首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Optically pure (R)-3-quinuclidinol [(R)-3-Qui] is widely used as a chiral building block for producing various antimuscarinic agents. An asymmetric bioreduction approach using 3-quinuclidinone reductases is an effective way to produce (R)-3-Qui. In this study, a biocatalyst for producing (R)-3-Qui was developed by using Escherichia coli that coexpressed Kaistia granuli (KgQR) and mutant glucose dehydrogenase (GDH). KgQR catalyses the synthesis of (R)-3-Qui through the efficient reduction of 3-quinuclidinone. The specific activity of recombinant KgQR was 254?U/mg, and the Michaelis–Menten constant (Km) for 3-quinuclidinone was 0.51?mM. The thermal stability of KgQR was relatively high compared with ArQR. Approximately 73% of the residual activity remained after incubation in 0.2 M potassium phosphate buffer (KPB) (pH 7.0) for 8?h at 30?°C. In addition, 80% residual activity remained for the double-mutant GDH (Q252L and E170K) after incubation in a buffer (pH 7.0) for 8?h at 30 and 40?°C. 3-Quinuclidinone (242?g/L) can be reduced to (R)-3-Qui in 3?h by coexpressing KgQR and mutant GDH in E. coli. The conversion rate reached 80.6?g/L/h, which is the highest reported to date. The results demonstrates that this whole-cell biocatalyst will have a great potential in industrial manufacturing.  相似文献   

2.
Pseudomonas denitrificans is a gram-negative bacterium that can produce vitamin B12 under aerobic conditions. Recently, recombinant strains of P. denitrificans overexpressing a vitamin B12-dependent glycerol dehydratase (DhaB) were developed to produce 3-hydroxypropionic acid (3-HP) from glycerol. The recombinant P. denitrificans could produce 3-HP successfully under aerobic conditions without an exogenous supply of vitamin B12, but the 3-HP produced disappeared during extended cultivation due to the 3-HP degradation activity in this strain. This study developed mutant strains of P. denitrificans that do not degrade 3-HP. The following eight candidate enzymes, which might be responsible for 3-HP degradation, were selected, cloned, and studied for their activity in Escherichia coli: four (putative) 3-hydroxyisobutyrate dehydrogenases (3HIBDH), a putative 3-HP dehydrogenase (3HPDH), an alcohol dehydrogenase (ADH), and two choline dehydrogenases (CHDH). Among them, 3HIBDHI, 3HIBDHIV, and 3HPDH exhibited 3-HP degrading activity when expressed heterologously in E. coli. When 3hpdh alone or along with 3hibdhIV were disrupted from P. denitrificans, the mutant P. denitrificans exhibited greatly reduced 3-HP degradation activity that could not grow on 3-HP as the sole carbon and energy source. When the double mutant P. denitrificans Δ3hpdhΔ3hibdhIV was transformed with DhaB, an improved 3-HP yield (0.78 mol/mol) compared to that of the wild-type counterpart (0.45 mol/mol) was obtained from a 24-h flask culture. This study indicates that 3hpdh and 3hibdhIV (to a lesser extent) are mainly responsible for 3-HP degradation in P. denitrificans and their deletion can prevent 3-HP degradation during its production by recombinant P. denitrificans.  相似文献   

