the substrate binding to Group II enzymes was facilitated more than 10 times by the binding of Ca2+ to the enzymes. This was interpreted in terms of conformation changes of the peptide loop of residues 26 to 44 accompanying the Ca2+ binding. The latter result, but not the former, seems compatible with the hypothesis for interpreting the catalytic mechanism of phospholipases A2 that an intermediate complex should be stabilized by the coordination of the bound Ca2+ ion with the phosphoryl group and the carbonyl oxygen atom of the ester bond at the sn-2 position of the bound substrate molecule [Verheij et al. (1980) Biochemistry 19, 743-750 and (1981) Rev. Physiol. Biochem. Pharmacol. 91, 91-203]. According to the similarity in the primary and tertiary structures of the active sites of both types of enzymes [Renetseder et al. (1985) J. Biol. Chem. 260, 11627-11634], it is supposed that similar intermediate complexes may occur even for Group I enzymes, at least in the transition state of the productive complexes.  相似文献   

14.
Markham GD  Bock CL  Schalk-Hihi C 《Biochemistry》1999,38(14):4433-4440
Inosine-5'-monophosphate dehydrogenase (IMPDH) catalyzes the K+-dependent reaction IMP + NAD + H2O --> XMP + NADH + H+ which is the rate-limiting step in guanine nucleotide biosynthesis. The catalytic mechanism of the human type-II IMPDH isozyme has been studied by measurement of the pH dependencies of the normal reaction, of the hydrolysis of 2-chloro-IMP (which yields XMP and Cl- in the absence of NAD), and of inactivation by the affinity label 6-chloro-purine-ribotide (6-Cl-PRT). The pH dependence of the IMPDH reaction shows bell-shaped profiles for kcat and the kcat/Km values for both IMP and NAD, illustrating the involvement of both acidic and basic groups in catalysis. Half-maximal kcat values occur at pH values of 7.2 and 9.8; similar pK values of 6.9 and 9.4 are seen in the kcat/Km profile for NAD. The kcat/Km profile for IMP, which binds first in the predominantly ordered kinetic mechanism, shows pK values of 8.1 and 7.3 for acidic and basic groups, respectively. None of the kinetic pK values correspond to ionizations of the free substrates and thus reflect ionization of the enzyme or enzyme-substrate complexes. The rate of inactivation by 6-Cl-PRT, which modifies the active site sulfhydryl of cysteine-331, increases with pH; the pK of 7.5 reflects the ionization of the sulfhydryl in the E.6-Cl-PRT complex. The pKs of the acids observed in the IMPDH reaction likely also reflect ionization of the cysteine-331 sulfhydryl which adds to C-2 of IMP prior to NAD reduction. The kcat and kcat/Km values for hydrolysis of 2-Cl-IMP show a pK value of 9.9 for a basic group, similar to that seen in the overall reaction, but do not exhibit the ionization of an acidic group. Surprisingly, the rates of 2-Cl-IMP hydrolysis and of inactivation by 6-Cl-PRT are not stimulated by K+, in contrast to the >100-fold K+ activation of the IMPDH reaction. Apparently the enigmatic role of K+ lies in the NAD(H)-dependent segment of the IMPDH reaction. To evaluate the importance of hydrogen bonding in substrate binding, several deamino- and deoxy-analogues of IMP were tested as substrates and inhibitors. Only 2'-deoxy-IMP was a substrate; the other compounds tested were competitive inhibitors with Ki values at most 10-fold greater than the KD for IMP, illustrating the greater importance of hydrogen-bonding interactions in the chemistry of the IMPDH reaction than simply in nucleotide binding.  相似文献   

