首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Key message

We found that Arabidopsis AtADF1 was phosphorylated by AtCDPK6 at serine 6 predominantly and the phosphoregulation plays a key role in the regulation of ADF1-mediated depolymerization of actin filaments.

Abstract

Since actin-depolymerizing factor (ADF) is highly conserved among eukaryotes, it is one of the key modulators for actin organization. In plants, ADF is directly involved in the depolymerization of actin filaments, and therefore important for F-actin-dependent cellular activities. The activity of ADF is tightly controlled through a number of molecular mechanisms, including phosphorylation-mediated inactivation of ADF. To investigate Arabidopsis ADF1 phosphoregulation, we generated AtADF1 phosphorylation site-specific mutants. Using transient expression and stable transgenic approaches, we analyzed the ADF1 phosphorylation mutants in the regulation of actin filament organizations in plant cells. By in vitro phosphorylation assay, we showed that AtADF1 is phosphorylated by AtCDPK6 at serine 6 predominantly. Chemically induced expression of AtCDPK6 can negatively regulate the wild-type AtADF1 in depolymerizing actin filaments, but not those of the mutants AtADF1(S6A) and AtADF1(S6D). These results demonstrate a regulatory function of Arabidopsis CDPK6 in the N-terminal phosphorylation of AtADF1.  相似文献   

2.
Plant productivity is greatly influenced by various environmental stresses, such as high salinity and drought. Earlier, we reported the isolation of topoisomerase 6 homologs from rice and showed that over expression of OsTOP6A3 and OsTOP6B confers abiotic stress tolerance in transgenic Arabidopsis plants. In this study, we have assessed the function of nuclear-localized topoisomerase 6 subunit A homolog, OsTOP6A1, in transgenic Arabidopsis plants. The over expression of OsTOP6A1 in transgenic Arabidopsis plants driven by cauliflower mosaic virus-35S promoter resulted in pleiotropic effects on plant growth and development. The transgenic Arabidopsis plants showed reduced sensitivity to stress hormone, abscisic acid (ABA), and tolerance to high salinity and dehydration at the seed germination; seedling and adult stages as reflected by the percentage of germination, fresh weight of seedlings and leaf senescence assay, respectively. Concomitantly, the expression of many stress-responsive genes was enhanced under various stress conditions in transgenic Arabidopsis plants. Moreover, microarray analysis revealed that the expression of a large number of genes involved in various processes of plant growth and development and stress responses was altered in transgenic plants. Although AtSPO11-1, the homolog of OsTOP6A1 in Arabidopsis, has been implicated in meiotic recombination; the present study demonstrates possible additional role of OsTOP6A1 and provides an effective tool for engineering crop plants for tolerance to different environmental stresses. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.
Eukaryotic cytosolic ACBPs (acyl-CoA-binding proteins) bind acyl-CoA esters and maintain a cytosolic acyl-CoA pool, but the thermodynamics of their protein–lipid interactions and physiological relevance in plants are not well understood. Arabidopsis has three cytosolic ACBPs which have been identified as AtACBP4, AtACBP5 and AtACBP6, and microarray data indicated that all of them are expressed in seeds; AtACBP4 is expressed in early embryogenesis, whereas AtACBP5 is expressed later. ITC (isothermal titration calorimetry) in combination with transgenic Arabidopsis lines were used to investigate the roles of these three ACBPs from Arabidopsis thaliana. The dissociation constants, stoichiometry and enthalpy change of AtACBP interactions with various acyl-CoA esters were determined using ITC. Strong binding of recombinant (r) AtACBP6 with long-chain acyl-CoA (C16- to C18-CoA) esters was observed with dissociation constants in the nanomolar range. However, the affinity of rAtACBP4 and rAtACBP5 to these acyl-CoA esters was much weaker (dissociation constants in the micromolar range), suggesting that they interact with acyl-CoA esters differently from rAtACBP6. When transgenic Arabidopsis expressing AtACBP6pro::GUS was generated, strong GUS (β-glucuronidase) expression in cotyledonary-staged embryos and seedlings prompted us to measure the acyl-CoA contents of the acbp6 mutant. This mutant accumulated higher levels of C18:1-CoA and C18:1- and C18:2-CoAs in cotyledonary-staged embryos and seedlings, respectively, in comparison with the wild type. The acbp4acbp5acbp6 mutant showed the lightest seed weight and highest sensitivity to abscisic acid during germination, suggesting their physiological functions in seeds.  相似文献   