3.
The meso-2,3-butanediol dehydrogenase (meso-BDH) from S. marcescens H30 is responsible for converting acetoin into 2,3-butanediol during sugar fermentation. Inactivation of the meso-BDH encoded by budC gene does not completely abolish 2,3-butanediol production, which suggests that another similar enzyme involved in 2,3-butanediol formation exists in S. marcescens H30. In the present study, a glycerol dehydrogenase (GDH) encoded by gldA gene from S. marcescens H30 was expressed in Escherichia coli BL21(DE3), purified and characterized for its properties. In vitro conversion indicated that the purified GDH could catalyze the interconversion of (3S)-acetoin/meso-2,3-butanediol and (3R)-acetoin/(2R,3R)-2,3-butanediol. (2S,3S)-2,3-Butanediol was not a substrate for the GDH at all. Kinetic parameters of the GDH enzyme showed lower K m value and higher catalytic efficiency for (3S/3R)-acetoin in comparison to those for (2R,3R)-2,3-butanediol and meso-2,3-butanediol, implying its physiological role in favor of 2,3-butanediol formation. Maximum activity for reduction of (3S/3R)-acetoin and oxidations of meso-2,3-butanediol and glycerol was observed at pH 8.0, while it was pH 7.0 for diacetyl reduction. The enzyme exhibited relative high thermotolerance with optimum temperature of 60 °C in the oxidation–reduction reactions. Over 60 % of maximum activity was retained at 70 °C. Additionally, the GDH activity was significantly enhanced for meso-2,3-BD oxidation in the presence of Fe2+ and for (3S/3R)-acetoin reduction in the presence of Mn2+, while several cations inhibited its activity, particularly Fe2+ and Fe3+ for (3S/3R)-acetoin reduction. The properties provided potential application for single configuration production of acetoin and 2,3-butanediol .  相似文献   

4.
A cofactor regeneration system for enzymatic biosynthesis was constructed by coexpressing a carbonyl reductase from Pichia stipitis and a glucose dehydrogenase from Bacillus megaterium in Escherichia coli Rosetta (DE3) PlySs. Transformants containing the polycistronic plasmid pET-PII-SD2-AS1-B exhibited an activity of 13.5 U/mg protein with 4-chloro-3-oxobutanoate ethyl ester (COBE) as the substrate and an activity of 14.4 U/mg protein with glucose as the substrate; NAD(H) was the coenzyme in both cases. Asymmetric reduction of COBE to (S)-4-chloro-3-hydroxybutanoate ethyl ester [(S)-CHBE] with more than 99% enantiomeric excess was demonstrated by transformants. Furthermore, the paper made a comparison of crude enzyme catalysis and whole-cell catalysis in an aqueous monophasic system and a water/organic solvent biphasic system. In the water/n-butyl acetate system, the coexpression system produced 1,398 mM CHBE in the organic phase, which is the highest yield ever reported for CHBE production by NADH-dependent reductases from yeasts. In this case, the molar yield of CHBE was 90.7%, and the total turnover number, defined as moles (S)-CHBE formed per mole NAD+, was 13,980.  相似文献   

5.
6.
In order to produce enantiomerically pure epoxides for the synthesis of value-added chemicals, a novel putative epoxide hydrolase (EH) sgeh was cloned and overexpressed in pET28a/Escherichia coli BL21(DE3). The 1047 bp sgeh gene was mined from Streptomyces griseus NBRC 13350 genome sequence. The recombinant hexahistidyl-tagged SGEH was purified (16.6-fold) by immobilized metal-affinity chromatography, with 90% yield as a homodimer of 100 kDa. The recombinant E. coli whole cells overexpressing SGEH could kinetically resolve racemic phenyl glycidyl ether (PGE) into (R)-PGE with 98% ee, 40% yield, and enantiomeric ratio (E) of 20. This was achieved under the optimized reaction conditions i.e. cell/substrate ratio of 20:1 (w/w) at pH 7.5 and 20?°C in 10% (v/v) dimethylformamide (DMF) in a 10 h reaction. 99% enantiopure (R)-PGE was obtained when the reaction time was prolonged to 12 h with a yield of 34%. In conclusion, an economically viable and environment friendly green process for the production of enantiopure (R)-PGE was developed by using wet cells of E. coli expressing recombinant SGEH.  相似文献   

7.
A novel enantioselective alcohol dehydrogenase, (R)-2-octanol dehydrogenase (PfODH), was discovered among methylotrophic microorganisms. The enzyme was purified from Pichia finlandica and characterized. The molecular mass of the enzyme was estimated to be 83,000 and 30,000 by gel filtration and sodium dodecyl sulfate–polyacrylamide gel electrophoresis, respectively. The enzyme was an NAD+-dependent secondary alcohol dehydrogenase and showed a strict enantioselectivity, very broad substrate specificity, and high tolerance to SH reagents. A gene-encoding PfODH was cloned and sequenced. The gene consisted of 765 nucleotides, coding polypeptides of 254 amino acids. The gene was singly expressed and coexpressed together with a formate dehydrogenase as an NADH regenerator in an Escherichia coli. Ethyl (S)-4-chloro-3-hydroxybutanoate and (S)-2-chloro-1-phenylethanol were synthesized using a whole-cell biocatalyst in more than 99 % optical purity.  相似文献   