15.
The pH dependence of E (enantiomeric ratio or enantioselectivity, a quantitative measure for enzyme stereospecificity) was studied for penicillin amidase catalysed hydrolysis of charged enantiomeric substrates. Theoretical analysis shows that a pH dependence can only be observed around the pK values of groups in the active site whose ionisation control the enzyme activity. For charged substrates that may perturb these pK values, a pH dependence of E is also expected. This was experimentally verified around these pK values. The S'(1)-stereospecificity of penicillin amidase was studied for the hydrolysis of the enantiomeric phenylacetyl-S/R-Phe and for the racemic phenylacetyl-S,R-PhG. The S(1)-stereospecificity was investigated for the hydrolysis of the enantiomeric S/R-PhG-NH(2). The observed pH modulation of E (more than 3-fold for the studied substrates in the pH range 4.5-9) was found to be a result of compensatory effects for binding and catalysis. The ratios k(cat, S)/k(cat,R) and K(m,S)/K(m,R) for the hydrolysis of the enantiomeric phenylacetyl-Phe were found to decrease from 1000 to 10 and from 0.1 to 0.01, respectively in the pH range 5-8. The dependence was stronger for the S'(1)- than for the S(1)-subsite. This is probably due to the stronger influence of the substrate carboxyl group in the S'(1)-subsite than that of the substrate amino group in the S(1)-subsite on the pK of the N-terminal Ser B1 that is essential for the activity. The observed pH dependence of E was used to discuss the importance of ground-state interactions for discrimination between enantiomers and for enzyme catalysis in general. The experimental results conform to the split site model according to which a better binding must not be fundamentally inhibitory.  相似文献   

16.
The pK values of the histidine residues in ribonuclease T1 (RNase T1) are unusually high: 7.8 (His-92), 7.9 (His-40), and 7.3 (His-27) [Inagaki et al. (1981) J. Biochem. 89, 1185-1195]. In the RNase T1 mutant Glu-58----Ala, the first two pK values are reduced to 7.4 (His-92) and 7.1 (His-40). These lower pKs were expected since His-92 (5.5 A) and His-40 (3.7 A) are in close proximity to Glu-58 at the active site. The conformational stability of RNase T1 increases by over 4 kcal/mol between pH 9 and 5, and this can be entirely accounted for by the greater affinity for protons by the His residues in the folded protein (average pK = 7.6) than in the unfolded protein (pk approximately 6.6). Thus, almost half of the net conformational stability of RNase T1 results from a difference between the pK values of the histidine residues in the folded and unfolded conformations. In the Glu-58----Ala mutant, the increase in stability between pH 9 and 5 is halved (approximately 2 kcal/mol), as expected on the basis of the lower pK values for the His residues in the folded protein (average pK = 7.1). As a consequence, RNase T1 is more stable than the mutant below pH 7.5, and less stable above pH 7.5. These results emphasize the importance of measuring the conformational stability as a function of pH when comparing proteins differing in structure.  相似文献   

17.
The effect of pH on the kinetics of sialidase purified from influenza virus (A/Tokyo/3/67, H2N2) was investigated. A pK of 9.0 for inhibition of the enzyme by three competitive inhibitors, due to an ionisable group in the active site, was observed. A similar pK was observed for V/Km for the fluorogenic substrate 2-(4-methylumbelliferyl)-N-acetyl-alpha-D-neuraminic acid. However, the shape of the V/Km profile indicates that this substrate is sticky. Solvent perturbation experiments indicated that the observed ionisable active site group is likely to be a cationic amino acid. The results provide evidence against the hypothesis that Glu 276 acts as a proton donor in the enzyme reaction and supports the proposal of a role for one of the active site cationic amino acids in binding and catalysis.  相似文献   