4.
Drought and high salinity are major environmental conditions limiting plant growth and development. Expansin is a cell-wall-loosening protein known to disrupt hydrogen bonds between xyloglucan and cellulose microfibrils. The expression of expansin increases in plants under various abiotic stresses, and plays an important role in adaptation to these stresses. We aimed to investigate the role of the RhEXPA4, a rose expansin gene, in response to abiotic stresses through its overexpression analysis in Arabidopsis. In transgenic Arabidopsis harboring the Pro RhEXPA4 ::GUS construct, RhEXPA4 promoter activity was induced by abscisic acid (ABA), drought and salt, particularly in zones of active growth. Transgenic lines with higher RhEXPA4 level developed compact phenotypes with shorter stems, curly leaves and compact inflorescences, while the lines with relatively lower RhEXPA4 expression showed normal phenotypes, similar to the wild type (WT). The germination percentage of transgenic Arabidopsis seeds was higher than that of WT seeds under salt stress and ABA treatments. Transgenic plants showed enhanced tolerance to drought and salt stresses: they displayed higher survival rates after drought, and exhibited more lateral roots and higher content of leaf chlorophyll a under salt stress. Moreover, high-level RhEXPA4 overexpressors have multiple modifications in leaf blade epidermal structure, such as smaller, compact cells, fewer stomata and midvein vascular patterning in leaves, which provides them with more tolerance to abiotic stresses compared to mild overexpressors and the WT. Collectively, our results suggest that RhEXPA4, a cell-wall-loosening protein, confers tolerance to abiotic stresses through modifying cell expansion and plant development in Arabidopsis.  相似文献   

5.
6.
The objective of this study was to transfer catalase gene (CAT1 and CAT2) complementary (c)DNAs under the control of a ubiquitin promoter into Arabidopsis via Agrobacterium-mediated transformation. A real-time polymerase chain reaction analysis demonstrated that both the BoCAT1 and BoCAT2 genes were overexpressed in transgenic Arabidopsis thaliana (At). The activity of CAT in the AtCAT2-2 transgenic line was 6-fold higher than that of the non-transgenic plant under heat stress, and the CAT amount in the AtCAT2-2 line also highly accumulated according to a Western blot analysis. Compared to non-transgenic Arabidopsis plants, a lower level of heat-induced H2O2 accumulation was detected by diaminobenzidine staining in leaves of transgenic plants with a high level of CAT activity, indicating that overexpression of BoCAT in Arabidopsis could enhance the heat tolerance by eliminating H2O2. This is the first report suggesting that CAT-encoding gene expression in Arabidopsis is regulated by heat stress.  相似文献   

7.
Heterosis is associated with differential gene expression between hybrids and their parental lines, and the genes involved in cell proliferation played important roles. AtARF2 is a general cell proliferation repressor in Arabidopsis. In our previous study, two homologues (ZmARF10 and ZmARF25) of AtARF2 were identified in maize, but their relationship with heterosis was not elucidated. Here, the expression patterns of ZmARF10 and ZmARF25 in seedling leaves of maize hybrids and their parental lines were analyzed. The results of qRT-PCR exhibited that ZmARF25 was down-regulated in leaf basal region of hybrids. Moreover, overexpression of ZmARF25 led to reduced organ size in Arabidopsis, which was mainly due to the decrease in cell number, not cell size. In addition, the cell proliferation related genes AtANT, AtGIF1 and AtGRF5 were down-regulated in 35S::ZmARF25 transgenic lines. Collectively, we proposed that the down-regulation of ZmARF25 in maize hybrid may accelerate cell proliferation and promote leaf development, which, in turn, contributes to the observed leaf size heterosis in maize.  相似文献   

8.
We identified a Nodulin-related protein 1 (NRP1) encoded by At2g03440, which was previously reported to be RPS2 interacting protein in yeast-two-hybrid assay. Northern blotting showed that AtNRP1 expression was suppressed by heat stress (42°C) and induced by low temperature (4°C) treatment. Strong GUS staining was observed in the sites of meristematic tissues of pAtNRP1:: GUS transgenic plants, such as shoot apex and root tips, young leaf veins, stamens and stigmas of flowers, and abscission layers of young siliques. To study AtNRP1 biological functions, we have characterized both loss-of-function T-DNA insertion and transgenic overexpression plants for AtNRP1 in Arabidopsis. The T-DNA insertion mutants displayed no obvious difference as compared to wild-type Arabidopsis under heat stress, but the significant enhanced susceptibility to heat stress was revealed in two independent AtNRP1-overexpressing transgenic lines. Further study found that the decreased thermtolerance in AtNRP1-overexpressing lines accompanied significantly decreased accumulation of ABA after heat treatment, which was probably due to AtNRP1 playing a role in negative-feedback regulation of the ABA synthesis pathway. These results support the viewpoint that the application of ABA inhibits nodulation and nodulin-related gene expression and threaten adverse ambient temperature can impact the nodulin-related gene expression.  相似文献   