8.
Alcohol dehydrogenase (ADH) and amine dehydrogenase (AmDH)-catalyzed one-pot cascade conversion of an alcohol to an amine provides a simple preparation of chiral amines. To enhance the cofactor recycling in this reaction, we report a new concept of coupling whole-cells with the cell-free system to enable separated intracellular and extracellular cofactor regeneration and recycling. This was demonstrated by the respective biotransformation of racemic 4-phenyl-2-butanol 1a and 1-phenyl-2-propanol 1b to (R)-4-phenylbutan-2-amine 3a and (R)-1-phenylpropan-2-amine 3b . Escherichia coli cells expressing S-enantioselective CpsADH, R-enantioselective PfODH, and NADH oxidase (NOX) was developed to oxidize racemic alcohols 1a–b to ketones 2a–b with full conversion via intracellular NAD+ recycling. AmDH and glucose dehydrogenase (GDH) were used to convert ketones 2a–b to amines (R)- 3a–b with 89–94% conversion and 891–943 times recycling of NADH. Combining the cells and enzymes for the cascade transformation of racemic alcohols 1a–b gave 70% and 48% conversion to the amines (R)- 3a and (R)-3 b in 99% ee, with a total turnover number (TTN) of 350 and 240 for NADH recycling, respectively. Improved results were obtained by using the E. coli cells with immobilized AmDH and GDH: (R)- 3a was produced in 99% ee with 71–84% conversion and a TTN of 1410-1260 for NADH recycling, the highest value so far for the ADH–AmDH-catalyzed cascade conversion of alcohols to amines. The concept might be generally applicable to this type of reactions.  相似文献   

9.
A gene encoding an NADH-dependent short-chain dehydrogenase/reductase (gox2036) from Gluconobacter oxydans 621H was cloned and heterogeneously expressed in Escherichia coli. The protein (Gox2036) was purified to homogeneity and biochemically characterized. Gox2036 was a homotetramer with a subunit size of approximately 28 kDa. Gox2036 had a strict requirement for NAD+/NADH as the cofactor. Gox2036 displayed preference for oxidation of secondary alcohols and 2,3-diols as well as for reduction of α-diketones, hydroxy ketones, α-ketoesters, and β-ketoesters. However, Gox2036 was poorly active on 1,2-diols and acetoin and showed no activity on primary alcohols, polyols, and aldehydes. The optimum pH values for the oxidation and reduction reactions were 9 and 6, respectively. Gox2036 was highly selective in the reduction of various β-ketones and β-ketoesters. Among the substrates tested, ethyl 4-chloro acetoacetate was reduced to ethyl (R)-4-chloro-3-hydroxybutanoate ester with an excellent conversion yield of 96.9 % and optical purity of >99 % e.e. using an efficient in situ NADH-recycling system involving glucose and a glucose dehydrogenase from Bacillus subtilis (BsGDH).  相似文献   

10.
Two putative glutamate dehydrogenase (GDH) genes (pcal_1031 and pcal_1606) were found in a sulfur-dependent hyperthermophilic archaeon, Pyrobaculum calidifontis. The two genes were then expressed in Escherichia coli, and both of the recombinant gene products showed GDH activity. The two enzymes were then purified to homogeneity and characterized in detail. Although both purified GDHs had a hexameric structure and neither exhibited allosteric regulation, they showed different coenzyme specificities: one was specific for NAD+, the other for NADP+ and different heat activation mechanisms. In addition, there was little difference in the kinetic constants, optimal temperature, thermal stability, optimal pH and pH stability between the two enzymes. The overall sequence identity between the two proteins was very high (81 %), but was not high in the region recognizing the 2′ position of the adenine ribose moiety, which is responsible for coenzyme specificity. This is the first report on the identification of two GDHs with different coenzyme specificities from a single hyperthermophilic archaeon and the definition of their basic in vitro properties.  相似文献   