18.
Dihydropyrimidine amidohydrolase (EC 3.5.2.2) catalyzes the reversible hydrolysis of 5,6-dihydropyrimidines to the corresponding beta-ureido acids. Previous work has shown that incubation of this Zn2+ metalloenzyme with 2,6-dipicolinic acid, 8-hydroxyquinoline-5-sulfonic acid, or o-phenanthroline results in inactivation by Zn2+ removal by a reaction pathway involving formation of a ternary enzyme-Zn2+-chelator complex which subsequently dissociates to yield apoenzyme and the Zn2+-chelate (K. P. Brooks, E. A. Jones, B. D. Kim, and E. G. Sander, (1983) Arch. Biochem. Biophys. 226, 469-483). In the present work, the pH dependence of chelator inactivation is studied. The equilibrium constant for formation of the ternary complex is strongly pH dependent and increases with decreasing pH for all three chelators. There is a positive correlation between the value of the equilibrium constant observed for each chelator and the value of its stability constant for formation of Zn2+-chelate. The affinity of the chelators for the enzyme increases in the order 8-hydroxyquinoline-5-sulfonic acid greater than o-phenanthroline greater than 2,6-dipicolinic acid. The first-order rate constant for breakdown of the ternary complex to yield apoenzyme and Zn2+-chelate is invariant with pH for a given chelator but is different for each chelator, increasing in the reverse order. The pH dependence of the inactivation shows that two ionizable groups on the enzyme are involved in the inactivation. On the other hand, the steady-state kinetic behavior of the enzyme is well-described by ionization of a single group with a pK of 6.0 in the free enzyme. The basic form of the group is required for catalysis; protonation of the group decreases both Vmax and the apparent affinity for substrate. Conversely, binding of substrate decreases the pK of this group to about 5. L-Dihydroorotic acid is shown to be a competitive inhibitor of dihydropyrimidine amidohydrolase. Binding of L-dihydroorotic acid increases the pK of the ionizable group to 6.5. The agreement between the pK in the enzyme-L-dihydroorotic acid complex and the higher pK observed in the pH dependence of inactivation by chelators suggests that the same group is involved in the binding of acid, and chelators. The different effects of substrate and L-dihydroorotic acid on the pK suggest that the binding modes of these two ligands may be different and suggest a structural basis for the mutally exclusive substrate specificities of dihydropyrimidine amidohydrolase and dihydroorotase.  相似文献   

19.
The effect of pH on the kinetic parameters (Km and Ki) for extracellular acid Penicillium brevicompactum RNAse (pH max 4.7+/-0.1), non-specific to the chemical nature of nucleic bases, was studied. The pKm--pH dependence curve showed bends within the following intervals of pH: 3.5--4.0 and 5.6--6.0 (upward side concavity) and 6.2--6.8 (downward side concavity). The pKi--pH dependence for adenosine-3'-monophosphate as an inhibitor is identical to the pH dependence on pKm for the substrate. On the other hand, the pKi--pH dependence curves obtained for the base-free inhibitors (ribose-5'-monophosphate, or phosphate (adenosine) show no bends within the pH intervals of 3.0--4.0 and 5.6--7.0 respectively. A possibility is discussed of the presence of a carboxylic (pK 3.58+/-0.1) and two imidazole groups (pK 6.42+/-0.1--a weakly protonated and 5.8+/-+/-0.1--a strongly protonated group) in the RNAse active site and their participation in the formation of the RNAse-nucleotide (RNAse-substrate) complex.  相似文献   

20.
The phospholipase A2 from the venom of A. halys blomhoffii was titrated with micellar n-hexadecylphosphorylcholine (an analog of lysolecithin) by following the tryptophyl fluorescence change at 25 degrees C and ionic strength 0.1. The data were analyzed by assuming that the micellar surface has multiple binding sites for the enzyme and that these sites are identical and mutually independent. The enzyme binding site was found to accommodate a constant number of the substrate (monomer) molecules, N = 10.0 and 6.7 for the apoenzyme and its Ca2+ complex, respectively. The binding constant of the enzyme to the substrate micelle was found to be enhanced by Ca2+ binding to the enzyme. The pH dependence of the binding constant of the apoenzyme to the micelle was well interpreted in terms of pK shifts of two ionizable groups from 5.16 to 5.67 and from 6.45 to 6.6. The pH-dependence curve for the enzyme-Ca2+ complex, which lacked the former transition, was interpreted in terms of the pK shift of a single ionizable group from 5.55 to 5.76. The former ionizable group was assigned as Asp 49, to which Ca2+ ion can coordinate, and the latter as His 48 in the active site. No participation of the alpha-amino group with a pK value of 7.30 was observed. The binding constant of the enzyme to the substrate micelle, Kmic = 0.45-2.3 X 10(6) M-1, was found to be far greater than that to the monomeric substrate, Kmon = 0.2-1.0 X 10(4) M-1. This was interpreted in terms of the presence of an additional weak substrate-binding site in the enzyme molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号