9.
10.
11.
There is increasing evidence for considerable interlinking between the responses to heat stress (HS) and light signaling. In the present work, we provide molecular evidence that BBX18, a negative regulator in photomorphogenesis belonging to the B-box zinc finger protein family in Arabidopsis thaliana, is involved in the regulation of thermotolerance. Using quantitative RT-PCR, GUS staining and immunoblot analysis, our results indicate that the expression of BBX18 was induced by HS. BBX18-RNAi and 35S::BBX18 transgenic Arabidopsis plants were obtained for functional analysis of BBX18. Under-expression of BBX18 displayed increased both basal and acquired thermotolerance in the transgenic plants, while over-expression of BBX18 reduced tolerance to HS in transgenic lines. Moreover, when wild-type, BBX18-RNAi and 35S::BBX18 transgenic plants were treated with HS, HR-related digalactosyldiacylglycerol synthase 1 (DGD1) was down-regulated by BBX18 in both normal and heat shock conditions. Besides, the expression levels of Hsp70, Hsp101 and APX2 were increased in BBX18-RNAi transgenic plants, but lower in 35S::BBX18 transgenic plants. However, the expression of HsfA2 was lower in BBX18-RNAi transgenic plants and higher in the 35S::BBX18 after high-temperature treatment. These results suggesting that, by modulated expression of a set of HS-responsive genes, BBX18 weakened tolerance to HS in Arabidopsis. So our data indicate that BBX18 plays a negative role in thermotolerance.  相似文献   

12.
13.
ADP‐ribosylation factors (ARFs) are small GTP‐binding proteins that regulate a wide variety of cell functions. Previously, we isolated a new ARF, ZmArf2, from maize (Zea mays). Sequence and expression characteristics indicated that ZmArf2 might play a critical role in the early stages of endosperm development. In this study, we investigated ZmArf2 function by analysis of its GTP‐binding activity and subcellular localization. We also over‐expressed ZmArf2 in Arabidopsis and measured organ and cell size and counted cell numbers. The expression levels of five organ size‐associated genes were also determined in 35S::ZmArf2 transgenic and wild‐type plants. Results showed that the recombinant ZmArf2 protein purified from Escherichia coli exhibited GTP‐binding activity. Subcellular localization revealed that ZmArf2 was localized in the cytoplasm and plasma membrane. ZmArf2 over‐expression in Arabidopsis showed that 35S::ZmArf2 transgenic plants were taller and had larger leaves and seeds compared to wild‐type plants, which resulted from cell expansions, not an increase in cell numbers. In addition, three cell expansion‐related genes, AtEXP3, AtEXP5 and AtEXP10, were upregulated in 35S::ZmArf2 transgenic lines, while the expression levels of AtGIF1 and AtGRF5, were unchanged. Collectively, our studies suggest that ZmArf2 has an active GTP‐binding function, and plays a crucial role in growth and development in Arabidopsis through cell expansion mediated by cell expansion genes.  相似文献   

14.
Ethylene has an inhibitory effect on flowering in a short-day (SD) plant chrysanthemum (Chrysanthemum morifolium Ramat.). In this study, we used a hexaploid chrysanthemum ??Sei-Marine?? and found that its transgenic lines transformed with a mutated ethylene receptor gene mDG-ERS1(etr1?C4), which conferred reduced ethylene sensitivity (J. Plant Biol. 51: 424?C427, 2008), opened flowers earlier than the non-transformed control. We examined whether the accelerated flower induction in the transformant occurred through the enhanced expression of chrysanthemum genes homologous to FLOWERING LOCUS T (FT), a floral inducer gene in Arabidopsis. We cloned three cDNAs for FT homologs (CmFTL1, CmFTL2, and CmFTL3) from ??Sei-Marine??. CmFTL2 putatively encodes a non-functional gene product due to a frame shift caused by a 2 bp-deletion in the coding region. RT-PCR analysis revealed differential expression patterns of CmFTL genes in the transgenic and control lines, suggesting that these genes might be under the control of ethylene. CmFTL1/2 mRNA level was lower in a SD condition than a long-day (LD) condition. CmFTL3 mRNA accumulated abundantly under SD condition as compared with LD condition in the transgenic line. These results suggest the association of increased expression of CmFTL3 gene with the accelerated flowering in the transgenic line with reduced ethylene sensitivity.  相似文献   

15.
The flowering plant pollen tube is the fastest elongating plant cell and transports the sperm cells for double fertilization. The highly dynamic formation and reorganization of the actin cytoskeleton is essential for pollen germination and pollen tube growth. To drive pollen-specific expression of fluorescent marker proteins, commonly the strong Lat52 promoter is used. Here we show by quantitative fluorescent analysis that the gametophyte-specific ARO1 promoter from Arabidopsis drives an about 3.5 times weaker transgene expression than the Lat52 promoter. In one third of the pollen of F-actin-labeled ARO1p:tagRFP-T-Lifeact transgenic lines we observed mobile ring-shaped actin structures in pollen grains and pollen tubes. Pollen tube growth, transgene transmission and seed production were not affected by tagRFP-T-Lifeact expression. F-actin rings were able to integrate into emerging actin filaments and they may reflect a particular physiological state of the pollen or a readily available storage form provided for rapid actin network remodeling.  相似文献   