11.
(R)-[3,5-bis(trifluoromethyl)phenyl] ethanol ((R)-BTPE) is a valuable chiral intermediate for the synthesis of antiemetic drug Aprepitant and Fosaprepitant. A Leifsonia xyli HS0904-derived carbonyl reductase (LXCAR), an effective biocatalyst for the asymmetric reduction of 3,5-bis(trifluoromethyl) acetophenone (BTAP) to (R)-BTPE, was overexpressed in Escherichia coli BL21 (DE3). Bioinformatics analysis indicated that the amino acid sequence of recombinant LXCAR showed 89 % similarity to short-chain dehydrogenase/reductase. E. coli recombinant carbonyl reductase crude extract showed a specific activity of 1.54 U/mg, which was 62 times higher than that of L. xyli HS0904 crude extract. By using error-prone polymerase chain reaction and site-directed mutagenesis, the engineered LXCAR demonstrated superior catalytic activity toward BTAP, and the obtained mutant LXCAR-S154Y exhibited nearly 13-fold, 5.4-fold, and 2.3-fold increase in k cat/K m value, k cat value, and specific activity toward BTAP, respectively, compared to the recombinant LXCAR. Additionally, the reduction of BTAP by whole cells of mutant LXCAR-S154Y afforded a best yield of 99.6 % for (R)-BTPE within 2 h at 200 mM BTAP, which was shortened by 28 and 2 h compared to those catalyzed by L. xyli HS0904 cells and recombinant E. coli cells expressing LXCAR, respectively. Moreover, a yield of 82.5 % for (R)-BTPE was achieved within 12 h at an increased BTAP concentration of up to 1,000 mM (256 g/l), representing a 1.9-fold increase over the recombinant LXCAR. Homology modeling and docking analysis revealed the molecular basis for the high catalytic activity of mutant LXCAR-S154Y toward BTAP. The results present here provide a promising alternative for economical and efficient production of chiral alcohols by engineered LXCAR.  相似文献   

12.
Rhodococcus erythropolis WZ010 was capable of producing optically pure (2S,3S)-2,3-butanediol in alcoholic fermentation. The gene encoding an acetoin(diacetyl) reductase from R. erythropolis WZ010 (ReADR) was cloned, overexpressed in Escherichia coli, and subsequently purified by Ni-affinity chromatography. ReADR in the native form appeared to be a homodimer with a calculated subunit size of 26,864, belonging to the family of the short-chain dehydrogenase/reductases. The enzyme accepted a broad range of substrates including aliphatic and aryl alcohols, aldehydes, and ketones. It exhibited remarkable tolerance to dimethyl sulfoxide (DMSO) and retained 53.6 % of the initial activity after 4 h incubation with 30 % (v/v) DMSO. The enzyme displayed absolute stereospecificity in the reduction of diacetyl to (2S,3S)-2,3-butanediol via (S)-acetoin. The optimal pH and temperature for diacetyl reduction were pH 7.0 and 30 °C, whereas those for (2S,3S)-2,3-butanediol oxidation were pH 9.5 and 25 °C. Under the optimized conditions, the activity of diacetyl reduction was 11.9-fold higher than that of (2S,3S)-2,3-butanediol oxidation. Kinetic parameters of the enzyme showed lower K m values and higher catalytic efficiency for diacetyl and NADH in comparison to those for (2S,3S)-2,3-butanediol and NAD+, suggesting its physiological role in favor of (2S,3S)-2,3-butanediol formation. Interestingly, the enzyme showed higher catalytic efficiency for (S)-1-phenylethanol oxidation than that for acetophenone reduction. ReADR-catalyzed asymmetric reduction of diacetyl was coupled with stereoselective oxidation of 1-phenylethanol, which simultaneously formed both (2S,3S)-2,3-butanediol and (R)-1-phenylethanol in great conversions and enantiomeric excess values.  相似文献   