16.
The gills of the air-breathing estuarine goby,Pseudapocryptes lanceolatus, are reduced owing to the development of a specialized organ of O2 uptake from air. In the first gill arch, the filaments of the outer hemibranch are reduced to nearly one-half in comparison to those of its inner hemibranch. A smaller number of secondary lamellae per mm (27.6) occurring on one side of the gill filament reduces the gill surface area. A bilogarithmic plot of the gill area and the body weight indicates a curve with two significantly different components, one (b = 0.924) related to the fish weighing up to 6 g and the other (b = 0.405) to the fish weighing 8 g and above.  相似文献   

17.
18.
Pyrophosphate: fructose-6-phosphate 1-phosphotransferase (PFP) catalyzes the reversible interconversion of fructose-6-phosphate and fructose-1,6-bisphosphate, a key step in the regulation of the metabolic flux toward glycolysis or gluconeogenesis. To examine the role of PFP in plant growth, we have generated transgenic Arabidopsis plants that either overexpress or repress Arabidopsis PFP sub-unit genes. The overexpressing lines displayed increased PFP activity and slightly faster growth relative to wild type plants, although their photosynthetic activities and the levels of metabolites appeared not to have significantly changed. In contrast, the RNAi lines showed significantly retarded growth in parallel with the reduced PFP activity. Analysis of photosynthetic activity revealed that the growth retardation phenotype of the RNAi lines was accompanied by the reduced rates of CO2 assimilation. Microarray analysis of our transgenic plants further revealed that the altered expression of AtPFPβ affects the expression of several genes involved in diverse physiological processes. Our current data thus suggest that PFP is important in carbohydrate metabolism and other cellular processes. These authors contributed equally to this study.  相似文献   

19.
Zinc finger proteins were involved in response to different environmental stresses in plant species. A typical Cys2/His2-type (C2H2-type) zinc finger gene GmZF1 from soybean was isolated and was composed of 172 amino acids containing two conserved C2H2-type zinc finger domains. Phylogenetic analysis showed that GmZF1 was clustered on the same branch with six C2H2-type ZFPs from dicotyledonous plants excepting for GsZFP1, and distinguished those from monocotyledon species. The GmZF1 protein was localized at the nucleus, and has specific binding activity with EP1S core sequence, and nucleotide mutation in the core sequence of EPSPS promoter changed the binding ability between GmZF1 protein and core DNA element, implying that two amino acid residues, G and C boxed in core sequence TGACAGTGTCA possibly play positive regulation role in recognizing DNA-binding sites in GmZF1 proteins. High accumulation of GmZF1 mRNA induced by exogenous ABA suggested that GmZF1 was involved in an ABA-dependent signal transduction pathway. Over-expression of GmZF1 significantly improved the contents of proline and soluble sugar and decreased the MDA contents in the transgenic lines exposed to cold stress, indicating that transgenic Arabidopsis carrying GmZF1 gene have adaptive mechanisms to cold stress. Over-expression of GmZF1 also increased the expression of cold-regulated cor6.6 gene by probably recognizing protein-DNA binding sites, suggesting that GmZF1 from soybean could enhance the tolerance of Arabidopsis to cold stress by regulating expression of cold-regulation gene in the transgenic Arabidopsis.  相似文献   

20.
Environmental stress has a great impact on fruit yield and quality in grapes. Understanding mechanisms underlying stress tolerance in plants is useful for grape breeding. Here, a CBF gene, designated VaCBF4, was identified in V. amurensis. The expression of VaCBF4 was induced by several abiotic stresses, including cold, exogenous abscisic acid (ABA), drought, salinity, and cold-drought conditions. A yeast one-hybrid assay demonstrated that VaCBF4 protein could bind to a conserved DRE cis-element, which contains the core sequence ACCGAC and regulates cold- and dehydration-responsive. Transgenic Arabidopsis seedlings overexpressing VaCBF4 showed enhanced tolerance to cold, drought, and salinity when compared with wild-type controls. LT50, a chilling temperature required to cause 50 % electrolyte leakage in leaves, was 4 °C lower in transgenic Arabidopsis lines than that in non-cold-acclimated wild-type seedlings. Moreover, two stress-responsive genes, AtRD29A and AtCOR47, also showed higher levels of expression in the transgenic lines than in wild-type seedlings under normal growth condition. Taken together, all these results clearly indicate that VaCBF4 is involved in the response to abiotic stresses, and it may be a good candidate gene for genetic improvement to develop stress-tolerant varieties in grapes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号