13.
The gene encoding a novel alcohol dehydrogenase that belongs to the short-chain dehydrogenases/reductases superfamily was identified in the aerobic thermoacidophilic crenarchaeon Sulfolobus acidocaldarius strain DSM 639. The saadh2 gene was heterologously overexpressed in Escherichia coli, and the resulting protein (SaADH2) was purified to homogeneity and both biochemically and structurally characterized. The crystal structure of the SaADH2 NADH-bound form reveals that the enzyme is a tetramer consisting of identical 27,024-Da subunits, each composed of 255 amino acids. The enzyme has remarkable thermophilicity and thermal stability, displaying activity at temperatures up to 80 °C and a 30-min half-inactivation temperature of ~88 °C. It also shows good tolerance to common organic solvents and a strict requirement for NAD(H) as the coenzyme. SaADH2 displays a preference for the reduction of alicyclic, bicyclic and aromatic ketones and α-ketoesters, but is poorly active on aliphatic, cyclic and aromatic alcohols, showing no activity on aldehydes. Interestingly, the enzyme catalyses the asymmetric reduction of benzil to (R)-benzoin with both excellent conversion (98 %) and optical purity (98 %) by way of an efficient in situ NADH-recycling system involving a second thermophilic ADH. The crystal structure of the binary complex SaADH2–NADH, determined at 1.75 Å resolution, reveals details of the active site providing hints on the structural basis of the enzyme enantioselectivity.  相似文献   

14.
Ethyl (S)-4-chloro-3-hydroxy butanoate (ECHB) is a building block for the synthesis of hypercholesterolemia drugs. In this study, various microbial reductases have been cloned and expressed in Escherichia coli. Their reductase activities toward ethyl-4-chloro oxobutanoate (ECOB) have been assayed. Amidst them, Baker's yeast YDL124W, YOR120W, and YOL151W reductases showed high activities. YDL124W produced (S)-ECHB exclusively, whereas YOR120W and YOL151W made (R)-form alcohol. The homology models and docking models with ECOB and NADPH elucidated their substrate specificities and enantioselectivities. A glucose dehydrogenase-coupling reaction was used as NADPH recycling system to perform continuously the reduction reaction. Recombinant E. coli cell co-expressing YDL124W and Bacillus subtilis glucose dehydrogenase produced (S)-ECHB exclusively.  相似文献   

15.
The asymmetric reduction of ethyl 4-chloro-3-oxobutanoate (COBE) to ethyl (R)-4-chloro-3-hydroxybutanoate [(R)-CHBE] using Escherichia coli cells, which coexpress both the aldehyde reductase gene from Sporobolomyces salmonicolor and the glucose dehydrogenase (GDH) gene from Bacillus megaterium as a catalyst was investigated. In an organic solvent-water two-phase system, (R)-CHBE formed in the organic phase amounted to 1610 mM (268 mg/ml), with a molar yield of 94.1% and an optical purity of 91.7% enantiomeric excess. The calculated turnover number of NADP+ to CHBE formed was 13 500 mol/mol. Since the use of E. coli JM109 cells harboring pKAR and pACGD as a catalyst is simple, and does not require the addition of GDH or the isolation of the enzymes, it is highly advantageous for the practical synthesis of (R)-CHBE. Received: 5 October 1998 / Received revision: 16 November 1998 / Accepted: 5 December 1998  相似文献   

16.
A new strain, Enterobacter sp. ECU1107, was identified among over 200 soil isolates using a two-step screening strategy for the enantioselective synthesis of (2S,3R)-3-phenylglycidate methyl ester (PGM), a key intermediate for production of a potent anticancer drug Taxol®. An organic–aqueous biphasic system was employed to reduce spontaneous hydrolysis of the substrate PGM and isooctane was found to be the most suitable organic solvent. The temperature and pH optima of the whole cell-mediated bioreaction were 40 °C and 6.0, respectively. Under these reaction conditions, the enantiomeric excess (ee s) of (2S,3R)-PGM recovered was greater than 99 % at approximately 50 % conversion. The total substrate loading in batch reaction could reach 600 mM. By using whole cells of Enterobacter sp. ECU1107, (2S,3R)-PGM was successfully prepared in decagram scale in a 1.0-l mechanically stirred reactor, affording the chiral epoxy ester in >99 % ee s and 43.5 % molar yield based on the initial load of racemic substrate.  相似文献   

17.
A NADPH-dependent (S)-imine reductase (SIR) was purified to be homogeneous from the cell-free extract of Streptomyces sp. GF3546. SIR appeared to be a homodimer protein with subunits of 30.5 kDa based on SDS-polyacrylamide gel electrophoresis and HPLC gel filtration. It also catalyzed the (S)-enantioselective reduction of not only 2-methyl-1-pyrroline (2-MPN) but also 1-methyl-3,4-dihydroisoquinoline and 6,7-dimethoxy-1-methyl-3,4-dihydroisoquinoline. Specific activities for their imines were 130, 44, and 2.6 nmol?min?1?mg?1, and their optical purities were 92.7 % ee, 96.4 % ee, and >99 % ee, respectively. Using a NADPH-regenerating system, 10 mM 2-MPN was converted to amine with 100 % conversion and 92 % ee after 24 h. The amino acid sequence analysis revealed that SIR showed about 60 % identity to 6-phosphogluconate dehydrogenase. However, it showed only 37 % identity with Streptomyces sp. GF3587 (R)-imine reductase. Expression of SIR in Escherichia coli was achieved, and specific activity of the cell-free extract was about two times higher than that of the cell-free extract of Streptomyces sp. GF3546.  相似文献   

18.
Recently, Corynebacterium glutamicum has been shown to exhibit gluconate bypass activity, with two key enzymes, glucose dehydrogenase (GDH) and gluconate kinase, that provides an alternate route to 6-phosphogluconate formation. In this study, gene disruption analysis was used to examine possible metabolic functions of three proteins encoded by open reading frames having significant sequence similarity to GDH of Bacillus subtilis. Chromosomal in-frame deletion of three genes (NCgl0281, NCgl2582, and NCgl2053) encoding putative NADP+-dependent oxidoreductases led to the absence of GDH activity and correlated with increased specific glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase activities. This finding suggested that enhanced carbon flux from glucose was directed toward the oxidative pentose phosphate (PP) pathway, when the mutant was cultivated with 6 % glucose. Consequently, the mutant showed 72.4 % increased intracellular NADPH and 66.3 % increased extracellular l-ornithine production. The enhanced activities of the oxidative PP pathway in the mutant explain both the increased intracellular NADPH and the high extracellular concentration of l-ornithine. Thus, the observed metabolic changes in this work corroborate the importance of NADPH in l-ornithine production from C. glutamicum.  相似文献   

19.
20.
5-((R)-1-Hydroxyethyl)-furo[2,3-c]pyridine ((R)-FPH) is a useful chiral building block in the synthesis of pharmaceuticals. An NADH-dependent alcohol dehydrogenase (AFPDH) isolated from Candida maris catalyzed the reduction of 5-acetylfuro[2,3-c]pyridine (AFP) to (R)-FPH with 100% enantiomeric excess. The gene encoding AFPDH was cloned and sequenced. The AFPDH gene comprises 762 bp and encodes a polypeptide of 27,230 Da. The deduced amino acid sequence showed a high degree of similarity to those of other members of the short-chain alcohol dehydrogenase superfamily. The AFPDH gene was overexpressed in Escherichia coli under the control of the lac promoter. One L of the cultured broth of an E. coli transformant coexpressing AFPDH and the glucose dehydrogenase (GDH) gene reduced 250 g of AFP to (R)-FPH in an organic solvent two-phase system. Under coupling with NADH regeneration using 2-propanol, 1 L of the cultured broth of an E. coli transformant expressing the AFPDH gene reduced 150 g of AFP to (R)-FPH. The optical purity of the (R)-FPH formed was 100% enantiomeric excess under both reaction conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号